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Abstract

We propose a simple algorithm which is based on edge-coloring of directed graphs for ter-
mination detection of synchronous computations. The proposed algorithm 1s fully symmetric in
that all processes are syntactically identical and can detect global termination simultaneously.
It is optimal in terms of delay for terrmination detection in a number of structures under the
1-port (one message exchange with at most one neighbor per time step) communication model—
chain, ring of even number of nodes, mesh of even number of nodes in every dimension and low
degree, and k-ary n-cube of low degree where & is even; and near-optimal for other cases. The
proofs for optimality are based on results from an equivalent problem, the gossiping problem
for edge-colored graphs. This algorithm has been applied to some practical cases in which the
overhead due to its execution is found to be insigmficant. (A preliminary version of this paper

appears as [54].)

Indez Terms—data parallelism, distributed algorithms, interconnection networks, multicomput-

ers, parallel and distributed systems, synchronous computations, termination detection.
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1 Introduction

Termination detection is an important operation for parallel and distributed cormputations. It
has been studied in the past as mainly a theoretical problem. But in recent years, even system
implementors have found the problem relevant and are constantly looking out for efficient and
readily implementable solutions. One important area in which termination detection has a major
role to play is data-parallel computations, computations that are based on data parallelism [22]
or domain decomposition {17]. Concerning this type of computations, Fox found that a large
percentage of them are synchronous or loosely synchronous [16]. And it is often the case that a
synchronous or loosely synchronous computation would proceed in phases, and a phase cannot begin
until the previous phase has completely terminated [3]. Termination detection is therefore needed at
the end of each phase. Examples of such computations can be easily found in areas such asimage and
signal processing [7], parallel solutions of partial differential equations (1], and time-driven discrete
event simulations [40]. It is also applicable to load balancing in multicomputers; in dynamic load
balancing based on the relaxation method, a processor (modeled by a process) balances its workload
by iteratively exchanging load information with the neighboring processors [9, 53]. In this paper, we
give a new solutior to the termination detection problem, which is fully distributed, time efficient,
and is very easy to implement. We have actually adopted and successfully implemented the solution
in a couple of major applications of data parallel computations [55]. Because of the lack of a global
state in a distributed environment, distributed termination detection is non-trivial and has been
one the most heavily studied problems in distributed computing since its early discussions [12, 18].

A brief survey of the most well known solutions can be found in [33].

The scenario in which termination detection is to operate is as follows. The distributed compu-
tation is in terms of a collection of disjoint processes. At any time during the computation, there
are Busy and Idle processes. Busy processes (and only Busy processes) can send messages to
other processes; an Jdle process would turn Busy upon receipt of a message from a Busy process;
Busy processes can become [dle. The goal is to devise an efficient distributed algorithm that can
detect global termination of the computation by every process, where global termination is the
stable state in which all processes are Jdle. Messages in real life take non-zero time to travel from

one process to another, and as such there is the danger of false detection: all processes are found



to be Idle and global termination is inferred, but a message is still in transit which can revive
an Idle process in the next moment. Systems that have this danger are generally referred to as
asynchronous systems [3]. Termination detection for this kind of system is difficult, and most of the
existing approaches are based on the technique of message counting [33, 34, 27]. For synchronous
systems, false detections do not exist or can be easily avoided. In the most common case, every
send operation is matched by a receive operation, and both operations are blocking, which will
not complete until the message is actually received and the sender is acknowledged, as in the CSP
model [23]. Hence, false detection due to messages in transit is impossible. In fact, we can treat
the passing of these messages as being instantaneous or equivalently we treat the channels as FIFO
channels. Because of the need to unblock the sender, the synchronous mode is most suitable for
computations that require only nearest-neighbor communications in a network. This kind of com-
putations is now quite commonplace, especially when the underlying machine architecture is based

on a point-to-point interconnection network.

The solution we propose in this paper is for static synchronous systems. It does not require
preprocessing of the system graph (i.e., imposing a subgraph on the original graph for termination
detection messages). Many of the existing solutions rely on the construction of 2 spanning tree or
cycle that covers all the vertices (in some cases, all the edges) [5, 6, 12, 13, 18, 19, 20, 35, 37, 38,
44, 50]. The result of such constructions is that the time for the solution would be at least O(n)
where n is the number of nodes. The solution by Lozinskii requires that all shortest paths towards
a detector node be pre-computed (32]. Cohen and Lehmann (8] and Lai (29] proposed solutions for
dynamic systems, systems in which processes might be dynamically created or destroyed. We point
out that these solutions would have limited use in data parallel computations as dyramic creation

of processes is generally not necessary, not to mention the cost of such a non-trivial operation.

The termination detection problem we set out to solve is represented by an undirected graph
G whose vertices are processes (or processors) and whose edges are bidirectional communication
links. We denote the diameter of the graph by D(G) and define “delay” to be the number of steps
to detect global termination from the time it happens. Obviously, the lower bound of the delay
is D(G). There exist algorithms whose delay is optimal or can be tuned to become optimal with
respect to this lower bound [45, 48, 49]. These three algorithms are based on the same idea of

keeping a counter in every process to tell how far the farthest Busy node might be. They are all



fully distributed, symmetric, and require knowledge of the diameter of the graph, but do not impose
a spanning tree or cycle on the graph. In particular, the algorithm by Szymanski et al. has a delay
of D(G)+ 1 [49]. The +1 is due to the fact the farthest Busy node in a globally terminated state
must be at a distance greater than the network diameter away (1.e., 2 D(G) + 1). Our algorithm
borrows this idea of using a simple integer counter to keep track of the farthest Busy node. We find
however that the above three algorithms rely on a powerful communication primitive that allows
a node to broadcast to or exchange information with all (or a subset) of it direct neighbors in one
time step. We call these algorithms “broadcast-based” for the rest of this paper. This primitive is
possible only with idealized models such as the n-port communication model [25], or that based on
the Multiple Link Availability (MLA) assumption [2]. Krumme et al. refer to these models as the
Hx or F+ models [26), where H and F stand for half- and full-duplex respectively, and * stands for
parallel communication with all neighbors. The more realistic models are those that are based on
1-port communications, called H1 or F1 by Krumme et al., with which a node can complete at most
one communication transaction (half- or full-duplex) along one of its edges in one time step. Such a
model is assumed in many instances of recent research in multicomputer algorithms [9, 42, 4, 24, 31]
(see also the text by Kumar et al. [28]). The understanding is that in a multicomputer, the time
to complete a broadcast to or a complete exchange of information with all of a node’s neighbors
is a function of the number of neighbors (hence the number of individual communications). This
is supported by Valiant’s rather popular BSP model [52]. In the BSP model, a cost of hg + s is
charged to a superstep (like a phase) in which each node sends and is sent at most A messages.
Krumme et al. has argued for the validity of restrictive H1 and F'1 communication models [26]. In
practice, machines like iPSC/2 and iPSC/860 [46] and the Connection Machine [22] are basically
of the 1-port type. Even though some of the latest designs of message-passing processors have
incorporated multiple on-chip communication modules which can operate simultaneously, because
of the fixed cost of setting up a communication, the total time of sending h messages, assuming the
best possible overlapping in time, is still largely determined by A unless the messages are rather long.

Examples of such designs include the MDP chip [11] and the Inmos transputer [36].! Therefore

!We have tried an experiment on the transputer which is most famous for its built-in parallel communication
capabilities. The best time of executing in parallel four exchanges of an integer with a transputer’s four direct

neighbors (an operation required by the broadcast-based algorithms) we could achieve is 70% of the serialized version.



we consider the l-port communication model a more reasonable and realistic one than the n- or
all-port model. The communication model assumed in this paper is the 1-port (full-duplex) model

in which a processor can ezchange a message with at most one direct neighbor in a time step.

If we adopt the 1-port model, one step in a broadcast-based algorithm must now be counted
as & steps, where § is the degree of the network. Refering to the D(G) lower bound, this makes
the broadcast-based algorithms far from optimal. Our algorithm, to be presented in the ensuing
sections, performs much better with the 1-port model; its delay is D(G) + 1 iteration steps, where
D(G) is called the color diameter of the network and an iteration step is approximately § com-
munication steps between nodes. For some regular topologies, an iteration step equals exactly §
communication steps, and D(G) = D(G)/ §, and hence the delay is D(G) + § communication steps
which is optimal for reasonably large networks or networks with a small degree. For other common
topologies, it is near optimal. If instead the idealized all-port communication model is assumed, our

algorithm is still comparable to the broadcast-based algorithms for most of the popular topologies.

In addition to being fully distributed and time efficient, our algorithm is totally symmetric—
i.e., each node executes the same syntactically identical code—which makes it easy to implement.
The symmetry also contributes to the praperty that all the processes detect global termination
simultaneously. This is particularly desirable for multi-phase computations in which one phase
cannot start until the previous phase is completed (such as the image processing examples discussed
in [30]). Like those broadcast-based algorithms, the only limitation of our algorithm is that it
requires each node to know the color diameter, D(G), of the network. It is possible at extra cost
to do away with this requirement using strategies that can detect the diameter of the network
on the fly, such as those in [49, 41]. Sections 2, 3, and 4 are on the computation model, the
idea and intuition behind the algorithm, and the basic definitions respectively. Section 5 presents
the algorithm and proofs of its major properties. An equivalence between our algorithm and the
gossiping problem for edge-colored graphs is established in Section 6, based on which we prove the

optimality of our algorithm for some popular topologies.



2 Basic ideas

The problem’s structure is represented by by a simple graph G = (V, E), where V is a set of vertices
labeled from 0 to n — 1 and £ € V x V is a set of bi-directional edges. Each vertex represents a
process (or a processor) and an edge <i,j>€ E a bi-directional communication channel between
process i and process j. G has no self-loops, since no process needs to communicate with itself. We
let D(G) to be the diamater of G, which is longest path among the shortest paths for all pairs of
source and destination; and §(G) to be the degree of G, which is the maximum of the number of
the neighboring nodes connected to any node of the graph. Figure 1 shows an example of a simple
mesh network with four processors (processes). The termination detection process is patterned
after the model of synchronous iterative equations [3]. The iterative equations that correspond to

Figure 1 are

XU = Fy(X4, Xb X2)
X = R(X§, X1, X3)
X5 = R(X], X4, X3)
X3 = B(X§, X5, X3)

Figure 1: An example of 2 process structure

At each iteration step, process i performing the partial operator F; first exchanges the result (X;)
from the last iteration step with its dependent processes and then computes and updates X;. The
superscripts in the equations represent the indices of the iteration steps. For our fermination

detection algorithm which is symmetric for all processes, 4ll the F;’s are the same.



Suppose the computation being observed will terminate in finite time with a global termination
condition being true; then the task is to devise a termination detection algorithm that would allow
every process of the graph to detect this condition within the shortest time after it becomes true.
In distributed memory multicomputers, the global state is distributed: nodes are only aware of
their own curreut states and the current states of other directly connected nodes, and any decision
concerning global termination is to be inferred from the conjunction of local termination conditions
of all the nodes. Qur objective is to minimize the termination delay—that is, the difference between

the time when global termination occurs and the time when it is detected by the processes.

The broadcast-based algorithms ([45, 48, 49]) are based on a model similar to the above. They
use an integer counter S to maintain the control information about termination. .5 = 0 if and only
if the node in which this process resides is in the Busy state. During the communication phase
of an iteration step, the process exchanges its counter value with those of neighboring processes.
Then in the computation phase of the iteration step, each Idle process updates its counter to be
1+ min{S, InputS}, where Input§ is the set of all received counter values. It is easy to see that
the counter in a process actually corresponds to the distance between this process and the nearest
Busy process, and since the control information of a Busy process can propagate over at most one
edge (but reaching one or more neighbors) in an iteration step, a process that just turned Idle
(only Idle processes would try to detect global termination) requires at least D(G) + 1 steps to
confirm global termination.’ Hence, the delay for termination detection using the broadcast-based

algorithm is equal to D(G) + 1.

Notice that the change of the counter values in an broadcast-based algorithm behaves in a fash-
ion similar to Jacobi relaxation for solving equations: in the communication phase of an iteration,
a process updates its counter only after having collected all the counter values of the neighboring
processes. This may cause unnecessary delays in propagating individual counter values within the
process structure. An alternative is to follow the Gauss-Seidel way of solving equations: during
the communication phase of an iteration, a process updates its counter immediately after its every

exchange with a neighboring process; this way, counter values may get propagated much faster.

21t is possible for processes not situated at the perimeter of the network to detect global termination in less than
D(G) + 1 steps by taking advantage of positional information. But this possibility is ruled out in order to maintain

the symmetry property.



Let’s illustrate this point with the following example.

Consider the iterative computation in Figure 1. For the mesh in the figure, D(G) = 2. Suppose
at some time %y, all processes except process 0 are Jdle with § = 1; then at time o + 1, process
0 becomes Idle and tries to detect global termination. With the broadcast-based algorithms, two
iteration steps are needed for process 0 to detect the state of the farthest process, process 2, and
one more step to confirm the stability of its state. Hence, The delay is three iteration steps (which
is equal to D(G) + 1). Note that the communication phase within an iteration in this case consists
of two comnmunication instances, one with each of a node’s neighbors. Let’s assume that they must
be done in sequence. Now suppose we divide the communication phase of an iteration step into
two consecutive sub-phases in the horizontal and vertical dimensions respectively, and a process
would update its counter immediately after every exchange along a dimension; then, process 0 can
determine the stable state of process 2 in two iteration steps (one iteration step to detect process
2’s state and one iteration step to confirm). Thus, the delay for termination detection is only two

steps.

The improvement as illustrated in the above example stems from the updating of a process’
counter value immediately after an exchange as opposed to updating after having exchanged with
all the neighbors. Generally, a process that connects with more than one neighbor can interact with
only one of its neighbors at a time in the synchronous communication model, which fits well with
the 1-port physical model discussed previously. The interaction order can be determined by edge-
coloring of the process graph. The division of the edges into the horizontal and vertical dimensions
in the above example is an example of edge-coloring using two colors, one for each dimension. In
order to shorten the time needed to complete the communication phase, the edge-coloring algorithm
must assign the minimum number of colors to a given graph. In the best case, this number is equal
to the degree, 6(G), of the graph, as in the above example. Our algorithm is therefore based on

edge-coloring using the minimum number of colors.

3 Edge-coloring of graph

Given the system graph G, we color the edges of G with the minimum number of colors, denoted

by C(G), such that any two adjoining edges are of different colors if their other ends are different
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Figure 2: Examples of colored digraph

vertices, and of the same color otherwise [15]. We map the colors to integers from 1 to C{G), and
tag each edge of G with a color number that corresponds to the assigned color. For a graph G, its

minimum number of colors, C{(G), is bounded by the degree of G, 6(G), as follows.
HE) < CG) L 8GY+1 1)

The proof of this fundamental theorem can be found in {15}, from which the method of edge-coloring
using minimum number of colors can also be derived. Figure 3 shows two examples of edge-colored

graphs. The numbers in parentheses are the assigned color numbers.

Let <1i,j;c> denote an edge < {,7> with color number ¢. We next introduce some essential
concepts that are necessary for the subsequent presentation and analysis of our algorithm which is

based on edge-coloring.

Definition 3.1 Let G be an edge-colored graph. A sequence of edges of the form < i,iy;¢1 >, <
i1,025C2 >y..., < i1 — 1,721 > is called a color path of length I from i to § if all intermediate
vertices ixg(1 < k <l —1) are distinctand 1 < ¢1 < 2 < ... < ¢ £ C(G).

From this definition, a color path is a path in the graph with increasing color numbers along the
edges that make up the path. In Figure 3(a) for example, there are several ways of going from
vertex 0 to vertex 4, including this one which comprises two color paths: <0,1;1>,<1,2;2> and
then <2.3;1>,<3,4;3>.

Definition 3.2 Let G be an edge-colored graph. The color-distance from vertez i to j, denoted

9



by 5(1’,]’), is the minimum number of color paths a traversal from i to j would go through. The
greatest color-distance ﬁ(i, 7) among the color-distances of all the vertez pairs in G is called the

color-diameter of G, denoted by D(G).

It can be easily seen that the color-distance between vertex 0 and vertex 4 in Figure 3(a) is 2, and

the color-diameter of the whole graph is also 2.

Within an iteration step in the termination detection algorithm, to be discussed next, each color
is activated once, in the order of increasing color numbers. When a particular color is activated,
all edges of this color become active and information would flow through or be exchanged over
them. Therefore, information at one end of a color path will propagate to the other end within an
iteration step of the algorithm. Note that some nodes may have fewer neighbors than the others,
but since communications are synchronous and every color must be considered once in an iteration

step, the time complexity of the communication phase is a function of the number of colors, C(G).

4 The algorithm

‘The control information for termination detection is abstracted as a local integer counter S main-
tained in every process. This counter’s value changes as the iterative termination detection al-
gorithm proceeds. We serialize the communication phase of an iteration step into a number of
consecutive exchange operations, one for each color in C(G). An exchange operation for color ¢
causes two neighboring processes connected by an edge of color ¢ to exchange their counter values.
After each of these little exchanges with a neighbor, a process would update its counter immediately
with the value received from the other process if the latter is smaller than this process’ current
counter value. And at the end of each iteration step, the process sets the counter to 0 if the node is
still a Busy node (not locally terminated); otherwise, it increments the counter value by 1. When
§ reaches a predefined value, the process stops with the sure knowledge that the computation has

reached global termination.

Our algorithm bears certain resemblance to the broadcast-based algorithm, but the updating
of the counter 5 follows a different protocol as has been ‘explained. The algorithm follows. The

variable InputS temporarily stores the neighboring counter value received in the current exchange

10



operation.

1 Algorithm for Process 7 (0 <7 < n):
2 S =0
3 while (§ < PredefinedValue) {
4 for (¢ = 11 ¢ L C(G); e++)
5 if {an incident edge colored ¢ exisis) {
6 Input§S = Ezchange(c);
7 S = min{S, InputS};
8 }
9 if (LocalTerminated) /* Idle */
10 S=854+1;
11 else /* Busy */
12 §=0;
13 }

For each color (each iteration of the for-loop), the procedure Exchange(c) is executed which causes
the counter values of the this process and a neighboring process connected by the edge colored
¢ to exchange their counter values, where ¢ is the current color (Joop index). If the process has
no incident edge colored ¢, it skips this one and goes on to the next color. Note that unlike the
broadcast-based algorithms in which the counter is not updated until all the neighboring counter
values are received, our algorithm compares the local counter with a neighbor’s counter value as

soon as the latter comes in through the exchange.

This algorithm is fully symmetric in that it is syntactically identical for each process, and there
is no central control. Below, we give an example to illustrate how the counter § gets updated.

Then, based on 5, we show how PredefinedValue in the algorithm above is determined.

Let S¢(t) denote the counter value of process ¢ after the exchange (after line 7) over the edge
colored ¢ (if there is one) has taken place within iteration step t, §7(2) the counter value of process
i at the end of the for loop (after line 8 before line 9), and 5;(t) the counter value at the end of
the iteration step ¢ (after line 12). Clearly, 5; (t) < Sf(t) for all c. Table 1 gives a partial trace

of the counter distribution when we apply the algorithm to the process structure of Figure 3(a).
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The counter distribution is assumed to be (0,1,1,1,1,1,1,1) at Zo, the instant at which our tracing
begins; process 0 becomes Idle at step fg+ 2; process 1 returns to Busy at step to + 2 and becomes
Idle again at to+4; process 2 returns to Busy at to+4 and becomes Idle again at 15+ 5, and global
termination occurs at this point since all eight processes are Idle. All the counter values reach 3
at 1o + 7, which is the (earliest) point at which every process is sure of the global termination—the
detection delay is three iteration steps. This implies that PredefinedValue has been set to 3 in the
algorithm. The following analysis on the global termination condition tells us how this number

comes about.

The presentation of the analysis is similar to that in {49]. First, we derive a recursive expression

of § from the above algorithm.

Proposition 1 For any process i, 0 < i< n,

0  if process i is not terminated
S(t+1)=
minjer+(n(S;(t)) + 1 otherwise

where (i) = I{(2) U{i}, and I(i) is the set of processes that can reach i in one color path.

Proof. If j € I(i), then there exists a color path from j to i. Suppose this color path has the
form < j,71;¢1 >, < J1,J2;€2 > v 0y <J1-1,%; 01>, where ¢; < ¢ < ... < ¢ Then, it is clear that
Si(t) 2 S+ 1) 2 S+ 1) 2 ... 2 57+ 1). Since S7(t+1) < 57(t +1), it follows that
S7(t+1) £ 5,(t). In addition, if there exists a process k& ¢ I{¢) and k # ¢, 5;(t + 1) will not be
influenced by Sk(t). Thus, the proposition is proved. M

The above proposition reveals that a non-zero counter value of a process contains more informa-
tion than just its own current state (which is Idle). The historical states of processes from which
process 7 is reachable may be deduced from S,. In the most trivial case, if the counter value of 2
process ¢ equals 1 at the end of an iteration step, then the process can infer that there exists at
least one Busy process within I'*() at the end of the last iteration step. Generally, if 5;(t) =7 > 0,

then the following properties concerning historical state information can be derived.

Proposition 2 Suppose at the end of some iteration step i, there is an Idle process i with 5;(1) =
r > 0. Then

1. there exists a process j satisfying 5(1’,1’) <r, Si(t-r)=0

12



2, for any process j satisfying ’5(j,z') <r, §,(t—t') >0, where 13(_7', <t <r

Proof. Part 1 can be proved by induction on the integer r. The statement trivially holds for
5,(t) = r = 1. Now suppose it holds for §;(t) = r = s > 1. If $(t) = s+ 1, then according to
Proposition 1, there exists at least one process j € I +(4) with counter value S;(t—1) = s. From the
hypothesis, there exists a process k satisfying D(k, ) < s with the counter value Sp((t—1)—s) =
Si(t — (s+ 1)) = 0. Since j is within one color path from ¢, we have 5(1:,12) < s+ 1;andso Part 1
is proved. The proof of Part 2 proceeds in a similar way. &

Part 1 of the proposition says that if an [dle process finds its counter value to be r > 0 at the
end of some iteration step, then there exists a process which is at most r color paths away from
this process and whose state was Busy r iterations ago. That is, the counter value (= 0) of this
Busy process got propagated to the Idle process within r iterations; while on the way, this value
got incremented by one at each iteration. Part 2 says that if this value did get propagated all the
way to the Idle process in question, then there must not have been any Busy processes that were

within r color paths from this process during the period of the propagation.

On the basis of the properties of §, we are now in the position to establish the condition for

global termination in terms of §.

Theorem 4.1 For any process ¢ in a process structure G, it detects global termination when S; =

D(G) + 1.

Proof. It suffices to show that when a process satisfies the condition $;(¢) = D(G) + 1 at time
t, all other processes j, j # i, have the same counter value, i.e., Si(t) = D(G) + 1. Suppose at
time 2, Si(t) = D(G) + 1, but there exists a process j such that 5;(t) = a < D(G) + 1. According
to Part 1 of Proposition 2, there exists a process, say k, with Si(z — r) = 0. On the other hand,
since Si(t) = D(G) + 1, all the counter values at time ¢ — r must be positive according to Part
2 of Proposition 2. We conclude from the contradiction that §;(t) = ﬁ(G) + 1 if and only if
$i(t) = D(G) + 1. Thus, the theorem is proved. M

In summary, for any given process structure, the global termination condition is dependent
on a single value—the structure’s color-diameter, D(G). The processes exit the iteration loop

simultaneously with the same counter value 5(G) + 1. Hence, the constant PredefinedValue in

13



the algorithm should be set to D(G) + 1. The delay of the algorithm is D(G) + 1 iteration steps

which is measured from the instant the last Busy process turns Jdle.

5 Analysis of the termination delay

We have shown that for a given system structure G, the termination delay of the algorithm is equal
to its color diameter D(G)+1 which is in terms of number of iteration steps. But since the edges of
a graph can usually be colored in more than one way, and that different ways of coloring may result
in different color diameters, and hence different termination delays. we would like to determine
the best coloring scheme for a given structure G so that the minimum termination delay can be
achieved. To prove minimality, we need to express termination delay in terms of communication
steps. Refering to the termination detection code in the algorithm, we note that one iterative step
comprises C(G) communication steps, C(G) being the number of colors. Hence if we let d to be the
termination delay in communication steps, then d = (B(G) + 1) x C(G).

We consider the structures of n-dimensional torus and mesh (n > 1), and their special cases,
the ring, the chain, and the k-ary n-cube. An n-dimensional torus is a variant of the mesh with
end-round connections, as illustrated in Figure 3 (the end-round connections of the torus at the
back are omitted in the figure for clarity). A k-ary n-cube is a network with n dimensions, & nodes
in each dimensions {10, 39]. It is a special case of the n-dimensional torus which allows different
numbers of nodes in different dimensions. The hypercube is a special case of both the n-dimensional
mesh and the k-ary n-cube. A hypercube is an n-dimensional mesh with the same number of nodes
(of 2) in each dimension—that is, a 2-ary n-cube. We limit our scope to these structures because
they are the most popular choices of topologies in commercial parallel computers [47, 39, 43, 51).

The termination delay of the algorithm, as we have defined before, is the time period from
the occurrence of a global termination till the termination is detected by each processor. Clearly,
the lower bound of the termination delay (in communication steps) should be the minimum time
required by each processor to learn the state information of every other processors. It is the lower

bound of the time for gossiping [21] in the given graph.

The gossiping problem has been studied by a number of researchers under various communica-

tion models. Under the same serial communication model (1-port, full-duplex, but with no coloring

14



3x3x3 mesh 3x3x3 torus

Figure 3: Examples of 3-dimensional mesh and torus (back links omitted)

or whatsoever to schedule the exchanges over the edges®) as we are using in this paper, Farley and
Proskurowski analyzed the problem for the ring, the mesh, and the torus [14]. Their results, which

can serve as the lower bounds of the termination delay, are summarized in Table 5.

Instead of directly working out the appropriate coloring schemes for the structures, measuring
their color diameters, and comparing with the above lower bounds, we make use of existing results
from a version of the gossiping problem which is equivalent to our termination detection problem
to argue about optimality. This version of the gossiping problem. by Liestman and Richards,
uses exactly the same edge-coloring technique as we have used here for the chain, the ring, and
the mesh [31]. It is easy to see that the two problems—to find a coloring that would yield the
shortest color diameter and to find a coloring that would lead to the minimum gossiping time—are
equivalent. Therefore, we can use the gossiping results for edge-colored graphs to compare with
the above lower bounds. In the following, if the gossiping time in some colored graph is optimal
with respect to the corresponding lower bound (Table 5), then the termination delay due to our
algorithm using the same coloring scheme is optimal or near optimal. Precisely, if we let g to be the
gossiping time, then d — g < 2 x C(G) communication steps. For graphs with a small degree, this
difference should tend to be insignificant. The coloring scheme that is used to arrive at the optimal

gossiping time is exactly the optimal coloring scheme we need for our termination detection. Note

3Liestman and Richards refer to this as the “standard model” [31].
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that “gossiping time” in the following refers to that from using edge-coloring.

Liestman and Richards derived, among their many results, the following minimum gossiping
times which are of relevance here. We use g(G) to denote the minimum gossiping time for the

structure G, and g{G°) the gossiping time for G with coloring ¢.
Theorem 5.1 [31]*

1. For a chain of k nodes, Py, g(Fx) = 2|(k~1)/2} + 1.
2. For a ring of k nodes (k even), Ry, g(Ri) = k/2.

3. For a two-dimensional 2 x k mesh May, g(May) = 3|(k - 1)/2] + 1.

Note that in proving the above, Liestman and Richards gave an actual coloring scheme for each

case (using 2 colors for the chain and the ring, and 3 colors for the mesh).

In [31)], Liestman and Richards also showed that the minimum gossiping time is no larger than
2 x max{ky, k2} for a two-dimensional &y x k; mesh by using an “alternate” coloring scheme with
4 colors. In the following, we sharpen the bound and show its optimality for the even square mesh.

We also present a tight bound of gossiping time for the square torus.

Theorem 5.2 For a two-dimensional ky x ky mesh My, x,, k1, k2 > 3, the minimum gossiping time

is bounded as gy( My, ;) < 41(k — 1)/2} +2, where k = max{ky, k2}.

Proof. Suppose in a 4-color situation we color a chain with the sequence ---1313 - - then it is easy
to verify that the gossiping time of such a chain matches the result of Theorem 5 of [31]°—i.e., its
gossiping time is equal to 4|(k—1)/2] +1, where k is the number of nodes in the chain. If instead we
color the chain by the sequence - - <2424 - . ., then its gossiping time becomes one unit more than the
above—i.e., 4|(k — 1)/2] + 2—since the two colors 2,4 are exactly one time step behind the colors
1,3. Now the two-dimensional mesh in question is basically an assembly of horizontal and vertical

chains, and its gossiping time is equal to the maximum of the gossiping times of these chains.

*Note the difference in notation, in [31], n is the number of edges (= number of nodes in the ring case) and k is
the number of colors; in this section, k is the number of nodes in a dimension and n is the number of dimensions.
5g(Px) = C(G) x |(k —1)/2] +1, where C(G) is the number of colors.
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Therefore. if we always color the longer dimension with ---1313--. and the shorter dimension by
.+-2424 - -+, then g4(MF 1,) £ 41(k —1)/2] + 2, where k = max{ky, k2} and ¢ denotes the alternate
coloring scheme. B

Figure 4 shows several examples of 4-color meshes using alternate coloring. The corner node with
double circles corresponds to the node whose information will take the longest time to propagate
to all other nodes. Using dashed ovals, we trace the propagation of information from this node to

other nodes against time step numbers in the figure.

Corollary 5.1 The above gossiping time based on alternate coloring of 4 colors (denoted c) is

optimal when the mesh is an even square mesh (i.e., ky = ky is even).

Proof. For an even square mesh My, ga(ME) = 4|(k — 1)/2] + 2 = 2k — 2 (refer to the 8 x 8 mesh
in Figure 4) which matches the corresponding lower bound in Table 5. ®

The upper bound of gossiping time for a two-dimensional mesh can be generalized to an n-
dimensional ky X kg X ... X kn mesh, My, k.. k.. We label the edges in the +*% dimension of the
mesh, i = 1,2,...,n, with alternating 1's and (n + ¢ — 1)’s. Based on this kind of colored meshes,

we obtain the following results.

Theorem 5.3 For an n-dimenswonal ky X ko, -+ -, kn mesh My, y....knr K1,k2, ... kn 2 3, the min-

wmum gossiping time is bounded as follows.
920 Miy by onhn) < 20 (R~ 1)/2] + 1,

where k = max{ky, ks, ..., kn}.

Corollary 5.2 The gossiping time based on alternate coloring for n-dimensional meshes is optimal

when all the k,’s are equal to the same even number.

Next, the torus structure. We consider even tori of which the number of nodes in each dimension
is even. Such a torus can be colored with 2n colors using the alternate coloring scheme as above,
where n is the number of dimensions. Figure 5 shows a 8 x 8 colored torus and a 6 x 8 colored

torus.
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Theorem 5.4 For a two-dimensional ky X ko torus Ty, x,, k1,k2 > 2 and are even, the minimum

gossiping time is bounded as g(Th, ;) < &, where k = max{ky, ka}. It is optimal when ky = ks.

Proof. From Theorem 5.1, a (2-color) even ring completes gossiping in k/2 time units, where
% is the number of nodes/edges. In our 4-color torus here, which is an assembly of even rings,
information advances one step in every two time units; hence, for a ring of k¥ nodes colored with
---1313- ., the gossiping time is 2k/2 — 1 = k — 1, where the ~1 is due to the fact that the last
step (2 1 or a 3) takes only one time unit; correspondingly, for a ring of k nodes colored with
<--2424 - .-, the gossiping time is k. Therefore, if we always color the rings of the longer dimension
with ---1313 - -+, we have g(T,ghk!) < k, where k = max{k;, k2} and ¢ denotes this way of alternate
coloring. When &; = k; (i.e., a k-ary 2-cube), g(T§, ;,) = k is optimal since it matches the lower
bound in Table 5. W

Generalizing we have the following.

Theorem 5.5 For an n-dimensional ky X ky X <~ X ky, torus T, py,...kn, where kg ko, ... kq are
even, the minimum gossiping time is bounded as g{Tk, ky....kn) < nk/2. It is optimal when ky =

ky=---=k, (ie., a k-ary n-cube).

With all the necessary gossiping results in place, we can now comment on the optimality of

our termination detection algorithm. By comparing Theorem 5.1 and Table 5, we find that our
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termination detection algorithm is optimal for the chain and the even ring (d ~ g is a constant 2
to 4 time steps). From Corollary 5.2, our termination detection algorithm is near-optimal for even
square meshes. And from Theorem 5.5, our termination detection algorithm is near-optimal for
the k-ary mn-cube, where % is even. All of the above are valid by applying the alternate coloring
scheme using the appropriate number of colors, and the near-optimality would tend to optimal if

the graph’s degree (and hence the number of colors) is small.

6 Concluding remarks

We have shown that our simple termination detection algorithm based on edge-coloring is time-
optimal for the chain, the even ring, the even square mesh of low degree, and the k-ary n-cube
(k even) of low degree under the 1-port (single exchange with a neighbor per node per time step)
communication model. It is near-optimal for the other cases. From Table 5, we note that the
numbers of time steps for the optimal cases under the 1-port model is actually equal to the re-
spective absolute lower bounds for information dissemination in these structures regardless of the
communication model (e.g., a k-chain will need & — 1 time steps to complete a gossip even under
the most powerful communication model). Therefore, if we use the all-port communication model,
our algorithm performs as well as the broadcast-based algorithm or any other algorithm in these
structures. We have implemented our termination detection algorithm in two major applications
of iterative data-parallel computations (WaTor simulation and parallel image thinning) [55] and

found the overhead due to the execution of this algorithm to be minimal.
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Process | |A |P |P [P [P | P |Pr ]

8.(ta) 0o |1 1 1 1 1 1 1
SHio+1) 1 0(1) 1 0(0) | 1(1) | 1(1) | 1) | H1) | 2(1) | 1(1)
SHig+1) |0 0(1) {0(0) | 1 1 HE R DTG R E!
8§3(tg +1) | O(1) 1 O(L) | O(1) | (1) | 1{1) | 0(0) | 0(0) | B(0)
Sfta+1) 10 |1 1 12 |2 1 1 1
SHto+2) | 0(1) | 0(0) | 1(2) | 2(2) | (1) | 1(2) | (1) | 1(D)
SYie+2) |0 |o@ |00 |1 |1 Yy
S3(to +2) | 0(1) | 0(1) | O(1) | 1(1) | 1(1) | 0(0) | 0(0) | 0(0)
S(+2) |1 |o |1 2 |2 1 1 1
SHto+3) | 0(0) | 0(0) | 1(2) | M(1) | M(1) | 2(2) | 1(1) | (V)
SHto+3) |0 o(1) {0(0) | 1 1 Y1
5¥to+3) | 0(1) | O(1) | 0(1) | 1(1) | 1(T) | 0(0) | 0(0) | 0(0)
S{to+3) |1 o |1 |2 |2 1 1 1
SHito+4) | 0(0) | O(1) | 1(2) | 1{1) | (1) | M(2) | 1(1) | L(L)
SHto+4) 10 | 0(1) | 0(0) |1 1 iy
S(to+4) [ 0(1) | 0(1) | 0(1) | 1(1) | 1(1) | 0(0) | 0(0) | 0(0)

S(to+4) |1 |1 fo |2 |2 |1 |1 |1
Sto+5) 12 |1 1 |1 |1 |1 |1 |2
S(to+6) |2 |2 |2 |2 |2 |2 |2 |2
Ste+7) |3 13 |3 |3 |3 |3 |3 |3

Table 1: A trace of the counter distribution of processes in a 4 X 2 mesh structure. The numbers

in parentheses are the counter values received in the current exchange.
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Chain of size k k — 1if k 1s even; k otherwise

Ring of size & k/2if k 1s even; [k/2] + 1 otherwise

Mesh of size by X &y k1+k2—21fk1#301‘k2753

Torus of size ky X ky | [k1/2] + [k2/2] of ky and ks are even

Table 2: Lower bounds of gossiping time (termunation delay)
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