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Abstract

The diffusion method is a simple distributed load balancing method for dis-
tributed memory multiprocessors. It operates in a relaxation fashion for point-
to-point networks. Its convergence to the balanced state relies on the value of
a parameter—the diffusion parameter. An optimal diffusion parameter would
lead to the fastest convergence of the method. Previous results on optimal pa-
rameters have existed for the binary n-cubes. In this paper, we derive optimal
diffusion parameters for the k-ary n-cube network and its variants—the ring,
the torus, the chain and the megh. We also derive the relationship between the
optimal convergence rates of the method in these networks, and conclude that

torus has the fastest convergence.

Keywords: diffusion method, distributed scheduling, k-ary n-cube networks, loas

balancing, message-passing multiprocessors.
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1 Introduction

We consider the problem of dynamic load balancing in a distributed memory message-
passing multiprocessor with N processors. From time to time during a parallel com-
putation, the system is faced with the following problem of load balancing: to redis-
tribute the system workload (wy, ws, ..., wy), where w; is a nonnegative real number
representing the workload in processor i, such that each processor ends up with the
same w = y w;/N. We study a distributed solution to the problem known as the
diffusion method. The method is iterative in nature, and is particularly suitable for
point-to-point networks with processors that are capable of parallel communications
with their neighbors {11]. Willebeek-LeMair and Reeves employed this method in
distributed computat.ion of branch-and-bound algorithms on the Intel iPSC/2 [8, 9].
Liling and Monien implemented it on transputer networks with the deBruijn and ring
topology [6]. The efficiency of the diffusion method depends on a diffusion parameter
which dictates how much of the excess workload between a pair of directly connected
processors is to be transferred away at each iteration step. Cybenko was the first
one to analyze the method. Under the assumption of synchronous communications,
he derived a sufficient and necessary condition for the diffusion parameter to cause
convergence [2]. Similar convergence results for hypercube, generalized hypercube,
torus, and ring were obtained by Hong et al. [5] and Qian and Yang {7]. Cybenko
also obtained the optimal diffusion parameter for the binary n-cube, which is the only

optimal result for the diffusion method to date.

In this paper, we derive the optimal diffusion parameters for the family of k-ary n-

cube networks. A k-ary n-cube is an order-k cube with n dimensions [3]. Besides the
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binary n-cube, popular networks like the ring, the chain, the torus, and the mesh are
either k-ary n-cubes or isomorphic to k-ary n-cubes. In addition, we also establish
the relationship between the optimal convergence rates of these networks. In the
remainder of this paper, we review the diffusion method in Section 2 followed by
derivations of the optimal parameters for k-ary n-cube networks and their variants
in the next two sections. The theoretical results are validated through simulation,

which we report in Section 5.

2 The diffusion method

The system we consider consists of a finite set of autonomous, homogeneous processors
connected by a point-to-point communication network. The links are bi-directional
and the processors interact synchronously with one another. Such a system can be
depicted as a simple connected graph G = (V, E), where V is a set of vertices (nodes)
labeled from 1 to N and E € V' x V is a set of edges. Each vertex represents a
processor and each edge (%, 7) € E represents a communication link between processor
i and j. For each vertex i in G, let A(%) denote the set of its adjacent vertices, and
deg(3) be the cardinality of the set, 1.e., deg(i) = |A(7)].
The execution of the load balancing procedure is divided into a sequence of steps.
At each step, a processor would interact and exchange load with all its direct neigh-
bors. Specifically, for processor i, the change of workload is executed as
wo=w+ y, olw, —w) (1)
JEA()

where w, and w, are the current local workloads of processor ¢ and j respectively,
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and a is the diffusion parameter which determines the portion of excess of workload
to be diffused away. Let ¢ be the step index, t = 0,1,3,..., and w!(1 £ i < N) be
the local workload of processor ¢ at step ¢. Then the overall workload distribution at
step t is denoted by the vector W = (wi,wt,...,w})? in the transposed form. W?®
is the initial workload distribution. The change of the workload distribution in the

system at step ¢ can be modeled by the equation
Wit = D(Q)W‘ 2
where D(a) = (d,;), called a diffusion matriz, is given by
a ifi# j,and ¢ and j are directly connected
diy =4 1 -deg(i)a ifi=j
0 otherwise

For example, the diffusion matrix of a chain of order 4 (i.e., with 4 nodes) is equal to

Given the diffusion matrix, two questions are in order: whether the sequence {D!(a)}

is convergent; if it does, what is the asymptotic convergence rate, denoted by R ( D{a)).

In light of the various properties of D(a) (nonnegative, symmetric and doubly
stochastic) and under the constraints of @ > 0 and 1 — deg(i)or > 0 for each 1,
Cybenko showed that the diffusion method converges if and only if the system graph
is not bipartite or 1 ~ deg(i)a > 0 for some i [2). This is true for any given initial

load distribution.



Regarding the convergence rate, we need to consider the eigenvalue spectrum of
D(a). Let p,(D(a)) (1 £ 7 £ N) be the eigenvalues of D(a), and p(D(a)) and
¥(D(e)) be the dominant (largest) and subdominant (second largest) eigenvalues
respectively of D(a) in modulus. Because of the above properties of D(a), p(D(c))
is unique and equal to 1; therefore R (D(e)) is determined by +(D(«)) and is equal
to —Iny(D(a)) [1]. Our task is then to choose an « that would minimize v(D{e))
while preserving the nonnegativity of D(a). Cybenko proved a = 1/(n + 1) to be
the optimal choice for binary n-cubes in [2]. In the sequel, we derive the optimal

opt(D{a)) for k-ary n-cube networks, k > 2, and their variants, and examine the

relationship between the optimal convergence rates of these networks.

3 Diffusion method on k-ary n-cube networks

In this section, we analyze the diffusion method as applied to k-ary n-cube networks.
The analysis by induction on the dimension n,n > 1. We begin with the k-ary 1-cube
network, .¢., a ring of order k, and then generalize it to n-dimensional &y x by %.. . % kn
torus (k, > 2, 1= 1,2,...,n). A k-ary n-cube is a special case of the torus network
with the same order in each dimension. Notice that an even torus (even order in every
dimension) is bipartite and therefore, according to Cybenko’s theorem, the diagonal
elements of the corresponding diffusion matrix must be positive in order that the

diffusion process would converge—that is, & < 1/(2n).

Our derivation relies on the theory of block circulant mairices [4]. Circulant ma-
trices are most appropriate here because the diffusion matrices of the ring and the

torus are in circulant and block circulant form respectively. Let Ay, As,..., An be
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square matrices of order n. Then a block circulant matriz is a matrix of the form

A A .o Ll Am

An A ... ... Am-1
Qm,u(Ab A’Jy (A ;Am) =

Ay Az ... - A

If n = 1, a block circulant matrix degenerates to a circulant matrix. The following

useful lemma can be easily derived based on circulant matrix theory [4].

Lemma 3.1 Let matriz A = ®na(A1,42,...,4n). Then, the eigenvalues of the
matriz A are those of matrices Ay + w? Az + ... +w™ VA4, i =0,1,...,m—1,
where w’ = cos 3'%1-+isin ?;';i, i =+/=1. In particular, ifn = 1, p,(A) = A1 +w A +

e Wm0

3.1 k-ary l-cube networks

By the definition of the diffusion matrix, the following is easily seen.

Lemma 3.2 Let DRy be the diffusion matriz of the k-ary 1-cube network. Then,

DRy = ®4(1 - 20,0,0,...,0,a).

Theorem 3.1 The optimal diffusion parameter for the k-ary 1-cube network, oiop(DRe),
is equal to 1/(3—cos(2x /k)) if k is even, and 1/(2+ cos(n/k) —~cos(2n/k)) otherwise.

Moreover, Roo(DRy) > Roo(DRiyz).
Proof. From Lemma 3.1, it follows that

#,(DRy) 1 - 20+ ae’ + aek-7

o
l—2a+?.acos(‘—zf‘), i=01,...,k~1.
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Figure 1: The eigenvalues in modulus p of DRi(a) versus the diffusion parameter o

Note that e*~7 = cos(%2) —isin(21). We want to determine the value of & such that
the subdominant eigenvalue in modulus, v(DR;), is minimized. Since each eigenvalue
in modulus p 1s linearly dependent on @, 1t is easy to see that v{DRy) is minimized

at the intersection of the lines P and @

p=da-—1 if k is even
P

p=2a+2acos(f)—~1 if kisodd
Q: p=1-20+2acos(3)

which are the lines with the steepest and the flattest slopes respectively in the plot of
p versus a, as illustrated in Figure 1. It is then clear that the subdominant (second
largest) eigenvalue in modulus y(DRy) of DR, is minimized at the intersection point

of lines P and @ whose abscissa corresponds to

1/(3 — cos(3Z)) if k is even

1/(2 + cos(§) — cos(3)) if k is odd



These values of o preserve the nonnegativity of DR because both are less than 1/2.
Substituting these values for « in the equation for the eigenvalues yields the optimal

diffusion parameter

4/(3—cos(3)) ~1 if kis even
+(DRi) = (%
2/(3 ~ 2cos(§)) ~1 if kis odd

Evidently, ¥(DRi42) > ¥(DRy), and hence Roo(DRry2) < Roo(DRi). O

For example, the optimal diffusion parameter of the 4-ary 1-cube (equivalent to
a binary 2-cube) is 1/3 according to this theorem, which matches Cybenko’s binary
n-cube result [2]. This theorem also says that the more nodes the ring has, the slower

the convergence of the load balancing procedure, which is not unexpected.?

3.2 k-ary n-cube networks

On the basis of the above result for k-ary l-cubes (rings), we now consider two-
dimensional ky x kq tori (ky > 2, k; > 2) as depicted in Figure 2. For simplicity, we
assume both 4y and k; are either even or odd. The omitted cases of ky even and k; odd
and vice versa can be analyzed in much the same way. As the spectrum of eigenvalues
of the diffusion matrix of a network is invariant under any permutation of the node
labels, we therefore label the nodes in the “row major” fashion as shown in Figure 2.
In the following, I denotes the identity matrix of order k. A two-dimensional torus
can be viewed as a stack of rings of order ky; so we can express its diffusion matrix

in terms of the diffusion matrix of ring, as follows.

'We proved Roo{ DRi42) < Roo(DRe) hete, proving Roo(DRiy1) < Reo(DRi) requires solving

1 +cos®(n/k) — 2cos(wf(k+1)) < Ofor k > 2
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Figure 2: An example of a two-dimensional 8 x 4 torus

Lemma 3.3 Let DT, i, be the diffusion matrz of a two-dimensional ky x ky torus.

Then, DTk, 4y = @iy s (DRiy — 20y, aly,,0,...,0, 0, ).
Proof. Proved by induction on the order of the second dimension k,. O

Theorem 3.2 Let k = max{k;, ko}. Then, the optimal diffusion parameter for the

two-dimensional ky X ky torus s

1/(5 — cos(2x [ k)) if both ky and ko are even
topt( DTk k) =
1/(3 + X%, cos(n/k,) — cos(2w/k)) if both ky and k; are odd
Moreover, the convergence rate Reo(DTk, x,) 15 equal to Roo(DTy ) of both ky and ky

Qare even.

Proof. From Lemma 3.1, the eigenvalues of the block airculant matrix DTy, 4, are

those of the matrices

DRy, —2ali, + ae Ly, + ae™ 2]y

27(']2
£ DR[“ —2aly, + 2&605('-—]‘:;-')15-,, J2=0,1,.... k—1
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Therefore,

o
(DT is) = w(DRe)—20+2a cos(——;g}-
. .y
= l—4da+2a cos(&r—ll) + 2« cos(:ﬂi),
ky ko

where j; = 0,1,...,k — 1 and j2 = 0,1,...,k; — 1. Then, as illustrated in Figure 1,
the subdominant eigenvalue in modulus 4(DT%, +,) is minimized at the intersection

point of the lines P and @

p p=8a~1 if both &y and k; are even
- p = 4o+ 2acos(m/ky) + 2 cos(w/ke) — 1 if both & and k; are odd
Q: p=1-2a+ 2acos(2r/k)

where k = max{k;,k;}. The a values corresponding to this intersection point in each
case are as that stated in the theorem. Substituting these optimal values for the

diffusion parameter in the equation for the eigenvalues yields

5-coc821r/k) -1 if both ky and k, are even
(DT 1) = 42T con(r/k) ) b e & .
3437 cosl{xfki)~cos(2x/K) 1 if both ky are k; are odd

Clearly, (DT, &) = ¥(DTk) in the even case. Hence, the theorem is proved. O

From the theorem, we see that the convergence of a two-dimensional torus de-
pends only on the larger dimension when both k; and k, are even. For example, the
tori DTg,, j = 4,6,8, all have the same optimal convergence rate with the optimal
diffusion parameter ope = 2/(10 — /2) ~ 0.11647.

The results of two-dimensional tori can be generalized to multi-dimensional tori.
Consider an n-dimensional by x ky x ... X k, torus, &k > 2 (¢ = 1,2,...,n). Given
any labeling of the nodes, by permutation, we can bring the diffusion matrix into the
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following iterative form.
DTy byorkn = @u, (DT gy — 20d g, 0dg,0,...,0,al )

where N = ky X k3 X ... X kn.1. By induction on the number of dimensions n, it

follows that

p(DTklM,,,_‘kﬂ) =] —2na +202C05(2~£ﬁ , Ji=0,1,0. 0k ~1
i=1 ?

Using the technique in the proofs of the above two theorems, we obtain the following

result.

Theorem 3.3 Let DTy, 4,,..k, be the diffusion mairiz of an n-dimensional torus of
ky X k2 X ... % kn, and let k = maxicigca{k:}. Then, the optimal diffusion parameter

is as follows

1 .
prws prer ey f k,i=1,2,...,n, are even

Oopt (DT ky hgronkn) =

R 1 el
min{z, TS S WsW,“)__cos(zm,k)} ifki,1=1,2,...,n, are odd

Moreover, the convergence rate Reo (DT, y,...kn) 18 €qual to Roo( DTk k... k) in the even

case.

We omit the tedious proof which is quite similar to those above. Notice that the
alternative choice of 1/2n for cop(DTk, ky,...k,) in the odd case is for preserving the
nonnegativity of the diffusion matrix. Since a k-ary n-cube network is a special case

of an n-dimensional torus, we have the following.
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Corollary 3.1 Let DTy be the diffusion matriz of a k-ary n-cube network, k > 2.

Then, its optimal diffusion parameter 1s

1 .
2n41—cos{2r/k sz is even

Qopt(DTim) = ifkisoddandn <3

nfi+n cos(r/lf)-cos(zar/k)
L ifk is odd and n > 4

o
4 Diffusion method on variants of k-ary n-cube
networks

In this section, we consider chains and meshes which are variants of k-ary n-cubes
without the end-round connections. Qur analysis makes use of the concept of di-
rect product of matrices [4]. Let A and B, be square matrices of order m and n

respectively. Then the direct product of A, and B, is a square matrix defined by

aO,OBn aO,]Bn e aO,m--an

al.O-B'n al.IBn v al,m-an
Am ® B, =

am—l.OBﬂ. Qm—-1,1 Bn o Gmelmel Bn

The following useful lemma follows from this definition.

Lemma 4.1 Let A, B, be square mairices of order m and n unth ewgenvalues
pi(Am) and p,(B,), i=1,2,...,m, = 1,2,...,n, respectively. Then, the eigenval-
ues 0f In @ Am + Ba @ Iy are p(Am) + 2,(Bn), where I, (1) is the identity matriz

of order n (m).
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4.1 The chain

We first consider the chain network of order k, k > 2, and present its diffusion matrix

in the following form.

Lemma 4.2 Let DCy be the diffusion matriz of a chawn network of order k. DCy =

(1 = 20)Ii + 20T}, where

1/2 1/2
12 0 1/2
Ty =

/2 0 1/2

1/2 172
/ / kxk

Observe that the matrix T% 1s in the form of the transition matrix of the k-state
elastic random walk with equal transition probabilities (1/2) in a Markov chain [1].
It follows that

#J(Tk) = COS(‘K‘]/k), J=01,...,k~1

Theorem 4.1 The optimal diffusion parameter for the chain network, copu(DC), is
equal to 1/2. Moreover, the convergence rate Roo(DCy) is inversely proportional to

k.

Proof. By Lemma 4.2,

#;(DCy)

1 — 20 + 200, (T%)

H

1 —2a+2acos(rj/k), j=0,1,..., k=1
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Then, as illustrated in Figure 1, the subdominant eigenvalue in modulus v(DC}) is

minimized at the intersection point of the lines of P and @

P: p=2a+2acos(r/k)—1

Q: p=1—2a+2acos(r/k)

1t follows that cop: = 1/2, and ¥(DCk) = cos(w/k). And hence Roo(DC') decreases

with the increase of k. O

By comparing (DC}) with the minimum subdominant eigenvalue for the ring,

+(DRy), shown in Theorem 3.1, we obtain the following result immediately.

Corollary 4.1 The optimal diffusion method for the rng network converges faster

than that for the chain network of the same order.

The above theorem reveals that the optimal diffusion parameter of a cham is
fixed at 1/2 regardless of how long the chain may be. With the additional end-round

connection, the ring converges faster than the chain, which is expected.

The chain is a special case of the mesh and will serve as a building block for our
analysis of the mesh. In the next section, we first study the two-dimensional mesh,
and then the n-dimensional mesh by induction on the number of dimensions n.

4.2 The mesh

We consider the two-dimensional k; x k; mesh, k& > 2, by > 2. Without loss of

generality, we assume the nodes are indexed in the “row major” fashion. Then, by
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induction on the second dimension k,, we obtain the diffusion matrix

Ay Az
Az Ay Az
DMy, i, =

Az A2 As

\ Az A1

where 4; = DCy, (a)—ady,, Az = DCy, (a)—2aly,, As = ali,. This matrix has ks xk;
block elements each of which is a matrix of ky x k; nonnegative reals. We rewrite it in

a more concise form in terms of direct products of matrices in the following lemma.

Lemma 4.3 Let DC, be the diffusion matriz of a chain of order k. Then,

DMy, ik, = I, ® (DCx, — 2ali,) + Tk, @ 2aly,
where Ii, and Iy, are identity matrices, and T}, is defined as in Lemma 4.2.

Theorem 4.2 The optimal diffusion parameter for the ky x ky mesh, cope( DMy ky ),
15 equal to 1/4. Moreover, the convergence rate Roo{ DMy, x,) is equal to Reo(DMyi),

where k = max{k, ky}.
Proof. From Lemma 4.1 and Theorem 4.1, it follows that
(DM, 33) = 1 — 4o+ 20 cos(%—l) + 2c cos(%—z-
1 2

where j; = 0,1,...,k —1 and j2 = 0,1,..., kg — 1. Without loss of generality, assume

ky > ky. Then, the subdominant eigenvalue in modulus, Y{DMj, «,), is minimized at
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the intersection point of the lines P and Q:

P: u=do+2ccos(r/k)+ 2acos(r/ky) — 1

Q: p=1=2a+2acos(r/k;)

That is, o = 1/{3+cos{w/k;)). But this choice of & would lead to 2 negative element
1 —4a (i.e., a node with four links) in DM, 4,. To preserve the nonnegativity of the
diffusion matrix, we pick a value of & which is closest to the above a and which would
make 1 — 4o nonnegative. Hence, aope = 1/4. Substituting this into the equation for
p(DMy, 1) gives Y(DMy, k,) = §+3 cos(Z). Therefore, Roo(DMiy k,) = Roo(DMi,i),

where k = max{ky, ks }. O

Corollary 4.2 The optimal diffusion method tn a torus converges faster than that in

a mesh of the same dimensions.

That is, (DM, x,) > Y(DTky k,) o Roo(DMy, ;) < Roo( DTy 1, ), which follows by
comparing the result here with the result for torus in Theorem 3.2. Again, we see
that the end-round connections help.

The above theorem says that the convergence in a mesh depends only on its larger
dimension. For example, the meshes DM, 7 = 4,6, 8, all have the same convergence
rate for the fixed optimal diffusion parameter o = 1/4.

These results for two-dimensional meshes can be generalized to n-dimensional
ki x ke x ... kn (k > 2,1 =1,2,...,n) meshes whose diffusion matrix can be written

in the following recursive form.

DMty b = Tt @ (DM, iyrkny — 20l ) + DCr, @ Iy
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where N = k; x k2 X ... X kn—;. By induction on the number of dimensions n, it

follows that

p(DMiy jvia) = 1 = 2nc + 2&2005(%), Go=0,1,... ky =1
=1

Hence, we obtain the following results.

Theorem 4.3 Let DMy, ...k, e the diffusion matriz of an n-dimensional ky x ks x
... X kn mesh. Then, the optimal diffusion parameter ctops( DMy, iy, k) is equal to
1/(2n). Moreover, the convergence rate Roo( DMy, ky,...kn) s equal to Reo(DMik. . i),
where k = max{ky, kz,..., kn}.

Corollary 4.3 The optimal diffusion method for an n-dimensional torus converges

faster than that for an n-dimensional mesh of the same dimensions.

5 Simulation

We have derived the optimal diffusion parameters which would lead to the fastest
asymptotic convergence rate. For actual computations, it would be of considerable
value to estimate the number of iterations required for the system to arrive at its
load balanced state. Define ¢ to be the error vector from, the load balanced state at
the t-th iteration, i.c., € = W*— W, where W is the balanced workload distribution.
Then, from Equation 2, it follows that ||e!][z < v*(D(a)}||e®]]z- Hence, from an initial
workload distribution with error vector ||€%}};, the number of iterations ¢ required to

reduce the error to some prescribed bound § satisfies

log & — log [|€¥]:
2 ~Jog7(D(e)) ®)
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From this inequality, we see that the iteration number is dependent upon such factors
as the initial workload distribution, the topology and size of the underlying system
structure, the prescribed relative error bound 6§ and the diffusion parameter a, as is

illustrated in the following simulation results.

We simulated a few cases to obtain an idea of the iteration numbers required
by the load balancing procedure under various choices of the diffusion parameters.
We denote this number by NI. In addition to revealing the actual efficiency of the
method, the results of the simulation also validate the theoretical results derived in

the preceding sections.

The initial workload distribution is a random vector, each element of which is
drawn independently from an identical uniform distribution. The amount of workload
a processor gets is thus determined by the distribution mean. The relative error bound
§ can be tuned to achieve the desired performance in practice. In our simulation
experiments, this value is set to one. That is, the load balancing procedure continues
until the Euclidean norm of the error vector is less than one. Figures 3-6 plot the
expected iteration numbers in various networks for reaching the balanced state from
initial workload distribution with a mean 128 as a varies in steps of 0.05 from 0.10 to
the maximum value which preserves the nonnegativity of the corresponding diffusion
matrix. The maximum value is 0.50 in the cases of rings and chains, and 0.25 in
the cases of two dimensional tori and meshes. Notice that even rings and tori are
bipartite graphes, and according to the Cybenko’s necessary and sufficient conditions
for convergence, the value of « should be less than the graph degree. Hence, we set

the upper bound of « to 0.49 in even rings and 0.24 in even tori in our experiments.
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To reduce the effect of the variance of the initial load distribution on the iteration
numbers, we take the average of 100 runs for each data point, each run using a

different random initial load distribution.

As can be seen from the figures, the expected number of iterations in each case
for different a’s vary with the value of ¥(a). Specifically, the theoretically-proven
optimal diffusion parameter of each case yields the best result in terms of the expected
number of iterations. Also, the expected number of iterations agrees with v(a) in their
dependent relationships on the topologies and size of networks. In particular, from
Figure 5, it is evident that the expected number of iterations of even tori is insensitive
to the smaller dimensions. Finally, we point out that the relatively large values of
NI are partially due to the high accuracy~(en'or bound = 1) we prescribed in our

experiments.

6 Conclusion

We have analyzed the diffusion method for dynamic load balancing as applied to -
ary n-cube networks and their variants—the ring, the chain, the mesh, and the torus.
We have derived the optimal diffusion parameters in closed form, which maximize
the convergence rates of the iterative load balancing prc;cedure in these networks.
We also showed that the torus network performs better than the mesh with the
same number of processors. These theoretical results have been validated through
simulation experiments. The diffusion method is one of the few iterative methods for
dynamic load balancing [10]. The other well-known method in the category is the

dimension ezchange method. Cybenko proved that the dimension exchange method
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is supertor to the diffusion method in the case of the hypercube [2]. We tuned the
method to achieve optimal performance in various structures including the mesh
and the torus [10]. A comparison between the diffusion method and the dimension

exchange method in practical situations is now underway.
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