——COMPUTER SCIENCE PUBLICATION—

An Optimal EREW Parallel Algorithm for

Parenthesis Matching

W.W. Tsang, TW. Lam & F.Y.L. Chin

Technical Report TR-89-01

January 1989

\[EE])

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF HONG KONG
POKFULAM ROAD
HONG KONG

UNIVERSITY OF HONG KONG
LIBRARY

This book was a gift
from

Dept. of Computer Science
University of Hong Kong

An Optimal EREW Parallel Algorithm for
Parenthesis Matching

Wai Wan Tsang, Tak W. Lam and Francis Y.L. Chin*

Department of Computer Science
Unuversity of Hong Kong
Pokfulam Road, Hong Kong

January 16, 1989

Abstract

Parenthesis matching 18 an important step in the construction of com-
putation tree form and parsing A new parailel algorithm 13 presented for
matching a string of n parentheses in O(logn) time using n/logn processors
on an exclusive-read, exclusive-wnite parallel random-access machine (EREW
PRAM). The previously best known method requires O(log®n) tume and
n/log n processors on an EREW PRAM or a concurrent-read, exclusive-write
parallel random-access machine (CREW PRAM) for O(logn) time complexity

Keywords Parallel Optimal Algonthm, EREW PRAM, Parenthesis Match-
ing, Pipelinmg, Computation Tree.

1 Introduction

Let zy,23, ..., Z, be a string of parentheses. The parenthesis matching problem is to
find all pairs of matched parentheses if the strmg is well-formed [BaVi] otherwise
output an error message. It is easy to construct an O(n) time sequential algorithm
for solving the problem using a stack. In this paper, we consider solving this prob-
lem on an exclusive-read, exclusive-write paralle] random-access machine (EREW
PRAM) [FoWy, Gold].

Parenthesis matching 1s a classical problem 1n parsing. This matching process
together with the application of Knuth’s parenthesis-insertion technique [Knu| are
important steps in the generation of computation tree forms for arithmetfic expres-
sions [BaVi]. The parallel algorithm for the generation of computation tree forms,

*electromic-mail address: hkucsltsangQuunet.un.net, hkucsitwlam@uunet.uo.net,
hkucsichin@uunet.uu.net

Ii ! ! [...

Figure 1: Organization of Processors

B Pl !

which relies on parenthesis matching, was first studied by Dekel and Sahni [DeSa).
They adapted the known sequential algorithm and emulated the stack in paral-
lel [Reif]. The resulting algorithm runs in O(log?n) time using n processors, or
O(logn) time with n?/ log n processors, on an EREW PRAM. Bar-on and Vishkin
[BaVi] used a binary tree structure to solve this problem and obtained an O(logn)
time and n/logn processors algorithm on a concurrent-read and exclusive-write
parallel random-access machine (CREW PRAM). Their algorithm can be run on
an EREW PRAM by simulation [Eck,Vis]. It takes O(log’n) time using n/logn
processors and is an improvement over Dekel and Sahni’s result on the number of
processors used.

In our algorithm, processors are organized in the form of a full binary tree. Each
leaf processor is assigned to a small segment of the parenthesis string as shown in
Figure 1. The entire algorithm consists of three stages. The first stage is exactly
the same as the first part of the Bar-on and Vishkin’s algorithm. The parentheses
in each segment are matched sequentially by the leaf processor assigned. In the
second stage, information of the remaining unmatched parentheses in each segment
is passed upward from the leaves to the root of the processor tree. The third stage
starts when this information arrives at the root. A unique identifier is allocated
to each matched pair of parentheses. This stage involves passing the allocation
information downward from the root to the leaves. Eventually, each parenthesis
receives an identifier.

With the identifier information, the matching of parentheses can be easily done
in two rounds using two arrays L and R. In the first round, set L[] = { if z, is
a left parenthesis and the identifier so allocated is k; set R[h] = ¢ if z, is a right
parenthesis. In the second round, an array M is constructed such that M[i] = ; if

and only if z, matched with z; in the following way.

for each A allocated

M{L{A]] = R[h];
M(R[h] = L[A]
end-for

Qur algorithm requires n/log n processors but performs neither a concurrent-
read nor concurrent-write operations on a PRAM. By pipelining the operations in
the third stage, the entire process can be done in O(log n} time. This is a significant
improvement over the previous best method [BaVi] as the latter requires 2 CREW
PRAM for similar time and processor complexity.

A detailed description of the algorithm is given in next section followed by its
proof of correctness in Section 3. Section 4 gives the analysis of the time and
processor complexity. Some general remarks are presented in Section 5.

2 The Algorithm

Our parenthesis matching algorithm can be divided into 3 stages: the initial stage,
the upward stage and the downward stage.

2.1 Initial stage

The input string is partitioned into n/(2log n) successive segments of length 2logn
each. A leaf processor of the tree mentioned in Section 1 is assigned to each segment.
The matching of parentheses within a segment is done by the processor assigned
with one pass on the segment using a stack. The remaining unmatched parentheses
in each segment will be of the form))---))({---(; i.e., a sequence of right parentheses
followed by a sequence of left parentheses. Since the matched parentheses in each
segment can be handled in this stage independently, without loss of generality, we
shall assume from now on that all segments contain only the unmatched left and
right parentheses.

2.2 Upward Stage

Assuming that n/logn is a power of 2, the tree shown in Figure 1 consists of
n/logn — 1 processors and n/{2logn) of them are leaves. For convenience, in
the following whenever without confusion, we shall use node and processor inter-
changeably. Moreover, for any node v on the tree, we define the substring of v (or
v’s substring) as the string formed by concatenating the .segments assigned to the

leaves of the subtree rooted at node v (Figure 1) and refer the parentheses in the
substring of v as parentheses at v. In this stage, each node v computes and passes
a triple, {(m,r,!), as a packet to its parent, where m,r and / are the number of pairs
of matched parentheses and the numbers of unmatched right and left parentheses
in the substring of node v, respectively. Note that the triple computed at a leaf
node is of the form (0,7,1). The triple information will be used later in allocating
identifiers in the third stage.

Throughout this paper, we assume that node v; and node v, are the left and right
children of node v; in the processor tree. Let (m;,r;,1,) and {mu, i, i) be the triples
computed at v; and v, respectively. First, let us consider the case when /; < 7.
Then all unmatched left parentheses at node v; match with the leftmost unmatched
right parentheses at node v,. In fact, the remaining unmatched right parentheses
at node v, and all unmatched right parentheses at node v; will contribute to the
unmatched right parentheses at node v;. In general, the triple of a non-leaf node v;
is computed from the triples of its children with the following formulas:

m; = m; + my, + min(l,, rg)
Ti=T e~ min(l,-,rg)
L= fj Ay - min(lj, 1‘1,)

It can be shown that the value m in the triple at the root is the number of pairs
of matched parentheses in the input string, and that r and [are zero if and only if
the input string is well-formed.

Communications between a parent node and its two children are carried by
sending packets along tree edges. When we say that a packet is sent from one
processor and received by another, we mean that a processor writes the information
into a shared memory location which is read by the other in a later step. Each
step takes constant time, say one time unit, and a step is sub-divided into phases:
reception phase, execution phase and transmission phase. During each step, only
one packet can be received and transmitted. Thus, if a packet is sent at time ¢ by
one processor, it can only be received by another processor at time # + 1 or later.

2.3 Downward stage

In this stage, each matched pair of parentheses in the input string will be assigned
with a distinct identifer selected from the range [1..n/2].

At any node v, there are two types of matched parentheses:

1. pairs of parentheses matched within the substring of either one of its children,
and '

2. pairs of parentheses matched across substrings of its two children.

<106,0, 0>

{M,1,301,(L,101,6] [M,31,70),[R,101,6]

M, 51,401, [R,91,10]
[R,105,2]

M, 31,201, [R,101,4],
{L,91,10]

Figure 2: A Simple Example

Starting from the root, every node allocates an identifier, within the range specified
by its parent, to each pair of its type 2 parentheses. This allocation information,
together with identifier subranges reserved for the matched pairs in its children’s
substrings (i.e., of type 1}, are passed downward as a sequence of packets. Eventu-
ally, a leaf assigns identifiers to the parentheses in its attached segment according
to the contents and order of packets it receives. Each non-leaf node, in addition to
allocating identifiers to its type 2 parentheses, has to relay, and sometimes split,
the allocation packets received from its parent.

Figure 2 gives an example of the configuration of the top part of the processor
tree right after the upward stage. When the downward stage starts, a range of
identifiers, 1--- 106, which can be treated as indices in arrays R and L, is reserved
by the root for all pairs of matched parentheses. According to the triples previously
received from its children, the root divides this range into three parts: 1--.30 for
the matched pairs in its left child’s substring, 31---100 for the matched pairs of its
right child’s and 101 - - - 106 for the parentheses which match across the substrings of
its two children. It then informs its children of the allocation by passing two packets,
[M,1,30] and [L, 101, 6], to its left child and two packets, [M,31,70] and [R,101,6],
to its right child. Note that the first component of each packet specifies the type of
parentheses, while the second and the third components specify the starting location
and the number of identifiers allocated. In fact, the first component of each packet
is redundant if a proper protocol is used.

When the right child receives the packets, it further divides the range 31..-100
into three parts, 31-.-50, 51 ... 90, and 91--- 100, in the same way as before. In ad-
dition, since four of its six unmatched right parentheses come from the left child and
the others from the right, it divides the range, 101 - -- 106, into two parts: 101 ---104

and 105.--106. It then sends packets, [M,31,20], [R,101,4] and {L,91,10] to its
left child and packets, [M, 51,40}, [R,91,10] and [R, 105,2], to its right.

The packets are split and passed downward and eventually arrive at the leaves.
The leaf processors then store the index of each parenthesis into the slot, specified by
the identifier received, of the array R or L. Note that the packets should be arrived
in the same order of the corresponding unmatched parentheses in the substring. In
our algorithm, we adopt the following ordering of the unmatched parentheses in a
substring,

2 3% y...3 21
The first R-packet contains the allocation information of the leftmost unmatched
right parentheses, while the first L-packet contains the rightmost unmatched left
ones. The order of other packets can be deduced in a similar way.

The followings describe in general how the outgoing packets are computed
from the incoming sequence of packets and the triples of the children nodes.
The packets are denoted with capital letters and their order of arrival is in-
dicated in the listing from left to right. Let (my,r;,/;) be the triple of node
v; and M;, Ry, Ry,--- R;, Ly,--- L, be incoming packets to node v;, where M; =
[M,s(]\l;),m;}, Ry, = [R,s(R;.),n(R,.)} for 1< h<zand L, = [L,s(L;.),n(L;,)]
for 1 < h < y. Our algorithm ensures that n(Ry) + n(Ry) + --» + n(R;) = r; and
n{Ly) + n(Lg) +--- +n(L,) = l;. Since there are two types of matched parentheses
at v;, four packets have to be derived from M; and two for each child, v; or vy

M; = (M, s(M;), m;]
M), = [M,s(Mk),mk]
Lm = [L, 3(Lm), n(Lm)]
Bm = [R,5(Bn),n(Ra)|

where

s(M;) = s(M;)

s(M) = s(M;) + m;

8(Lm) = 5(Rom) = (M) + m; + my
n{Ln) = n(Rpy) = min{l;,r;)

Note that packets L., and R,, have assigned the same identifiers as they correspond
to the same pairs of matched parentheses.

Without loss of generality, let us assume that I; < r¢. The r; right parentheses
at node v; are contributed from node v; and node v;. Thus, the sequence of packets,
Ry,+++,Ry,---, Rz, have to be divided into two subsequences: Ry, -+, R, for node
v; and Ryw,- -, Ry for node v, where R,s and Ry~ are split from R, such that

6

' '

M’Rlth"'stsLth'“1Lv

M’Rtha"'er‘,Lm MhRﬂan’H"'sz,Lx,Lz,"‘,Ly

Figure 3: Packets flow through node v; when |, < ;.

the total number of identifiers specified in Ry,---, Ry equals r,, i.e., n(Ry) + -+« +
n(Ry-1) + n{Ry) = r;. After the leftmost unmatched right parentheses of node
v; have matched all the unmatched left parentheses at node v;, the remaining
unmatched right parentheses then contribute to the rightmost unmatched right
parentheses at node v;. The packets corresponding to the right parentheses received
by node v should be in the order of R,Ryu--- R, and rp = n{Ry) + n(Ryn) +
n{Ry41) + - -+ + n{Rz). (See Figure 3.)

Note that the number of outgoing packets at each node is at most four more
than the number of incoming packets. Since the splitting and passing of a packet
are independent of the trailing packets, the sending and receiving of packets at each
node can be overlapped to speed up the whole process. In most cases, a packet
received by a node is relayed to one of its sons as soon as it arrives; this refers to
packets: Ry,+»+,Ruy-1, Rus1,-* s Ray Ly, -+, Ly. For packet M;, node v; first sends
packets M; and My, and L,, and R, later, to its children. As for packet Ry, two
packets R, and R,» are sent.

Similarly, for the case when l; > ri, the packets, Ly, La, -+, Lu, -+, Ly, have
to be divided into two parts: Ly, -+, Ly and Lyn,---, L, such that n(Ly) +--- +
n{Lw) = lp. The packets received by node v; and node v will be in the order of
M;, Ry, Ry Loy Lty - ++y Ly a0d My, Ry, Ly, - - -, Loy, Tespectively.

The detailed algorithm of the downward stage at node v; can be described as
follows:

Initially, assume that local variables sum; = sum, = 0 and node v; knows the
triples of its children, i.e., {my,r;,l;) and (mg,rx,lx). Let P be the next packet
arrived.

CASE
P is of type M:
compute M;, My, L, and Bp;
send M; and M, to node v; and node vy, respectively;
send R, to node v;
Pisof type Rand l; <7
sum, «— sum, + n(P);
CASE
sum, < r;: relay P to node v;;
sum, — n(P) < r; < sumy:
split P into R, and Ryn;
send R, and L, to node v;;
send R,» to node v;
r; < sum, — n{P): relay P to node v
END-CASE
P is of type R and I; > r;: relay P to node v;
Pisof type L and I; > rg:
sumy +— sumy + n(P);
CASE
sum; < I relay P to node v
sumy — n{P) < i < sumy:
split P into Ly and Ly»;
send Ly to node v
send L, and Ly« to node v;;
b < sumy — n(P): relay P to node v;
END-CASE
P is of type L and I; < ry: relay P to node v;

END-CASE

Eventually, each leaf node v; will receive a sequence of (at most logn+1) packets
M;, Ry, -+, Ry, Ly, -, L, from its parent. The range specified in M; is zero and the
total number of identifiers allocated in the R-packets (L-packets) should be equal
to the number of unmatched right (left) parentheses in the substring of v;, ie.,
i (I). The identifiers specified by the incoming packets Ry,- -, R, are ordered as
follows: s(R;),---,s{Ry)+n(Ry)—1,---,5(R,),-- -, s(Rz)+n{R.)—1. This sequence
of identifiers are allocated one by one to the unmatched right parentheses in the
segment from left to right. Similarly, identifiers specified by L-packets received are
assigned to the left unmatched parentheses from right to left.

3 Proof of Correctness

It is obvious that our algorithm rejects all strings of parentheses which are not
well-formed. For those well-formed strings, the correctness of our algorithm follows
from corollaries 3, 6 and 8 in the following.

Definition 1 For any node v; in the binary tree,

1. Let mateh{v;) {match,(v;)} be the sequence of left {right} parentheses at v;,
whose matching right {left} parentheses also lie within the substring of ;.

2. Let unmatch(v;) {unmatch,(v;)} be the sequence of left {right} parentheses
at v;, whose matching left {right} parentheses do not lie within the substring
of Ui

3. If v; is not a leaf node, let v; and v be its left and right child, respec-
tively. Define just-match(v;) = mateh(v;) ~ (matehi(v;) U mateh(ve))h;
Just-match,(v;) = mateh,(v;) — (match,.(v;) U mateh,(vi)).

Fact Consider any non-leaf node v;. Let v; and v, be its left and right child,
respectively. Then

1. just-matechy(v;) G unmatch(v;); just-mateh, (v;) G unmatch,(ve).

2. |just-match(vi)] = |just-match,(v;)| = min(junmateh(vs)], | teh, (vi)]).

3. The p** rightmost left parenthesis in just-mateh(v;), actually the p** rightmost
parenthesis in unmatehy(v;), is matched with the p** leftmost right parenthesis
in just-match, (v;), which is also the p* leftmost parenthesis in unmatch, (v).

4. unmatchy(v;) = (unmatchy(v;) — just-mateh (v;)) - unmatch(vy);?

unmatch,(v;) = unmateh,(v;) - (unmateh, (v) — just-match, (v;)).

Lemma 2 For any node v; in the tree, let (m;,r;,1;) be the triple computed at v;
during the upward stage, and M;, R,---, R, Ly,- -+, L, be the packets received by
v; during the downward stage. Then

1. Ticnes n{Rp) = ri = |unmateh, (v},
2. Ticngy n{Ln) = l; = |unmateh(v;)}], and

3. n(M;) = m; = |match(v;)| = |match, (v;)].

!For any sequences Sy and Sz, S; — Sz is a sequence formed by deleting all common elements
between S; and S, from $,.
2. is the concatenation operator.

Proof: (Sketch) To prove ©y<u<. {Rn) = ;, we use induction on the depth of
¥;, i.e., starting from the root down to leaf nodes. For r; = |unmateh,(v;)|, induction
can be used again, but from leaf nodes to the root. The other equalities are proved
in asimilar way. 0O

Corollary 3 At the end of the downward stage, each leaf node has enough identi-
fiers to assign to parentheses in its own substring. In other words, each parenthesis
will be assigned with an identifier.

Definition 4 For any sequence of packets, Py,---, P, let {P,+--,P,) denote the
ordered-list of corresponding identifiers, ie., (s(P),s(P) + 1,--+,8(P1) + n{B) —
1,8(Py), -+, 8(P.),++-,8(F.) + n(P;) - 1).

Lemma 5 Let P, P; be any two distinct packets of the same type, received by
some node(s) of the same depth in the tree. Then (P;) and (P;) do not contain any
identifer in common.

Proof: (Sketch) The lemma can be proved by induction on the depth of the
tree with the root as the base case. [

Corollary 6 At the end of the downward stage, any two distinct left (or right)
parentheses are assigned with distinct identifiers.

Lemma 7 Consider any node v; in the tree, let L;,---, L, and Ry,.-, R, be the
sequences of L-packets and R-packets received by v;, respectively. Then for any
1 < p < |unmatehy(v;)| {junmateh.(v)|}, the p** rightmost left {leftmost right}
parenthesis in unmateh(v;) {unmatch,(v;)} will be assigned with the p** identifier
of the list (Ll’ i :Ly> {(Rh T :R2>}‘

Proof: We prove lemma 7 by induction on the depth of node v;.

By corallary 3 and the construction of the algorithm, the base case, in which
v; is a leaf node (i.e., depth of v; = 0), is obvious. Now assume the lemma is true
for any node of depth < d, for some integer d > 0. Consider the case in which the
depth of v; is d - 1. Let v; and v, be the left and right child of v;, respectively. Let
Ly,--+,Ly and Ry,---, R, be the sequences of L-packets and E-packets received by
v.

Here we only prove the case when rp, < ;. The other case is sim-
ilar. According to our algorithm, the packets received by v; and v, are
M, Ry, Roy Lyny Lyny+ -+, Ly and My, Ry, Ly, -+, Ly, respectively. Note that
n(Ln) = min(l,ry) = min(|unmateh(v;)], |unmatch, (v,)]) = |just-match(v;)|.
AISO, <L11 e vLy> = (Lh] Lw‘) " (Lw", nte aLv>-

10

By fact 4, for any 1 £ p < |unmateh(vy)], the p'* rightmost left parenthesis
in unmatchi(v;) is actually the p* rightmost left parenthesis in unmatch(vy). By
induction hypothesis, the p** rightmost left parenthesis in unmateh(vy) is assigned
with the p'* identifier in {(L;,---,). Thus, the p'* rightmost left parenthesis in
unmatchy(v;) is assigned with p** identifier in (L;,---,Ly), which is also the p**
identifier in (Ly,+++,L,).

For any |unmatehi(ve)| < p < |unmateh;(v;)], the p™ rightmost left parenthesis
in unmatehi(v;) is the (p— |unmateh(vy)| + |just-mateh (v;)[}** rightmost left paren-
thesis in unmatehy(v;). Then by induction hypothesis, the latter is assigned with
the (p — |unmateh(vi)] + |just-match (v;)])*® identifier in (Lpm, Lun,--+,Ly). Since
n(Lm) = |just-mateh;(v;)] and by corollary 3, Ty cpcw #(Ln) = |unmatehy(vy)|, the
(p — |unmatchi(vy)| + |fust-mateh,(v;)])** identifier in (L, Ly, - -+, Ly) is also the
(p — |unmateh;(vy)|)** identifier in (Lyn,---,L,), or equivalently the p** identifier in
(le”"Lw') * (Lw"i"';Ly> = (Lh"'sLy)-

Since |unmatch,(v;)| = . < l; = |unmatehy(v;)], so |just-mateh (v;)] =
min(|unmatch(v;)|, |unmatch,(vr)]) = |unmatch,(vi)|. Moreover, with fact 1,
we can further deduce that just-match.(v;) = unmatch,(vy). Recall fact 4
that unmatch.(v;) = teh, (v;) - (tch.(vy) — just-match,(v;)). Thus,
unmatch,(v;) = unmatch,(v;).

For any 1 < p < |unmatch(v;)], the p'* leftmost right parenthesis in
unmatch,(v;) is exactly p** leftmost right parenthesis in unmateh,(v;). By induction
hypothesis, this parenthesis is assigned with the p** identifier in (Rj, ---, Rz).

This completes the induction step and hence proves lemma 7. O

Corollary 8 At the end of the downward stage, any pair of matched parentheses,
{Zas s), will be assigned with the same identifier.

Proof: Let v; be the node of lowest depth, whose substring containing both z,
and z;. In other words, z, is in just-match(v;) and z is in just-match, (v;). From
fact 3, we can deduce that the relative position of z, in just-match(v;) and z in
just-mateh, (v;) is the same, i.e., for some 1 < p < |just-mateh (v;)], T, {23} is the p**
rightmost {leftmost} parenthesis in just-match;(v;) {just-match (v;)}}. Obviously, v;
cannot be a leaf node. Let v; and vy be its left and right child, respectively.

According to the algorithm, since min(l;,rx) = |just-match(v;)| > 1, the first
L-packet received by v; {denoted by L) and the first R-packet received by v
(denoted by R,,) will have the same identifier list, i.e., {(Ln) = (Rm). Moreover, the
number of elements in each list is exactly just-mateh,(v;). By fact 3 again, z, is also
the p** rightmost parenthesis in unmatch(v;) and z; is the p** leftmost parenthesis
in unmatch,(vi). Then using lemnma 7, we can conclude that z, and z, are assigned
with the same identifier. [

11

4 Time and Processor Complexity

The following lemma shows that the completion time of a node is no more than 5
time units after the completion of its parents.

Lemma 9 If node v; receives its last packet at time ¢;, then its children will receive
all their packets no later than time ¢; + 5.

Proof: Without loss of generality, let us refer to figure 3 and assume that
l; < r.. Since only one packet can be received or sent out in one fime unit and
t, is the time that node v, receives its last packet, M; must have been received by
time t' = t, — (z + y). Then according to our algorithm, M, and M; will be sent
to nodes v; and v at time no later than t' + 1 and t' + 2, respectively; and R,
to node v, at t' + 3 at the latest. Similarly, R;,---, Ry..; should be received by
t'+1,---,#'+w—1 and can be relayed to node v; no later than ¢/ +4, ... ,t' +w+2.
With similar arguments, packets Ry, L, (to node v,) and Ry« (to node v;) can be
sent out by time t' + w + 3,.--,t' + w + 5, followed by Ry4y,+++y Rsy L1,-+-, Ly by
time t' + w + 8,...,t' + x + y -+ 5 at the latest. Thus the lemma is proved. O

Theorem 10 The whole algorithm requires at most O(logn) time and n/logn
processors.

Proof: In the initial stage of the algorithm, since each segment have 2logn
consecutive parentheses, it takes at most O(log n) time for a leaf processor to handle
the locally matched parentheses and compute the triple for the attached segment.
In the upward stage, the triple of an internal node can be computed in constant
timme when the triples of its children are available. As the depth of the processor
tree is no more than logn + 1, this stage can be completed in O(logn) time.

The processing of the downward stage consists of two phases. In the first phase,
packets flow from the root to the leaves. In the second phase, the indices of paren-
theses are stored in arrays R and L. Then the array M is computed. For the first
phase, lemma 9 implies that a node completes in at most 5 time units after the
completion of its parent. Since there are at most log n levels in the tree, this phase
can be completed in 5logn time units. With n/logn processors, it is easy to see
that the second phase can also be completed in O(logn) time. [

5 Conclusion

We have shown in this paper that parenthesis matching can be solved in O(logn)
time using n/logn processors on an EREW PRAM, which is an improvement over
the previously known methods [BaVi, DeSa] which either require a CREW PRAM

12

or have a higher-order time or processor complexity. Since the steps other than
the matching of parentheses involved in the tree construction [BaVi] require at
most O(logn) time and n/logn processors on EREW PRAM, with our result on
parenthesis matching, the whole process in the computation tree form construction
can be performed in the same parallel time and processor complexity on EREW
PRAM.

In the upward and downward stages of our algorithm, the processors are orga-~
nized in the form of a binary tree and information is only passed along the tree
edges. It is because of this processor organization, our algorithm can be run on
an EREW PRAM without read conflicts and in fact can also be implemented on
the tree machine suggested by Bentley and Kung [BeKu] if the manipulation of
the arrays R, L and M, is handled separately. It is not sure whether parenthesis
matching can be done with a more restricted model than PRAM.

Acknowledgements

The authors thank Andrew Choi for his careful reading of the first draft of this
paper.

References

[BaVi] L Bar-On and U. Vishkin, Optimal Parallel Generation of a2 Computation
Tree Form, ACM Transactions on Programmaing Languages and Systems, Vol.
7, No. 2, April 1985, pp. 384-357.

[BeKu] J.L. Bentley and H.T. Kung, A Tree Machine for Searching Problem, IEEE
1979 International Conference en Parallel Processing, August 1979, pp. 257-
266.

[DeSa] E. Dekel and S. Sahni, Parallel Generation of Postfix and Tree Forms,
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 3,
July 1983, pp. 300-317.

[Eck] D.M. Eckstein, Simultaneous Memory Access, TR-79-6, Computer Science
Dept., Jowa State University, Ames, 1979.

[FoWy] S. Fortune and J. Wyllie, Parallelism in Random Access Machines, Pro-
ceedings of the Tenth Annual ACM Symposium on Theory of Computing, 1978,
pp. 114-118.

[Gold] L.M. Goldschlager, A Unified Approach to models of synchronous Parallel
machines, Proceedings of the Tenth Annual ACM Symposium on Theory of
Computing, 1978, pp. 89-94.

13

[Knu] D.E. Knuth, A History of Writing Compilers, Comput. Autom., 1982, pp.
6-19.

[Reif] J. Reif, Parallel Time O(logn) Acceptance of Deterministic CFLs, Proceed-
tngs 23rd IEEE Symposium on Foundations of Computer Science, (1982), pp.
290-296.

[Vis] U. Vishkin, Implementation of Simultaneous Memory Address Access in
Models that Forbid It, J. Algorithm Vol. 4, No. 1 (1983}, pp. 45-50.

14

DDDDDDDDD

m
1989.

	COVER
	Abstract
	1 Introduction
	2 The algorithm
	2.1 Initial stage
	2.2 Upward stage
	2.3 Downward stage
	3 Proof of correctness
	4 Time and processor complexity
	5 Conclusion
	References
	COVER BACK
	CONTENTS

