
Fault Propagation in Tabular Expression-Based Specifications

Xin Feng and David Lorge Parnas
Software Quality Research Laboratory
Faculty of Informatics and Electronics
Limerick University, Limerick, Ireland

{xin.feng, david.parnas}@ul.ie

T. H. Tse
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract

Tabular expressions have been used in industry for many
years to precisely document software in a readable notation.
In this paper, we propose a fault-based testing technique
that traces the propagation of faults from the expression
in each cell of a tabular expression to the output of the
program under test. The technique has been formalized in
the form of abstract test case constraints also represented
by tabular expressions, so that it can be easily applied and
automated.

1. Introduction

In the past decades, many formal specification methods
have been developed in an effort to document software
specifications precisely and unambiguously, mostly by
means of mathematical expressions. However, conventional
mathematical expressions are too complex and difficult to
read. To alleviate the problem, functional documentation
using tabular expressions was proposed [6, 11]. They were
proven to be useful and acceptable in industrial experiences
with the US Navy’s A-7 aircraft [3], a Bell Laboratories
Service Evaluation system [4], the Darlington Nuclear
Power Station [10], a Dell keyboard test program [13], and
so on.

Two testing strategies were developed for tabular expres-
sions: the partition strategy [9] and the interesting point
selection strategy [1]. Acting as equivalence class testing
and boundary value testing, respectively, they fulfill basic
testing requirements. Test oracles in [12] can help verify
testing results. To ensure a high quality of the software,
however, we need more advanced strategies such as fault-
based testing.

For the ease of discussions, we shall write tabular
expressions interchangeably with their equivalent conven-
tional mathematical expressions in this paper. Consider the
following conventional definition of a simple function. We

shall refer to x > 10 and y > 5 by the Boolean variables A and
B, respectively. They are listed in bold and in parentheses.

f (x, y) =




x+ y x > 10∧ y > 5∨ x � 10∧ y � 5
(A ∧ B ∨ ¬A ∧ ¬B)

x− y x � 10∧ y > 5∨ x > 10∧ y � 5
(¬A ∧ B ∨ A ∧ ¬B)

Many fault-based testing strategies (such as [7, 8, 16])
have been proposed to generate test cases for Boolean
expressions. Although these strategies can propagate faults
(such as missing A or the negation of A) to affect the result
of the expression A∧B∨¬A∧¬B, more questions regarding
fault propagation need to be addressed: (i) Can a change
of the operator “>” in x > 10 affect A? (ii) Can the result
of A∧B∨¬A∧¬B affect f (x, y)? (iii) Can a fault in x + y
be propagated to f (x, y)? While there are studies (such
as [5, 14]) addressing the first question, the other two have
almost been ignored.

Fault-based testing in tabular expressions takes into
account all the above-illustrated reflections as well as other
features related to tabular expressions.

2. Tabular Expressions

A tabular expression is an indexed set of grids and each
grid is an indexed set of expressions [6]. Fig. 1 is an
example of a two-dimensional inverted table T consisting
of three grids, such that the cardinality Card(T) = 3 and the
index sets IndexSet(T) = {0, 1, 2}, IndexSet(T [1]) = IndexSet(T [2])
= {0, 1, 2}, and IndexSet(T [0]) = IndexSet(T [1])× IndexSet(T [2]).
T [1] and T [0] are predicate grids while T [2] is an evaluation
grid. T [1] and each row of T [0] are proper, that is, one and
only one predicate expression can be true with respect to an
assignment. If T [i][idx] (i ∈ IndexSet(T) and idx ∈ IndexSet(T [i]))
is taken as a Boolean variable, the expressions in bold are
Boolean expressions.

A specification is a statement of all the properties
required of a program; an actual description is a statement
about actual attributes of a program. Accordingly, there
are two kinds of table in this paper: a specification table

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI

180

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.115

180

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.115

180

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:50 from IEEE Xplore. Restrictions apply.

Q(intx, inty) = T [2]

x+ y x− y x× y

x > 3 (x < 3) y < 6 y = 6 y > 6
x = 3 y < x y > x y = x

x < 3 (x > 3) y < −x y > −x y = −x

T [1] T [0]

Q(x, y) =




x+ y (x > 3∧ y < 6)∨ (x = 3∧ y < x)∨ (x < 3∧ y < −x)
(T[1][0]∧T[0][0, 0]∨T[1][1]∧T[0][1, 0]∨T[1][2]∧T[0][2, 0])

x− y (x > 3∧ y = 6)∨ (x = 3∧ y > x)∨ (x < 3∧ y > −x)
(T[1][0]∧T[0][0, 1]∨T[1][1]∧T[0][1, 1]∨T[1][2]∧T[0][2, 1])

x× y (x > 3∧ y > 6)∨ (x = 3∧ y = x)∨ (x < 3∧ y > −x)
(T[1][0]∧T[0][0, 2]∨T[1][1]∧T[0][1, 2]∨T[1][2]∧T[0][2, 2])

Figure 1. A specification (description) table.

(denoted by TS) and a description table (denoted by TD). For
the readers’ convenience, in Fig. 1, the specification and a
description share the same table with different expressions
in T [1][0] and T [1][2]. The expressions in parentheses are for
the description table.

3. Fault Propagation

Fault propagation spreads the faulty result in a problem
to the output and causes a failure of the program. It can be
revealed by an execution of the program [15] or an analysis
of the source code [2].

Boolean expression-based strategies are successful in
detecting faults in single Boolean expressions. For tab-
ular expressions, however, additional issues need to be
addressed. We discuss these issues based on the example
in Fig. 1.

(1) T [i][idx] represents an expression. Information is needed
about the faults that may affect the expression, such as
a change of “<” in x < 3 of T [1][2], and a change of “x”
in x+ y of T [2][0].

(2) The change in T [1][2] invokes a change in T [1][0] because
T [1] is proper.

(3) A change of result of a Boolean expression does not
always entail a change of the output. Consider the
second Boolean expression. Suppose x = 1 and y = 0.
Then, the expression is evaluated to true in TS but false
in TD. Since the first Boolean expression is evaluated to
true in TD, the expressions in various evaluation grids
are computed (namely, x−y and x+y). However, since
y is 0, x+ y = x− y. Thus, x = 1, y = 0 fails to propagate
the fault.

3.1. Notation and Assumptions

Various programs may be written to implement a spec-
ification, with different kinds of fault. Hence, this paper

considers only a subset of TD. Further, we have the fol-
lowing assumptions: (i) All the programs are deterministic.
(ii) Faults can either be in a predicate grid or in a cell of
an evaluation grid. (iii) If an input is undefined in TD, the
output is out of the range of the programs. (iv) Since many
techniques (such as fault-based testing [14] and mutation
testing [5]) can be used for testing fault propagation from
an expression in a cell to the result of the expression, test
cases for any propagation exist.

Test cases are expressed in terms of test case constraints.
In the sequel, “test case constraint” will be abbreviated to
“constraint”. If no test data can be found, the constraint
for the expression is false. Suppose idx is the index of
an element in grid T [i]. Let C[i][idx] indicate the set of
the constraints for the test data of expression T [i][idx] in
assumption (iv). The following is the notation:

(a) Card(C[i][idx]) denotes the number of constraints in
C[i][idx].

(b) C[i][idx][k] denotes the kth constraint in C[i][idx].

(c) TS[i][idx][k] and TD[i][idx][k], respectively, denotes the ex-
pected result and actual result of the expression TS[i][idx]
with respect to a test case that satisfies C[i][idx][k].

(d) P[i][idx] denotes the set of constraints that propagate the
faults in expression TD[i][idx] to the output.

(e) For any predicate grid T [i], CT [i][idx][k] and CF [i][idx][k]
denote C[i][idx][k]∧ TS[i][idx] and C[i][idx][k]∧¬TS[i][idx], re-
spectively.

(f) PT [i][idx][k] and PF [i][idx][k] denote the set of constraints
to propagate faults in expression TD[i][idx] when the
test cases satisfy CT [i][idx][k] or CF [i][idx][k], respectively.
They denote /0 when CT [i][idx][k] or CF [i][idx][k] is false.

(g) P[i][idx][k] denotes the set of constraints to propagate
faults in expression TD[i][idx] when the test cases satisfy
C[i][idx][k].

(h) ∇ is defined by

S1∇S2 =
{

S1 ∪S2 S1 = /0∨S2 = /0
S1 or S2 S1 �= /0∧S2 �= /0

3.2. Test Case Generation

To make the expressions more compact, we use
h∨

j=1
v[j] to

denote v[1]∨ v[2]∨ ·· ·∨ v[h],
h∧

j=1
v[j] to denote v[1]∧ v[2]∧ ·· ·∧ v[h],

and di to denote Card(T [i]) (1 � i �Card(T)−1). The output of
an inverted table can be written in the following form:

O = T [n][jn]
d1−1∨
j1=0

· · ·dn−1−1∨
jn−1=0

(
T [0][j1, . . . , jn]∧ (

n−1∧
i=1

T [i][ji])
)

(1)

181181181

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:50 from IEEE Xplore. Restrictions apply.

for 0 � jn � dn − 1, where n = Card(T)− 1. It means that the
output is T [n][jn] if the conditional expression subsequent to
this output is satisfied. Moreover, an inverted table has the
following characteristics:

• For 1 � i � n−1,
di−1∨
j=0

T [i][j] = true.

• For 1 � i � n−1 and 0 � j, j′ � di − 1 such that j �= j′,
T [i][j]∧T [i][j′] = false.

• Given any input, if
n−1∧
i=1

T [i][ji] = true,
dn−1∨
jn=0

T [0][j1, . . . , jn−1,

jn] = true and, for 0 � jn, j′n � dn −1 such that jn �= j′n,
T [0][j1, . . . , jn−1, jn]∧T [0][j1, . . . , jn−1, j′n] = false.

Faults may be in T [i] (1 � i � n− 1), T [n], or T [0]. Thus, we
have three cases:

(1) The faults are in evaluation expressions in T[n].

Suppose that there are faults in T [n][j] (0 � j � dn − 1).
To propagate the faults, the evaluation expression
must be evaluated with respect to an input, that

is,
d1−1∨
j1=0

· · ·dn−1−1∨
jn−1=0

(
T [0][j1, . . . , jn−1, j]∧ (

n−1∧
i=1

T [i][ji])
)

must be

true. Hence, for 0 � j � dn − 1, P[n][j] =
{

C[n][j][k]∧(d1−1∨
j1=0

· · ·dn−1−1∨
jn−1=0

(
T [0][j1, . . . , jn−1, j] ∧ (

n−1∧
i=1

T [i][ji])
)) ∣∣∣ 1 � k �

Card(C[n][j])
}

.

(2) The faults are in the predicate expressions in T[i]

(1 � i � n − 1).

The output function in (1) can be rewritten as

O = T [n][jn]
di−1∨
ji=0

(
T [i][ji]∧Q(i, ji, jn)

)
(2)

where Q(i, ji, jn) =
d1−1∨
j1=0

· · ·
di−1−1
∨

ji−1=0

di+1−1∨
ji+1=0

· · ·
dn−1−1
∨

jn−1=0

(
T [0][j1, . . . ,

ji, . . . , jn−1, jn]∧ (
i−1∧
l=1

T [l][jl])∧ (
n−1∧

l=i+1
T [l][jl])

)
. If n = 2, we

have i = 1 (since 1 � i � n−1) and Q(i, ji, jn) = T [0][j1, j2].
If n > 2, i can be any value that satisfies 1 � i � n−1.

Suppose that a test case satisfies C[i][j][k]. There are two
possibilities:

(a) The test case satisfies CT [i][j][k].

Obviously, it evaluates T [i][j] to true, that is,
TS[i][j][k] = true and TD[i][j][k] = false. When
TS[i][j][k] is true, TS[i][j′][k] = false for 0 � j′ �
di − 1 such that j′ �= j. The output in (2) can be
simplified to

O = T [n][jn] Q(i, j, jn)

There are two sub-cases:

• For all j′ �= j such that 0 � j′ � di − 1,
TD[i][j′][k] = false.
In this case, for any ji such that 0 � ji � di −
1, we have TD[i][ji] = false. Thus, no matter

what jn is,
di−1∨
ji=0

(
TD[i][ji]∧Q(i, ji, jn)

)
is always

false. Such a test case is undefined in the im-
plementation. According to assumption (iii)
in Section 3.1, the actual output is out of
range and, therefore, different from any
expected output under the predicate TS[i][j].
Hence, for 1 � i � n− 1 and 0 � j � di − 1,

P1
T [i][j][k] =

{
CT [i][j][k]∧ (

dn−1∨
jn=0

Q(i, j, jn))
}

. Since
dn−1∨
jn=0

Q(i, j, jn) = true, we have P1
T [i][j][k] =

{CT [i][j][k]}.
• TD[i][j′][k] = true for some j′ �= j such that 0 �

j′ � di −1.
Since the test case evaluates TD[i][j′] to true,
the output function for TD is written as

O = T [n][jn] Q(i, j′, jn)

Therefore, P2
T [i][j][k] =

{
CT [i][j][k]∧

(dn−1∨
jn=0

(
Q(i, j,

jn)∧¬Q(i, j′, jn) ∧
(dn−1∨

j′n=0, j′n �= jn
(Q(i, j′, j′n)→ T [n][j′n]

�= T [n][jn])
))) ∣∣∣ 0 � j′ � di −1 ∧ j �= j′

}
.

Thus, we can determine PT [i][j][k] = P1
T [i][j][k] ∪

P2
T [i][j][k].

(b) The test case satisfies CF [i][j][k].

It evaluates TS[i][j] to false and TD[i][j] to true.
TS[i][j′][k] = true for some j′ �= j such that
0 � j′ � di − 1. The analysis is similar to
the second case in (a). The set of con-
straints is given by PF [i][j][k] =

{
CF [i][j][k]∧TS[i][j′]∧(dn−1∨

jn=0

(
Q(i, j′, jn)∧¬Q(i, j, jn)∧

(dn−1∨
j′n=0, j′n �= jn

(Q(i, j, j′n)→

T [n][j′n] �= T [n][jn])
)))∣∣∣ 0 � j′ � di −1∧ j �= j′

}
.

Thus, we can determine P[i][j][k] = PT [i][j][k]∇PF [i][j][k]
and hence P[i][j] = {p ∈ P[i][j][k] | 0 � k �Card(C[i][j])−1}.

(3) The faults are in the predicate expressions in T[0].

Suppose that a test case satisfies C[0][j1, · · · , jn−1, j][k].
Similarly to the above, there are two possibilities.

(a) The test case satisfies CT [0][j1, · · · , jn−1, j][k].

Since TS[0][j1, . . . , jn−1, j][k] = true, we have TD[0][j1,

. . . , jn−1, j][k] = false. There are two sub-cases:

• For all j′ �= j such that 0 � j′ � dn − 1,
TD[0][j1, . . . , jn−1, j′][k] = false.
For any jn such that 0 � jn � dn − 1, we
have TD[0][j1, . . . , jn−1, jn][k] = false. Such a

182182182

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:50 from IEEE Xplore. Restrictions apply.

test case is undefined in the implementation.
To propagate faults, TD[0][j1, . . . , jn−1, j] must
be evaluated. Hence, P1

T [0][j1, . . . , jn−1, j][k] ={
CT [0][j1, . . . , jn−1, j][k]∧

(n−1∧
i=1

T [i][ji]
)}

.

• TD[0][j1, . . . , jn−1, j′][k] = true for some j′ �= j
such that 0 � j′ � dn −1.
Since TD[0][j1, . . . , jn−1, j′] corresponds to the
output T [n][j′], we must have T [n][j′] �= T [n][j]
to make the output different. Therefore,
P2

T [0][j1, . . . , jn−1, j][k] =
{

CT [0][j1, . . . , jn−1, j][k]∧(n−1∧
i=1

T [i][ji]
)
∧ T [n][j] �= T [n][j′]

∣∣∣ 0 � j′ � dn − 1∧
j′ �= j

}
.

Hence, we can determine PT [0][j1, . . . , jn−1, j][k] =
P1

T [0][j1, . . . , jn−1, j][k]∪P2
T [0][j1, . . . , jn−1, j][k].

(b) The test case satisfies CF [0][j1, . . . , jn−1, j][k].
TS[0][j1, . . . , jn−1, j′][k] is evaluated to true for some
j′ such that 0 � j′ � dn − 1. Since TD[0][j1, . . . ,

jn−1, j][k] is true, they correspond to T [n][j′] and
T [n][j], respectively. Hence, PF [0][j1, . . . , jn−1,

j][k] =
{

CF [0][j1, . . . , jn−1, j][k]∧TS[0][j1, . . . , jn−1, j′]∧(n−1∧
i=1

T [i][ji]
)
∧T [n][j] �= T [n][j′]

∣∣∣ 0 � j′ �dn −1∧ j′ �= j
}

.

Thus, P[0][j1, . . . , jn−1, j] =
{

p ∈ P[0][j1, . . . , jn−1, j][k]
∣∣∣ 0 �

k �Card(C[0][j1, . . . , jn−1, j])
}

, where P[0][j1, . . . , jn−1, j][k] =
PT [0][j1, . . . , jn−1, j][k] ∇ PF [0][j1, . . . , jn−1, j][k].

Application of the method is simple because all the
formulas have been given. Testers need only copy the
actual expressions from the tables to the formulas. The
constraints for the first step of the propagation can be
obtained by applying the MIST technique in [2]. The
subsequent process can be easily automated.

4. Conclusion and Future Work

We have shown that fault propagation can be taken into
account in tabular expression-based specifications. The
testing method proposed in this paper propagates not only
faults in predicate expressions but also faults in evaluation
expressions. The formulae in our method make test case
generation easier in two ways: (a) they facilitate the
implementation of the tool that automates the method; and
(b) if testers generate test data manually, they only need to
replace the notation in the formulae with actual expressions
in the specification table.

Although we have illustrated our method through in-
verted tables, we can also use it in other types of table.
Our SQRL laboratory has been developing the tools to
support this method. We have also designed the experi-
ments to further compare this method with other selected
testing strategies. On the other hand, we have noted that

some generated constraints are equivalent because of the
completeness of the grids in the table specification. Hence,
we are studying the method to generate test case constraints
for only part of the table but covering the whole.

References

[1] M. Clermont and D. L. Parnas. Using information about
functions in selecting test cases. ACM SIGSOFT Software
Engineering Notes, 30 (4): 1–7, 2005.

[2] X. Feng. MIST: Towards a MInimum Set of Test Cases.
PhD Thesis. The University of Hong Kong, Pokfulam, Hong
Kong, 2002.

[3] K. L. Heninger. Specifying software requirements for com-
plex systems: new techniques and their application. IEEE
Transactions on Software Engineering, SE-6 (1): 2–13, 1980.

[4] S. D. Hester, D. L. Parnas, and D. F. Utter. Using documenta-
tion as a software design medium. The Bell System Technical
Journal, 60 (8): 1941–1977, 1981.

[5] W. E. Howden. Weak mutation testing and completeness of
test sets. IEEE Transactions on Software Engineering, SE-
8 (4): 371–379, 1982.

[6] R. Janicki, D. L. Parnas, and J. Zucker. Tabular represen-
tations in relational documents. In Software Fundamentals:
Collected Papers by David L. Parnas, D. M. Hoffman and
D. M. Weiss, editors, pages 71–87. Addison Wesley, 2001.

[7] D. R. Kuhn. Fault classes and error detection capability of
specification-based testing. ACM Transactions on Software
Engineering and Methodology, 8 (4): 411–424, 1999.

[8] M. F. Lau and Y. T. Yu. An extended fault class hierarchy for
specification-based testing. ACM Transactions on Software
Engineering and Methodology, 14 (3): 247–276, 2005.

[9] S. Liu. Generating Test Cases from Software Documentation.
Master’s thesis. School of Graduate Studies, McMaster
University, Hamilton, Ontario, Canada, 2001.

[10] D. L. Parnas, G. J. K. Asmis, and J. Madey. Assessment
of safety-critical software in nuclear power plants. Nuclear
Safety, 32 (2): 189–198, 1991.

[11] D. L. Parnas, J. Madey, and M. Iglewski. Precise documen-
tation of well-structured programs. IEEE Transactions on
Software Engineering, 20 (12): 948–976, 1994.

[12] D. K. Peters and D. L. Parnas. Using test oracles generated
from program documentation. IEEE Transactions on Soft-
ware Engineering, 24 (3): 161–173, 1998.

[13] C. Quinn, S. Vilkomir, D. L. Parnas, and S. Kostic. Specifi-
cation of software component requirements using the trace
function method. In Proceedings of the International Con-
ference on Software Engineering Advances (ICSEA 2006).
IEEE Computer Society Press, Los Alamitos, CA, 2006.

[14] K.-C. Tai. Theory of fault-based predicate testing for com-
puter programs. IEEE Transactions on Software Engineer-
ing, 22 (8): 552–562, 1996.

[15] J. M. Voas. PIE: a dynamic failure-based technique. IEEE
Transactions on Software Engineering, 18 (8): 717–727,
1992.

[16] E. J. Weyuker, T. Goradia, and A. Singh. Automatically
generating test data from a Boolean specification. IEEE
Transactions on Software Engineering, 20 (5): 353–363,
1994.

183183183

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:50 from IEEE Xplore. Restrictions apply.

