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Abstract

Interval routing is a space-efficient routing method for point-to-point commu-
nication networks. The method has drawn considerable attention in recent years
because of its being incorporated into the design of a commercially available routing
chip. The method is based on proper labeling of edges of the graph with intervals.
An optimal labeling would result in routing of messages through the shortest paths.
Optimal labelings have existed for regular as well as some of the common topologies,
but not for arbitrary graphs. In fact, it has already been shown that it is impossible
to find optimal labelings for arbitrary graphs. In this paper, we prove a 7D/4 — 1
lower bound for interval routing in arbitrary graphs, where D is the diameter—:.e.,
the best any interval labeling scheme could do is to produce a longest path having
a length of at least 7D/4 — 1.
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rithms.
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1 Introduction

Routing is an important operation in communication networks. Since it is frequently
invoked, it is worth the while to try to optimize the number of steps taken to route
a message from one node to another. Obviously, we can achieve optimal routing by
keeping a table of size O(n) in each node, n being the number of nodes in the network.
For large networks, this may not be practical. Various methods that use much less space
have been proposed, including interval routing which has been adopted in the design
of a commercially available routing chip. The idea of interval routing is to label every
node with a number from a linearly and cyclicly ordered set, for example {0,...,n -1},
and every (directed) edge with an interval (of range of node numbers). To understand
how the method works, refer to Figure 1 which shows an example of a simple network,
complete with node numbers and interval labels, and a path traversed by a message
{(from Node 2 to Node 0) by following the interval labels. In the figure. an interval label
of the form (i, j) corresponds to the range of node numbers from i to j; intervals of the
form (k) contain the single node number k. The message, being destined for Node 0, first
takes the edge to Node 3 because 0 is contained in the interval (3,0), and then it takes
the edge to Node 4 because 0 is contained in (4,0), and so on. It can be seen that at

most O(d) space is needed at a node, where d is the node’s degree. The idea of interval

<0,1>

<4,0> \_/
4 3
W amessage destined for Node 0

Figure 1: Example of interval routing

routing was first proposed by Santoro and Khatib [6] who used a spanning tree at every



node to carry out the assignment of interval labels. As a result, not all the edges are
used for routing in their scheme. Later on. van Leeuwen and Tan extended the method
to make use of all the edges [8]. Their labeling scheme can produce optimal labelings for
common topologies such as trees, rings, complete graphs. and some grids. An optimal
labeling is such that the routing of a message from any node to any other node would take
the shortest path in the graph. Their labeling scheme as well as Santoro and Khatib’s,
however, are not able to generate optimal labelings for arbitrary graphs. Ruzi¢ka proved
that it is impossible to find optimal interval labelings for arbitrary graphs. Specifically,
Ruzitka found a graph for which he proved that no interval labeling can result in a
longest path which is shorter than 3D/2+1/2 (or 1.5D +1/2). In this paper, we give an
improved lower bound of 7D/4 ~1 (or 1.75D ~ 1). We use a graph which bears certain

resemblance to RuZicka's graph, but is slightly more complicated.

Our lower bound result suggests that Santoro and Khatib’s labeling algorithm [6],
which produces paths that are no longer than 2D for arbitrary networks, is very close
to the best possible. Their labeling algorithm, however, might suffer from bottleneck
problems due to the use of a spanning tree for the routes. Interval labeling has been
incorporated into the latest routing chip, the C104, by Inmos [3, 4], which undoubtedly
would add to the need of finding even better interval labeling algorithms. The graph as
presented in this paper can be used as a test case for measuring the goodness of such

algorithms.

In the following, we assume that interval labels are cyclic.! In addition to interval
labels, there could also be null labels and complement labels [5]. An edge labeled with
a null label is never taken in routing messages. An edge with a complement label is
taken when the interval label of all other edges fail to contain the destination node
number. It can be easily seen that if null labels are allowed in our graph which will
be presented in Section 3, a lower bound of 2D — 1 would result. Therefore, in the
following, we consider only interval and complement labels. Obviously, a node can have
at most one complement label. We first present a lower bound for the case of using only
interval labels (Section 3). Then in Section 4 we modify the graph to allow for the use of

complement labels, and the modification is such that the complement labels, no matter

The scheme is called linear mierval routing when non-cyclic labels are used [1, 2}.



where they are placed, cannot help to shorten the longest path: as a result. we have the

same lower bound for the latter case based on the modified graph.

2 Definitions, Notations, and Properties

The network in question is an undirected graph, G = (E, V'), where E is the set of edges,
and V the set the nodes. Every edge in E is actually made up of two directed edges,
one for each direction (as in Figure 1). There are n nodes in V. To implement interval
routing, each node is labeled with a unique integer, called a node number, from the set
L = {0,...,n~1}. For simplicity, we assume a node’s number is the same as the node’s

name.

Every edge in each direction is labeled with an interval label (or interval) which is of
the form (p, ¢), where p,q € L. For u,v € V that are directly connected, L{u,v) denotes
the interval label for the edge that goes from u to v. A node m (or its number) is said
to be contained in (p,g) f (1) p<m<gforp<gor(2)p<m<n—lor0<m<y
otherwise. We use the notation u < v < w, u.v,w € L, to denote the cyclic ordering of

node numbers. Naturally, 0 <1 <---<n—1~<0.

In the following, subsets of node numbers that are contained in some interval often
occur inside expressions—we use the set notation to denote them. For example, {u, v, w}
refers to three node numbers, u, v, w, that are contained in some interval and whose order
is not specified. The expression u < {v,w} < z--- means that v and w are contained
in some interval and that they are ordered after u and before r, but the order of v and

w is not known.

Property 2.1 (Completeness) The set of interval labels for edges directed from a node

u is complete. That is, every node in V # u must be contained in some u’s interval.

Property 2.2 (No ambiguity) The interval labels for edges directed from a node u ure

disgoint. That s, for node v # u, v is contained in exactly one of these intervals.

Property 2.3 (No bouncing) For any edge (u,v) € E, there exists no node w # u,v

such that w is contaned in both L(u,v) and L(v,u).



Given node u, Property 2.2 implies that L{u,v) N L{u,w) = @, where (u,v) and (u,w)

are any two edges directed from u. And Property 2.3 implies that L(u,v)N L(v,u) = 0.

3 Lower Bound

We are going to be more specific about the graph G based on which we will derive our
lower bound. Figure 2 shows the details of G’ which consists of three identical “faps”,

each of length 2k (edges), & > 3, extending from a middle axis. The set of nodes V is

D=3k

apath of 7D/4 -1 '

Figure 2: The graph G

made up of {u;;,viywi;]l €1<81<7<2%k -1 U {mfl <7< 8}U {uo, v, wo}-
The number of nodes, n, is therefore equal to 3 x 8 x (24 — 1)+ 8+ 3 = 48% — 13. The
diameter of G, D, is 4k. The lower bound we are going to prove is TD/4 — 1—u.¢.. there
exists no labeling scheme such that the longest path in G is shorter than 7TD/4 — 1. In
Figure 2, we included an example of a path which is of length TD/4 — 1 to give an idea

of the magnitude of this value. We will prove the bound by contradiction.

If there is a labeling scheme such that the longest path is shorter than 7D/4—1, then
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the following three lemmas hold.

Lemma 3.1 For every ¢ € {L...., 3}. there exists an nterval label that contains
{Us k1. Uedkmts Ve 2hmty W2kt }

but does not contain {uyy,u2,1,--..usa}.

Proof: Consider u,g. L{tusk, tifr1) must contain {Usks1, ty 21, Vi2k-1, We2k1} and
L(t, x, Ui k) must contain {uys, usy,...,Us1}, but by Property 2.2, these two inter-

val labels are disjoint. O

Lemma 3.2 For every 1 € {1,....8}, there exist three disjount intervals containing

{Ui2km1, Uemi}s {Vizk=1, Vrk=1}, @nd {Winpo1, Wik}, respectwvely.

Proof: By considering the three edges directed from m;,: = 1,....8. O

Lemma 3.3 There exist four or more disjownt intervals each of which contains
{ut,Zk—b Vs 2k=1s Wi 2k~1 };

where i € {1,...,8}.

Proof: Without loss of generality, suppose u;; < {tz,l <+ < ugy < uy;. Consider ug.
If there is a labeling scheme such that the longest path is shorter than 7D/4 — 1, then
L(uo, 1) contains {u,,1, Uy k1), for 2 = 1,....8. Since all intervals of the same node

are disjoint (Property 2.2), we have

{ul,laul.k+1} =~ {uz.l, uz,k+1} < e {us,l, us,k+1} < {um, Ul,k+1}~
By ignoring some of the node numbers, we have

ULy < Ukl < U3 S Ugher < Us,p = Us kbl = U < Ukl < Uyl
And then by Lemma 3.1, we have

urs < {Ug 1 Y2261, V2261, m.zk-z} < 31 < {Udkty Ua2bm1s Vi, 2610 Wi 2k=1] < Us,1

~< {t6 k1, Ub2k=11 U6 2011 Weak=1} < U7 < {UB ki1 UB2kw1y UB2k~1, We 2k~1} < U1



or
{u2.26-1, Yok, W22ko1} < {Ua2km1y Vs 2010 Wa 201 )

~< {Us2k~1) V821, Wo2k—1) < {8 2k=1- V8 2611 Wa,2km1 }-
m}
We denote these four subsets of intervals by Cy, C4, Cg, Cs, respectively. Figure 3 shows

the axis portion of G and the locations of these four subsets.

W 2k-1

layer |

layer 8

Figure 3: Four interval subsets at the centre

Theorem 3.1 There exists no labeling scheme such that the longest path is shorter than
7D/4 — 1.

Proof: Assume that a longest path of length shorter than 7D/4 — 1 exists. Consider Cy

in Lemma 3.3 and all the possible orderings of the three node numbers that were shown.

Cr < Ugap-1 < Vagk—y < Waze—1 < Cs < Cs

Cr < Usap-1 < Wazk—1 < Vazk-1 < Cs < Cs

Cy < V4 2k-1 < Uagr-1 < Wa2k—1 < Cs < C

Cy < va26-1 < Wa2k-1 < Uszk-1 < Cs < Cs

Ca < wagk-1 ~< Ug26-1 < Va2k-1 < Cg ~< Cs

Cy = Wazk=1 < Va2p-1 < Ugzk—1 < Cs < Cs
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Note that there are three possible choices for the middle place (underlined above) among
the three places of Cy. All together there are four muddle places for (', Cy,Cy, Cs,

respectively, which are to be occupied by four elements from the following three sets.

{Nmk-h Ug,2k—1) U6,2k~1, u8.2k—l}
{Uz.zlc—h V4,281 V8,2k—1, Us,zk-z}

{w2.2k~h Wy 261, W6 2k—is W8, 2h~1 }

Hence one set will contribute at least two elements to the middle places. Without loss
of generality, suppose that the first set above contributes two elements to the middle

places of Cy and Cg; that is

Vg gk=1 < Ug k-1 < Wazk-1 < Ve2k—1 < Ug26~1 < We2k~1 -

oS Ce
By Lemma 3.2, we have
Va2ke1 < {Ua2ke1s Ut b1} < Wigkel < Vo2km1 < {us2e—1, Usk—1} < We 261
or
Vg 2kat % Udh-1 = Wa2k-1 =< Vg 2k-1 < U k-1 < W5,26~1
Now consider uq , L{usk, %q k-1 ) Must contain {ue r-1,%1,1, U2,15-- -+ us;}, and L(ugy, Ug ks1)
must contain {vagk—1, w241} Therefore, we have

Va2k-1 < {Ua ko1, UL1, %20, 0, UBLY < Wa2k-1 = Vs,2k1 < Ug kel < W6 2k1-

Similarly, L(uek, tusk-1) must contain {ue x~1, 41,1, U1, - - -, Us1 }, and L(usk, Ug k41 ) mOUSE
contain {vszk~1, We2k—-1}. But in order for {vsz4—1,We2k~1} to be in the same in-
terval, the interval must include {ugx-1,u11,u21,...,us1} (in order to not include
ugg~1) according to the above cyclic order. Hence, L{ugk, tsk+1) N L{Ughr Us k1) =

{ur1,u21,-.-,us,1} # 0, which violates Property 2.2. O

4 Graphs with Complement Labels

In the above. we allowed only interval labels for the labeling scheme. Here, we extend

the lower bound result to cover also labeling schemes that use complement labels in
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addition to interval labels. For any node. one can assign at most one complement label
to the node. We transform the graph, G, we used in the previous section to another
graph, G’. Based on G', we show that the lower bound ior labeling schemes that can

use complement labels is the same as before.

The new graph, G’, as shown in Figure 4, has 36 layers and four flaps. The newly

the graph G as a subgraph

28 layers
A complement label

Figure 4: The graph G’

added parts are represented by dashed lines in the figure. The previous graph, G, is a
proper subgraph of G'.

Theorem 4.1 There exsts no labeling scheme (complement labels allowed) such that

the longest path is shorter than TD/4 — 1.

Proof: The nodes of G’ that can have a complement label are ug, vo, wo, 2o and m,,2 =
1,....12. All the other nodes are of degree two and therefore have either two interval
labels or one interval label and a null label. Since each of ug, vo, wg, Zo can have at most
one complement label, the distribution of the complement labels of ug, vo, wo, Zo covers

at most four layers (see the example in the figure—the bottom four layers), leaving at
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most 32 layers that are without complement labels at the tips of the four flaps. Then,
consider the m,'s; since each m, can be assigned at most one complement label, and each
m, has four edges, we can find at least 32/4 = 8 m,’s for which three of their four flaps
have no complement labels. Without loss of generality, suppose these three flaps are the
ones tipped at ug, vo, Wo, respectively. As a result, we are left with a subgraph which is
free of complement labels; this subgraph is either G or one that properly contains G.
Let’s concentrate on (& and ignore for the moment those nodes that are not 1n G. Since
every node of subgraph G must be able to reach every other node of G, we have an
wnterval routing problem for subgraph G which is exactly equal to the interval routing
problem we had in the previous section. Therefore, by Theorem 3.1, there exists at Jeast
one path in G whose length is longer than or equal to 7D/4 — 1; let this path be P.
Now we put the nodes we just ignored back into the picture. It is then easy to see that

P cannot be shortened by noting the following.

1. The added nodes would not affect the proof of Theorem 3.1 which is based on

subsets of intervals relevant to the nodes in G.

2. Any alternate path for the same source and destination as P that goes through one

or more nodes in G’ — G cannot be shorter than P.

Hence, there exists a path in G’ that is longer than or equal to 7D/4 — 1., O

5 Conclusion

Ruzicka used a graph that has two flaps [5], and we use here one that has three flaps;
looking at the way we proved the bound, however, using four or more flaps might not
give rise to a better bound. The graph we used (for the one with interval labels only)
has eight layers. In fact, we could have made it six layers, but then the proof (of
Theorem 3.1) would become more complicated (and less interesting). On the other
hand, if we made & > 2 instead of 3, the proof would become simpler. We did not
consider the case of linear interval routing (i.e., using non-cyclic labels) which should be
Just a simple extension of what we have done: its bound is expected to be worst (bigger)

than 7D/4 — 1 because of the reduced fexibility of the interval labels. One obvious
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future direction is to consider multiple labels per edge. Intuitively, the more labels are
assigned to an edge, the better the chance of finding optimal or near-optimal labelings
for arbitrary graphs. Using a strategy similar to the one used here, we have proved a

lower bound of 50/4 —~ 1 {or 1.25D — 1) for 2-label interval routing n arbitrary graphs

(7.
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