
Static Slicing for Pervasive Programs ∗

Heng Lu
The University of Hong Kong

hlu@cs.hku.hk

W.K. Chan †

City University of Hong Kong
wkchan@cs.cityu.edu.hk

T.H. Tse ‡

The University of Hong Kong
thtse@cs.hku.hk

Abstract
Pervasive programs should be context-aware, which means
that program functions should react according to changing
environmental conditions. Slicing, as an important class
of code analysis techniques, can clarify the dependence
between program artifacts and observable system states to
facilitate debugging, testing, and other analyses. Existing
program slicing techniques, however, do not take the con-
textual environment into account, resulting in incomplete
slices for such kind of program. To tackle this problem,
this paper proposes a novel static slicing approach. It de-
velops a graphic representation that captures the context-
triggered invocations and the pervasive concurrency fea-
tures. We have also developed an algorithm to check the
propagation dependence in processing inter-thread data
dependence. Further optimizations are discussed.

Keywords: Pervasive concurrent program, static
slicing.

1. Introduction

Pervasive computing aims at integrating seamlessly
computational entities to their environments so that com-
puting can take place anywhere and at any time [19]. Two
core features are context awareness and ad hoc communi-
cation. The former enables entities to be aware of and react
to their environmental attributes such as temperature, light
intensity, and location, known collectively as contexts. The
latter facilitates instant interactions among entities based on
the changing contexts. The middleware-centric approach is
a popular type of architecture in many pervasive computing
projects [1, 2, 13, 18, 22, 23]. The middleware is respon-
sible for capturing, disseminating, and reasoning about
contextual information, for the underlying communication,
and for the scheduling of context-aware applications.
Context-aware applications only carry out high-level tasks

∗ This research is supported in part by a grant of the Research Grants
Council of Hong Kong (project no. HKU 7175/06E), a grant of The
University of Hong Kong, and a grant of City University of Hong Kong.

† Part of the research was done when Chan was with The Hong Kong
University of Science and Technology.

‡ All correspondence should be addressed to Prof. T. H. Tse at De-
partment of Computer Science, The University of Hong Kong, Pokfulam,
Hong Kong. Tel: (+852) 2859 2183. Email: thtse@cs.hku.hk.

relevant to the end users. In this paper, we concentrate our
study on context-aware middleware-centric programs. We
shall call them CM-centric programs.

Many researches in context-aware computing focus on
conceptual models for the representation and reasoning
of contexts. The study of the maintenance of context-
aware programs has not drawn much attention. To our
best knowledge, no work in the literature studies code-level
analyses for CM-centric programs. We propose a static
slicing approach for this purpose.

Slicing is a code-based technique widely used in soft-
ware engineering including program analysis, debugging,
testing, maintenance, and reverse engineering [21]. A
slice is a set of statements in a program that may affect
the computed values at some program location such as a
particular occurrence of a variable. Slicing techniques can
be static or dynamic, differentiated by whether the slice is
derived from the code or obtained from dynamic execution
traces with specific inputs, respectively.

Our work, like [7], is built on a tuple space model. A
novel graph representation, called context-aware control
flow graph or CaCFG for short, is proposed to capture both
context-aware invocations and the structure of CM-centric
programs. We also describe a basic concurrency model for
these programs in terms of context-aware threads or Ca-
threads for short.

Based on CaCFG and the concurrency model, we pro-
pose a static slicing algorithm that extends the algorithms
for slicing concurrent programs proposed in [8, 15]. In
particular, for control dependence and intra-thread data
dependence, our algorithm follows the standard backward
traversal [21]. For inter-thread data dependence, however,
we show that the constraints of threaded witness [8]
and trace witness [15] can be relaxed for CM-centric
programs because the graph representation of each Ca-
thread in CaCFG is strongly connected. We propose a
technique to decide on propagation dependence, which
determines whether a slice includes a given inter-thread
data dependence.

The main contributions of the paper are three-fold:
(a) To our best knowledge, it is the first slicing technqiue
that takes the pervasive environment into account. (b) It
develops a context-aware control flow graph specifically

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 23:20 from IEEE Xplore. Restrictions apply.

for CM-centric programs and convenient for static slicing.
(c) A static slicing algorithm for CM-centric programs is
proposed.

The rest is organized as follows. Section 2 reviews
existing work on static slicing. Section 3 sketches the
fundamentals of CM-centric programs and demonstrates
the graph representation and concurrency model. The
slicing algorithm is given in Section 5, followed by
optimization approaches discussed in Section 6. The
conclusion and future work are given in Section 7.

2. Related Work on Static Program Slicing

Static program slices are computed from the static
information of program code. For a program p, the slicing
criterion is represented by a tuple 〈s, V 〉 in which s is a
statement in p and V is a subset of the variables in p. The
static slice of p with respect to the slicing criterion 〈s, V 〉
comprises a subset of statements in p that can affect the
value of the variables in V at statement s.

For sequential programs, the effect of variables among
statements is propagated through control dependence and
data dependence, which are defined based on the control
flow graph (CFG) [21]. Ottenstein and Ottenstein [16]
developed a program dependence graph (PDG), in which
every node represents a statement of the program and all the
nodes are connected by directed edges representing control
dependence or data dependence. By translating a CFG to a
PDG, the computation of static slice becomes a reachability
problem in PDG: for a certain slicing criterion represented
as a node in the PDG, the slice comprises the transitive
closure starting from the criterion node through backward
traversal of control dependence and data dependence edges.
Horwitz et al. [6] extended the technique to interprocedural
slicing. Early work on static slicing of concurrent programs
were direct extensions of the approach for sequential
programs in terms of reachability analysis on PDG-like
graphs [5, 24]. One of the additional dependence rela-
tionships brought about by concurrency was referred to as
interference dependence in [8]. It is induced by the data
dependence on shared variables between two concurrent
and interleaving threads. A statement n is interference

dependent on another statement m, denoted by m
id→ n, if

(i) n and m can execute concurrently, (ii) n contains a usage
of some variable x, and (iii) m has a definition occurrence
of x. In Figure 1(a), for instance, Threads 1 and 2 execute

in parallel so that n2
id→ n3 and n3

id→ n1.
Using the above backward traversal algorithm for slic-

ing sequential programs, in Figure 1(a), n2 should be added
to the slice of n1, which requires n2 to be executed before
n1. However, the execution path from n2 to n1 is infeasible
for Thread 1. Krinke [8] highlighted the intransitivity
of interference dependence and proposed a more precise

Figure 1. Sample interference dependence

Thread 1:

n1: z := 2 * x;
n2: y := 0;

Thread 2:

n3: x := y - 1;

(a)

Thread 1:

n1: y := 0;
n2: y := 1;
n3: x := 2;
n4: z := 2 * x;

Thread 2:

n5: x := y - 1;

(b)

algorithm, which checks whether there is a path from each
source node of every interference dependence edge in the
CFG to the last visited node of the same thread.

In the concurrency model used in [8], threads are nested
with the fork-join structure and communicate with one
another via shared variables. Threads do not synchronize
explicitly. In addition, branches of predicate nodes are
treated as non-deterministic branches, as it is well known
that the feasible path problem is undecidable; precise
slicing based on such treatment is referred to as optimal
slicing. Although this kind of simplified model is con-
sidered fundamental to address a wide range of concurrent
applications [14], it is undecidable in general [14].

Nanda and Ramesh [15] extended the work in [8] and
proposed a more precise algorithm to deal with loop-
carried data dependence. However, the solution for
interference dependence in their algorithm is similar to that
in [8]. In other words, they consider the reachability of
interference source nodes in terms of control flow while
ignoring the influence of variable propagation. Let us
consider the example in Figure 1(b). By applying the
algorithms in [8, 15], n1 should be included in the slice of

n4 simply because n1
id→ n5, n5

id→ n4, and there is a path in
Thread 1 from n1 to n4. Nevertheless, n1 cannot affect the
value of x and z in n4 because in any interleaving sequence
of Thread 1 and Thread 2, the definition of y in n1 is killed.
Krinke [9] raised this problem with an example, but did not
give a solution. The work [9] also extended their previous
work [8] to include procedure calls so that recursion can be
largely handled efficiently.

3. CM-Centric Programs

To model CM-centric programs, we first revisit contexts
and situations. Like [14], we adopt a simplified model. A
context is a data abstraction of environmental attributes of
computing entities [4, 20]. Like [7], we also model context
operations based on the tuple space model.

Definition 1 (Context) A context tuple, denoted by t, is a
triple (name, type, value), where name is the unique identifier
for some environmental attribute of an entity, value is the data
abstraction of the environmental attribute, and type prescribes the
data type of value. The set of context tuples is called the context
space and is denoted by T .

A context space provides consistent views of contexts so
that the name component of each context tuple is unique.

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 23:20 from IEEE Xplore. Restrictions apply.

Formally, for any t1, t2 ∈ T , t1 �= t2 ⇒ t1.name �= t2.name).
We, therefore, use a context name to refer uniquely to its
belonging context variable c. The entire set of context
variables for a CM-centric program is denoted by C. That
is, C = {t.name | t ∈ T}.

We define two atomic and non-blocking operations that
address the usage and definition of context tuples in the
context space:

get(c) :
if ∃ t ∈ T (t.name = c)

return t
else return null

update(t) :
if ∃ t ′ ∈ T (t ′.name = c)

T := (T\{t ′})∪{t}
else T := T ∪{t}

The get operation retrieves from the context space the cur-
rent copy of context tuple with a specified context variable,
or returns a constant null if the context variable does not
exist. The update operation replaces a context tuple with
another context tuple that has the same context variable,
or inserts a new context tuple if the specified context
variable does not previously exist in the context space.

It is also popular to include transparent context reason-
ing in the middleware tier [1, 2, 17, 22, 23]. Developers
may define a set of rules, say, in predicate logic to de-
scribe conditions over interesting context variables. These
conditions are matched to a set of applications so that,
when current context values satisfy one or more of these
conditions during runtime, the relevant applications will be
invoked spontaneously by the middleware. Such a process
is triggered by context changes and is referred to as a
context-aware adaptation. The corresponding conditions
and applications are called situations and adaptive actions,
respectively.

Definition 2 (Situation) A situation s is an ordered pair
(Cs, p), where Cs (⊆ C) is a set of context variables and p is a
triggering condition with predicate variables in Cs. s is said to be
satisfied if p(get(Cs)) = true.

In Definition 2, the operation get is directly extended
to deal with a set of context variables Cs, where get(Cs) =
{get(c) | c ∈ Cs}\{null}. We define another atomic and
non-blocking operation that returns the evaluation of the
triggering condition based current context values in the
context space:

evaluate(s) :
return p(get(Cs))

An adaptive action is a program unit invoked by the
middleware when some situation is satisfied. Without loss
of generality, we restrict each adaptive action to be bound
with one unique situation, and denote it by act(s), which
means that it will be invoked when evaluate(s) = true.
The extension to multiple binding is not difficult. We
also assume that adaptive actions do not invoke each other
explicitly, but only through the middleware.

Contexts may be changed by environmental effects.
For example, the middleware may detect and update the
temperature context according to thermometer sensors, or
refresh the current bandwidth according to a networking
monitor. This part of context update differs significantly
from that performed by adaptive actions because the envi-
ronmental effect is outside the scope of the programming
logic. A formal definition of CM-centric programs is as
follows:

Definition 3 (CM-Centric Program) A context-aware
middleware-centric program, or CM-centric program for
short, is a tuple (C, S, A, Ev, act), where C is a set of context
variables; S is a set of situations such that Cs ⊆ C for any s ∈ S;
A is a set of adaptive actions; Ev (⊆ C) is a set of context
variables that can be updated by environmental effects; and act is
a bijection act : S → A such that for any s ∈ S, the adaptive action
act(s) will be invoked when evaluate(s) = true.

We adapt the application scenario of a smart delivery
system from [3] for illustration.

In a supermarket, each pallet stores a type of goods and
has a desired quantity level. Each van delivers a type of
goods and may move near the pallets. When a pallet
detects that a nearby van delivering the same type of
goods is moving within the effective delivery distance
(say, 10 meters), the situation detected or sd is said to
be satisfied, and an adaptive action compLedger will
be invoked to compute the ledger amount of goods in
the pallet. Also, if the ledger is lower than the desired
quantity, the situation understock or su is said to be
satisfied, and the van will be replenished by invoking
the adaptive action replenish. On the contrary, if the
ledger amount exceeds the desired level, the situation
overstock or so is fulfilled, and the goods will be
withdrawn from the van by invoking the adaptive
action withdraw.

A fragment of the implementation is shown in Table 1.

4. Context-Aware Control Flow Graph

Based on the CM-centric program model, we extend the
conventional CFG to construct a graphic representation of
a CM-centric program as follows:

Step 1: For each adaptive action a, we construct a
CFG Ga = (Na, Ea), where each node n ∈ Na represents
a statement and each directed edge e ∈ Ea represents a
control flow edge. For each node n, we derive two sets
D(n) and U(n) representing the set of variables defined
and used at n, respectively. We further assume that Ga

contains a unique entry node entry(Ga) and a unique exit
node exit(Ga).

Step 2: For situation s, we treat the evaluate(s)
operation as a special predicate node ns, which is called

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 23:20 from IEEE Xplore. Restrictions apply.

Table 1. Example smart delivery system (C, S, A, Ev, act),
where C = {gp, qp, qd , ql , gv, qv, d},
S = {sd , su, so}, A = {compLedger, replenish, withdraw},
Ev = {gp, qp, qd , gv, d}, act(sd) = compLedger,
act(su) = replenish, and act(so) = withdraw.

gp type of goods stored in pallet
qp amount of goods stored in pallet

Context qd desired amount of goods in pallet
variables ql ledger amount of goods in pallet

gv type of goods delivered by van
qv amount of goods delivered by van
d distance between pallet and van

sd
(Cd = {gp, gv, d},
pd = (gp = gv)∧ (d < 10))

Situations su

(Cu = {gp, gv, d, qd , ql},
pu = (gp = gv)∧ (d < 10)∧

(ql < qd))

so

(Co = {gp, gv, d, qd , ql},
po = (gp = gv)∧ (d < 10)∧

(ql > qd))

act(sd)
compLedger {

ql := qp +qv;}
Adaptive
actions

act(su)
replenish {

if (qv < MAX)
qv := qv +1;}

act(so)
withdraw {

if (qv > 0)
qv := qv −1;}

situation node and annotated with the triggering condition.
Note that D(ns) = /0 and U(ns) = Cs. Clearly, every node
in the CFG of act(s) is control dependent on ns. In line
with existing designs of pervasive systems such as [22, 23],
we represent the true branch of ns as a control flow edge
(ns, entry(Gact(s))) while not explicitly showing the false
branch. Another control flow edge (exit(Gact(s)), ns) is also
needed to signify that variations of context space may re-
evaluate s and invoke act(s) iteratively.

Step 3: We create an environmental node nev to
represent the environmental action that carries out all the
environmental influence on the context space. We have
D(nev) = Ev and U(nev) = /0.

We call the resultant graph a context-aware control flow
graph or CaCFG for short, and give the formal definition
as follows. The CaCFG for the example program is shown
in Figure 2.

Definition 4 (CaCFG) The context-aware control flow
graph or CaCFG of a CM-centric program (C, S, A, Ev, act) is a
directed graph G = (N, Ecf) such that the set of nodes

N =
⋃

a∈A

Na ∪{ns | s ∈ S}∪{nev}

Figure 2. CaCFG of smart delivery system

nev

nSo: (g p = g v) /\ (d < 10)
/\ (q l > q d)

n4: if q v > 0

n5: q v := q v - 1;

EXIT
nSd: (g p = g v) /\ (d < 10)

n1: q l := q p + q v;

nSu: (g p = g v) /\ (d < 10)
/\ (q l < q d)

n2: if q v < MAX

n3 : q v := q v + 1;

EXIT

control flow

situation node

environment node

statement node in adaptive actions

GSu GSo

GSd

Gev

and the set of control flow edges

Ecf =
⋃

a∈A

Ea ∪{ins | s ∈ S}∪{outs | s ∈ S}

where ins = (exit(Gact(s)), ns) represents the control flow from the
exit node of act(s) to ns, and outs = (ns, entry(Gact(s))) represents
the control flow from ns to the entry node of act(s).

Obviously, the transitive closure of Ecf defines an
equivalent relation on N. Every equivalence class forms
a strongly connected subgraph of G. There are a total of
|S|+ 1 strongly connected subgraphs. The environmental
node nev forms a strongly connected subgraph without in-
coming or out-going control flow edges. We denote it
as a simple graph Gev, where Gev = ({nev}, /0). Each of
the remaining strongly connected subgraphs consists of a
situation node ns for some situation s together with Nact(s),
the nodes of the bound adaptive actions of s. We denote it
by Gs, where Gs = (Nact(s) ∪{ns}, Eact(s) ∪{ins, outs}) for
any s ∈ S. We shall discuss the interactions between the
application tier and the middleware tier in the next section.

5. Slicing CM-Centric Programs

5.1. Inter-Thread Context Dependence

We have noted in Section 2 that previous work on slicing
concurrent programs adopt nested fork-join parallelism and
define interference dependence as inter-thread data depen-
dence [8, 9, 15]. They find that interference dependence is
not transitive in computing a slice.

In the concurrency model of CM-centric programs,
threads (which we call Ca-threads) are not nested and there
is no explicit inter-thread control dependence (such as fork
and join constructs) or inter-thread synchronization. All
inter-thread control flow information is carried out by inter-
thread data dependence via context variables, which we
call inter-thread context dependence and will be explained
in this section. Although inter-thread context dependence

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 23:20 from IEEE Xplore. Restrictions apply.

is similar to interference dependence, the former is more
pervasive in CM-centric programs.

We regard each variable that may be shared among
different Ca-threads as a context variable, and give the
definition of inter-thread context dependence as follows:

Definition 5 (Inter-Thread Context Dependence) A
node n j is said to be inter-thread context dependent on another
node ni if they are in different strongly connected subgraphs and
a context variable is defined in ni and used in n j .

The set of inter-thread context dependence edges for a
CaCFG is composed as

Eicd = {(ni, n j) | (ni, n j) �∈ E∗
cf for some c ∈ D(ni)∩U(n j)}

where E∗
cf is the transitive closure of Ecf. 1 We further

define a function L : Eicd →C that labels every inter-thread
context dependence edge by the context variable defined in
the source node and used in the destination node. For the
CaCFG shown in Figure 2, we have inter-thread context
dependence edges such as (nev, nsu) and (n3, n1), so that
L((nev, nsd)) = gp or gv or d or qd and L((n3, n1)) = qv.

5.2. Slicing Algorithm

For every strongly connected subgraph of a CaCFG, we
use standard algorithms [21] to compute all the intra-thread
control dependence and data dependence. By combining
the nodes with control dependence edges Ecd and data
dependence edges Edd , a program dependence graph [16] is
obtained. The slice is computed as the backward transitive
closure of Ecd ∪Edd from any specific node as the slicing
criterion. When slicing is extended to inter-thread level,
Eicd is taken into account.

Definition 6 (Slicing Sequence) A slicing sequence
sls(n, n′) with respect to two distinct nodes n and n′ in a CaCFG
is a sequence of nodes 〈n1, n2, . . . , nk〉 such that n1 = n, nk = n′,
and (ni, ni+1) ∈ Ecd ∪Edd ∪Eicd for i = 1, 2, . . . , k−1.

We adapt the definition of a trace witness from [15],
thus:

Definition 7 (Trace Witness) A trace witness of a CaCFG G
is a subsequence of some valid execution trace of the nodes in G.

The source node of an inter-thread context dependence
is included in a slice if (i) there is a valid execution trace
from the source node to the slicing criterion and (ii) the
variable definition at the source node can be propagated
to the slicing criterion. Previous work [8, 15] solve the
first condition by constraining that the slicing sequence

1 Eicd may be a multi-set because more than one variable can
be defined in a node and used in another node. For the ease
of presentation, however, we assume that every node except the
environmental node defines at most one variable.

from the source node to the slicing criterion should be
a witness of some valid execution trace, which complies
with the execution order restricted by the control flow
information. This condition is automatically satisfied in
CM-centric programs because, as the CaCFG is composed
of strongly connected subgraphs, any interleaving of nodes
forms a valid witness by default.

The second condition ensures that an inter-thread con-
text dependence edge is counted for slicing only if its
labeling context variables can be propagated successfully
to the criterion node in all possible execution traces. In
this case, we say that the criterion node is propagation
dependent on it. A data dependence or inter-thread context
dependence (ni, n j) is said to be killed in an execution trace
tr if tr contains a node n′i such that (a) n′i is different from
ni or n j, (b) D(n′i) = D(ni), and (c) ni ⇀ n′i ⇀ n j. 2

Definition 8 (Propagation Dependence) Given a slicing
sequence sls(n1, nk) = 〈n1, n2, . . . , nk〉, nk is propagation de-
pendent on n1 if there exists a valid execution trace of which
sls(n1, nk) is a witness, such that none of the dependence in the
set {(ni, ni+1) | 1 ≤ i < k, (ni, ni+1) ∈ Edd ∪Eicd} is killed in the
trace.

In the example shown in Figure 2(b), node nr is
not propagation dependent on n1 because either y or x
will be killed in any valid execution trace. As data
flow dependence is inherently transitive, the propagation
dependence property should only be checked exclusively
for inter-thread context dependence. Thus, we formally
define slices as follows:

Definition 9 (Slice) The slice of a CM-centric program with
respect to a criterion node nc in the CaCFG G is the set of nodes

{n | sls(n, nc) = 〈n1, n2, . . . , nk〉
where n1 = n, nk = nc, and
for any i = 1, 2, . . . , k−1, if (ni, ni+1) ∈ Eicd

then nc is propagation dependent on ni}

Informally, a definition occurrence in a slicing sequence
is killed by all possible execution traces only if at least two
nodes in the slicing sequence are in the same strongly con-
nected subgraph. Furthermore, each of their intermediate
control flow paths will kill the definition occurrence. Thus,
whenever an inter-thread context dependence edge (n1, n2)
is encountered in a slicing sequence 〈n1, n2, . . . , nc〉, we
start from n2 and search for the first node in the slicing
sequence that is in the same strongly connected subgraph
as n1. If such a node, say nk, is found, we check whether
nk is propagation dependent on n1. The soundness of this
approach is warranted by the following theorem. Its proof
can be found in our technical report [12].

2 The notation n1 ⇀ n2 denotes that the execution of n1
happens before n2 [10].

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 23:20 from IEEE Xplore. Restrictions apply.

Figure 3. Illustration of Theorem 1

n 1

n'1

n'2

n k

n'k-2

n'k-1

n 2

n 3

n k-2

n k-1

data dependence (intra-thread)

inter-thread context dependence

Theorem 1 Given a slicing sequence sls(n1, nk) =
〈n1, n2, . . . , nk〉 in which

(n1, nk) ∈ E∗
cf and, for i = 2, 3, . . . , k−1, (n1, ni) �∈ E∗

cf, (1)

nk is not propagation dependent on n1 if and only if

(i) (ni, ni+1) ∈ Edd ∪Eicd for i = 2, 3, . . . , k−2, and

(ii) there exist a set of nodes n′1, n′2, . . . , n′k−1 such that
(n1, n′i) ∈ E∗

cf and D(n′i) = D(ni) for i = 1, 2, . . . , k − 1,
and w = 〈n1, n′1, n′2, . . . , n′k−1, nk〉 is a witness of any valid
execution trace.

Whenever a slicing sequence sls(n1, nk) satisfies both
Equation (1) and condition (i) in Theorem 1, since n1 and
nk are in the same strongly connected subgraph, we check
whether every path from n1 to nk contains a witness w. We
use a Boolean function PropDep(n1, nk) to decide whether
nk is propagation dependent on n1: PropDep(n1, nk)
returns true if there is a path from n1 to nk that does
not contain w, and returns false otherwise. Optimal static
slicing is undecidable [14]. The same limitation applies
also to finding a slicing sequence sls(n1, nk) that satisfies
both Equation (1) and condition (i) in Theorem 1. In
practice, one may limit the searching of such a slicing
sequence by visiting each strongly connected subgraph a
finite number of times.

Let us consider the example CM-centric program in Fig-
ure 4, which consists of three Ca-threads denoted by Gs1 ,
Gs2 , and Gs3 . In addition, nev can update the set of context
variables Eev = {b,c}. (Inter-thread context dependence
edges have been added to the CaCFG for clarity.)

To slice n8, we can derive a slicing sequence
sls(n2, n8) = 〈n2, n12, n16, n8〉. Since both n2 and n8 are
in Gs1 , we find that every path from n2 to n8 contains
the witness 〈n2, n4, n5, n6, n8〉 that defines the variables
〈x, u, v〉 in the same sequence of sls(n2, n8). Thus, n2 is
not included in the slice of n8.

Our slicing algorithm adopts an approach similar to
those in [8, 15] in recording the last visited node for every

Figure 4. Example CM-centric program

n S1: (x > 0) /\ (c > 0) n S2: (s < 100)

n S3: (c > 100)

n 1: if (c mod 2 = 0)

n 2: x := 0

n 3: y := y + x

n 4: x := 1

n 5: u := a * a

n 6: v := 2 * c

n 7: if (v > 10)

n 8: z := v - 10
n 9: z := v

n 10: y := y - 1

n 11: a := 5

n 12: u := 2 * x

n 13: if (a < c)

n 14: a := a + 1

n 15: EXIT

n 16: v := 2 * u

n 17: s := a + b + c

n 18: b := b - 1

n ev

control flowsituation node

environment node

statement node in adaptive actions inter-thread context dependence

G ev

G S1 G S2

G S3

Ca-thread. For each node being processed, the algorithm
maintains a tuple V = (v[1], v[2], . . . , v[|S|+ 1]) in which
|S| is the number of situations in the program and each
element v[i] represents a node in a strongly connected
subgraph Gi.

A slice is computed via a worklist-based algorithm.
Each node in the worklist is combined with a corresponding
V tuple. Initially, every element in V is set to be ⊥. When
a control dependence or data dependence edge (ni, n j) in
Gk is encountered, we copy the tuple V of n j, change
v[k] into ni, and attach the new V to ni. If more than
one element in V is not ⊥ at a certain node, it indicates
that the slicing sequence has traversed inter-thread context
dependence edges. Thus, for each encountered inter-thread
context dependence edge (ni, n j) in which ni is in Gk, if
the element v[k] in the tuple V of n j is not ⊥, there must be
a slicing sequence sls(ni, v[k]) that satisfies Equation (1)
in Theorem 1. sls(ni, v[k]) can be searched based on V
and all the data dependence edges Edd . Consequently, if
PropDep(ni, v[k]) = true, ni is added into the slice and its
V tuple will be updated by setting v[k] to be n j.

The slicing algorithm is shown in Figure 5. We discuss
its time complexity here. For each strongly connected
subgraphs Gi of the CaCFG G, i = 1, 2, . . . , |S|+1, suppose
the number of nodes is |Ni|. In the worst case, the number
of elements the worklist to be processed during slicing will

be ∏|S|+1
i=1 |Ni| = O(|N||S|+1) where |N| = ∑|S|+1

i=1 |Ni| is the
number of nodes in G. In searching the possible slicing

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 23:20 from IEEE Xplore. Restrictions apply.

Figure 5. Slicing algorithm
Input: slicing criterion nc,

the CM-centric program (C, S, A, Ev, act)
with G = (N, Ecf), Ecd, Edd , Eicd

Output: the slice Z

V := (v[1], v[2], . . . , v[m]) in which m = |S|+1, and
if nc is in Gi, V.v[i] := nc;
else V.v[i] := ⊥;

W := 〈(nc, V)〉; // the worklist
X := {(nc, V)}; // the calculated set
Z := {nc}; // the slice
while W �= {}

remove the first element (n j, V) from W ;
for all ni such that (ni, n j) ∈ Ecd ∪Edd
// for control dependence and data dependence edges,
// follow the conventional slicing approach

find the subgraph Gk containing ni;
V ′ := V ;
V ′.v′[k] := ni;
if (ni, V ′) �∈ X // has not been calculated

W := W ∪{(ni, V ′)};
X := X ∪{(ni, V ′)};
Z := Z ∪{ni};

for all ni such that (ni, n j) ∈ Eicd
// for inter-thread context dependence edges

find the subgraph Gk containing ni;
if V.v[k] = ⊥ // no node in Gk has been calculated

V ′ := V ;
V ′.v′[k] := ni;

else if V.v[k] �= ⊥
search for sls(ni, V.v[k]) that satisfies

both Equation (1) and condition (i) in Theorem 1;
if sls(ni, V.v[k]) exists and PropDep(ni, V.v[k]) = false
// V.v[k] is not propagation dependent on ni

continue; // do not include ni in the slice
// and continue for the next loop

else
V ′ := V ;
V ′.v′[k] := ni;

if (ni, V ′) �∈ X // has not been calculated
W := W ∪{(ni, V ′)};
X := X ∪{(ni, V ′)};
Z := Z ∪{ni};

sequence sls(ni, v[k]) that satisfies both Equation (1) and
condition (i) in Theorem 1, the worst case will also visit

∏|S|
i=1 |Ni| nodes. If sls(ni, v[k]) is found, since computing

an execution path will traverse at most |Ni| nodes, the worst
case in computing PropDep() will have a complexity of
|Ni|. As a result, the worst case complexity of the slicing

algorithm in Figure 5 will be O(|N||S|+1)× (∏|S|
i=1 |Ni|+

|Ni|) = O(|N|2|S|+1).

5.3. Examples

We give some examples of worklist records to illustrate
the algorithm. Figure 6 shows some of the records
of the worklist in slicing node n17 of the program
shown in Figure 4. The tuple V is configured as
(v[1], v[2], v[3], v[4]), in which v[1], v[2], and v[3] represent

Figure 6. Worklist records in slicing n17 of the program
in Figure 4

Iteration Worklist Records
Initial : 〈 (n17, (⊥, ⊥, n17, ⊥)) 〉

1 : 〈 (ns3 , (⊥, ⊥, ns3 , ⊥)), (n18, (⊥, ⊥, n18, ⊥)),
(n11, (⊥, n11, n17, ⊥)), (n14, (⊥, n14, n17, ⊥)),
(nev, (⊥, ⊥, n17, nev)) 〉

2 : 〈 (n18, (⊥, ⊥, n18, ⊥)), (n11, (⊥, n11, n17, ⊥)),
(n14, (⊥, n14, n17, ⊥)), (nev, (⊥, ⊥, n17,
nev)), (nev, (⊥, ⊥, ns3 , nev)) 〉

3 : 〈 (n11, (⊥, n11, n17, ⊥)), (n14, (⊥, n14, n17, ⊥)),
(nev, (⊥, ⊥, n17, nev)), (nev, (⊥, ⊥, ns3 ,
nev)), (nev, (⊥, ⊥, n18, nev)) 〉

· · · · · ·
15 : 〈 (nev, (⊥, ns2 , ns3 , nev)), (nev, (⊥, ns2 , n18, nev)) 〉
16 : 〈 (nev, (⊥, ns2 , n18, nev)) 〉
17 : 〈 〉

either ⊥ or a node in Gs1 , Gs2 , and Gs3 , respectively,
and v[4] represents either ⊥ or nev. Initially, the worklist
is set to be 〈(n17, (⊥, ⊥, n17, ⊥))〉. Each subsequent
step i shows the resultant worklist obtained by removing
and processing the first element in step i− 1 and adding
relevant new elements. The resultant slice of n17 is the set
{n17, ns3 , n18, n11, n14, nev, ns2 , n13}.

Similarly, the slice for node n8 in Figure 4 is the set
{n8, n7, n6, n16, ns1 , nev, n18, ns3 , n12, n5, n4, n11, n14, ns2 ,
n13, n17}. Note that n2 is not included in the slice. (The
approaches in related work discussed above would include
n1 and n2, however.) In the example program of the smart
delivery system shown in Figure 2, the slice of any of n1,
n3, or n5 will include all the nodes in the CaCFG.

6. Optimization

A great deal of time of the basic slicing algorithm
in Figure 5 spent on the searching of possible slicing
sequences in the form of sls(ni, v[k]). If, for every node
during slicing, we record not only the last visited node
but also the history of traversed intra-thread dependence
(namely, control dependence and data dependence edges)
for each strongly connected subgraph, then the searching
of sls(ni, v[k]) will be reduced to a sorting problem for a
sequence of |S| elements and has a worst case complexity of
|S|2. Thus, the complexity of the algorithm will be reduced
to O(|N||S|+1)× (|S|2 + |Ni|) = O(|N||S|+2). Nevertheless,
space consumption will be increased significantly.

One way to improve on the basic slicing algorithm is
by treating each strongly connected subgraph as a black-
box with all the nodes containing context variable usages
as inputs and all the nodes containing context variable
definitions as outputs. The intra-thread dependence from
every output to every input is pre-computed so that a
slice only needs to traverse inter-thread context dependence
across different black-boxes. This approach is similar to
coarse-grained slicing [11], in which the granularity of

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 23:20 from IEEE Xplore. Restrictions apply.

slicing is adjustable. Although the complexity for the worst
case scenario will not change, the improved approach is
envisaged to compute slices much faster on average.

We are conducting experiments to evaluate the above ap-
proaches and will report our results in the near future. The
slicing technique proposed in this paper is based on the per-
vasive concurrency model in which Ca-threads are sched-
uled whenever a situation is satisfied and the correspond-
ing adaptive action is activated. We shall also investigate
the impact of other schedule approaches in the future.

7. Conclusion

The practice of pervasive computing receives much
attention in recent years. However, specific efforts for
the maintenance of pervasive software applications such as
code-based analysis are understudied. In this paper, we
investigate the static slicing of CM-centric programs, as
context awareness and middleware-centric architecture are
important features of pervasive computing.

The model of CM-centric programs proposed in this
paper represents a common design interest in contemporary
projects in context-aware pervasive computing. Our
context space is built on top of the tuple space model. It
provides a unified representation and supports consistent
operations on contexts. Our context-aware control flow
graph (CaCFG) captures context-aware invocations as well
as the structures of context-aware applications. We use it
as a foundation for slicing.

Specific features of CM-centric programs make our
static slicing approach different from that for conventional
concurrent programs. In particular, when processing
inter-thread data dependence, we check the propagation
dependence rather than the witness of a valid trace. We
have also demonstrated how our approach produces a more
precise slice. Like other static slicing approaches, however,
our slicing algorithm has an exponential complexity with
respect to the number of execution threads in the worst
case. We propose several optimizations and envisage them
to improve the slicing efficiency. We shall report our
findings in the future.

References
[1] L. Capra, W. Emmerich, and C. Mascolo. CARISMA: context-

aware reflective middleware system for mobile applications. IEEE
Transactions on Software Engineering, 29 (10): 929–944, 2003.

[2] A. T. S. Chan and S.-N. Chuang. MobiPADS: a reflective middle-
ware for context-aware mobile computing. IEEE Transactions on
Software Engineering, 29 (12): 1072–1085, 2003.

[3] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau. A
metamorphic approach to integration testing of context-sensitive
middleware-based applications. In Proceedings of the 5th Interna-
tional Conference on Quality Software (QSIC 2005), pages 241–
249. 2005.

[4] G. Chen and D. Kotz. A survey of context-aware mobile comput-
ing research. Technical Report TR2000-381. Dartmouth College,

Hanover, New Hampshire, 2000.
[5] J. Cheng. Slicing concurrent programs: a graph-theoretical ap-

proach. In Proceedings of the 1st International Workshop on
Automated and Algorithmic Debugging, volume 749 of Lecture
Notes in Computer Science, pages 223–240. 1993.

[6] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming
Languages and Systems, 12 (1): 26–60, 1990.

[7] C. Julien and G.-C. Roman. Egocentric context-aware programming
in ad hoc mobile environments. In Proceedings of the 10th ACM
SIGSOFT Symposium on Foundations of Software Engineering
(FSE-10), pages 21–30. 2002.

[8] J. Krinke. Static slicing of threaded programs. In Proceedings of the
1998 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE 1998), pages 35–42. 1998.

[9] J. Krinke. Context-sensitive slicing of concurrent programs. In Pro-
ceedings of the Joint 9th European Software Engineering Confer-
ence and 11th ACM SIGSOFT Symposium on the Foundation of
Software Engineering (ESEC 2003/FSE-11), pages 178–187. 2003.

[10] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21 (7): 558–565, 1978.

[11] H. F. Li, J. Rilling, and D. Goswami. Granularity-driven dynamic
predicate slicing algorithms for message passing systems. Journal
of Automated Software Engineering, 11 (1): 63–89, 2004.

[12] H. Lu, W. K. Chan, and T. H. Tse. Static slicing for pervasive
programs. Technical Report TR-2006-09. Department of Computer
Science, The University of Hong Kong, 2006.

[13] H. Lu, W. K. Chan, and T. H. Tse. Testing context-aware
middleware-centric programs: a data flow approach and an RFID-
based experimentation. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(FSE 2006). 2006.

[14] M. Müller-Olm and H. Seidl. On optimal slicing of parallel
programs. In Proceedings of the 33th ACM Symposium on Theory
of Computing, pages 647–656. 2001.

[15] M. G. Nanda and S. Ramesh. Slicing concurrent programs. In
Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2000), pages 180–190. 2000.

[16] K. J. Ottenstein and L. M. Ottenstein. The program dependence
graph in a software development environment. In Proceedings of
the ACM Symposium on Practical Software Development Environ-
ments, pages 177–184. 1984.

[17] A. Ranganathan and R. H. Campbell. An infrastructure for context-
awareness based on first order logic. Personal and Ubiquitous
Computing, 7 (6): 353–364, 2003.

[18] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Camp-
bell, and K. Nahrstedt. A middleware infrastructure for active
spaces. IEEE Pervasive Computing, 1 (4): 74–83, 2002.

[19] M. Satyanarayanan. Pervasive computing: vision and challenges.
IEEE Personal Communications, 8 (4): 10–17, 2001.

[20] T. Strang and C. Linnhoff-Popien. A context modeling survey.
In Proceedings of the 1st International Workshop on Advanced
Context Modelling, Reasoning and Management, pages 34–41.
2004.

[21] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3 (3): 121–189, 1995.

[22] C. Xu and S. C. Cheung. Inconsistency detection and resolution
for context-aware middleware support. In Proceedings of the Joint
10th European Software Engineering Conference and 13th ACM
SIGSOFT Symposium on the Foundation of Software Engineering
(ESEC 2005/FSE-13), pages 336–345. 2005.

[23] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta. Re-
configurable context-sensitive middleware for pervasive computing.
IEEE Pervasive Computing, 1 (3): 33–40, 2002.

[24] J. Zhao. Slicing concurrent java programs. In Proceedings of the 7th
IEEE International Workshop on Program Comprehension, pages
126–133. 1999.

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 23:20 from IEEE Xplore. Restrictions apply.

