
 1

To appear in Information and Software Technology 42 (10) (2000)

ROCS: an object-oriented class-level testing system

based on the Relevant Observable ContextS technique
1

Huo Yan Chen
Department of Computer Science, Jinan University, China

T. H. Tse
 2

Department of Computer Science and Information Systems, The University of Hong Kong

Yue Tang Deng
Department of Computer Science, Polytechnic University, Brooklyn, NY

Abstract
Given an algebraic specification of a class of objects, we define a fundamental pair as two equivalent
terms generated by substituting all the variables on both sides of an axiom by normal forms. For any
implementation error in the class, if it can be revealed by two equivalent terms in general, it can also be
revealed by a fundamental pair. Hence, we need only select test cases from the set of fundamental pairs
instead of equivalent pairs in general. We highlight an algorithm for selecting a finite set of
fundamental pairs as test cases. Further, by using the relevant observable contexts technique, we
highlight another algorithm to determine whether the objects resulting from executing a fundamental
pair are observationally equivalent. If not, it reveals an implementation error.

Using these algorithms, we have constructed a system to test object-oriented programs at
class-level. We describe in detail the implementation of a prototype system, including the data structure
of a Data member Relevant Graph (DRG) for the class, the procedures for the construction and path
traversal of the DRG, the generation and execution of relevant observable contexts on the objects under
test, and the reporting of implementation errors. The implementation illustrates an innovative idea of
embedding testing algorithms into an interpreter to facilitate software testing.

Keywords: Equivalent terms; Fundamental pairs; Class-level testing; Object-oriented testing;
Observational equivalence; Relevant observable contexts

1 INTRODUCTION
The object-oriented paradigm enhances the reliability, maintainability, and reusability of resulting
software. It is known as a technique for improving the productivity, quality, and innovation in software
development [1]. However, software testing becomes more complex and difficult than that for
conventional programming. It contains four levels: algorithmic level, class level, cluster level, and
system level [2]. In this paper, we will only discuss the most fundamental and yet very important level,
namely the class level.

There are many possible combinations when methods in a class are invoked. Hence, test cases for
object-oriented software at the class level involves not only individual operations but various sequences

1 This research is supported in part by the Guangdong Province Science Foundation under Grants

Nos. 980690 and 950618, the Hong Kong Research Grants Council, the National Natural Science
Foundation of China under Grant No. 69873020, and the University Research Committee of the
University of Hong Kong. Part of the Chen’s work was done when he was on leave at the University of
Hong Kong. Part of the Tse’s work was done when he was on leave at the Vocational Training Council,
Hong Kong. Part of the Deng’s work was done when he was with Jinan University, China.

2 Contact author. Current address: Department of Computer Science and Information Systems,
the University of Hong Kong, Pokfulam Road, Hong Kong. Email: “tse@csis.hku.hk”.

 2

of operations, which are known formally as “ground terms”. If two ground terms are equivalent
according to the specification, but their implemented method sequences generate observationally
non-equivalent objects, then there is an error in the implementation. Using this concept, pairs of
equivalent ground terms should be selected as test cases for any given class. This recommendation
cannot be directly applied in practice, however, because the set of all equivalent pairs is infinite in most
circumstances.

Various authors have proposed black-box techniques for selecting class-level test cases from
equivalent ground terms [3-8]. Others have proposed white-box techniques for test case selection [2,
9-14]. We have proved that it is impossible to determine whether two objects are observationally
equivalent using a pure black-box technique [15]. On the other hand, when part of the specification is
missing in an implementation, there is no way of revealing this problem using a pure white-box
technique.

In order (a) to overcome the shortcomings of the black-box and white-box techniques and (b) to
reduce the domain of selection of test cases while keeping the test coverage unchanged, we propose an
improved methodology for class-level testing that integrates the black and white approaches. This
method covers the selection of test cases from the set of fundamental (equivalent) pairs and the
generation of a relevant finite subset of the set of observable contexts for determining the observational
equivalence of the objects resulting from the execution of a test case.

We will first of all outline our black-and-white integrated approach, and then focus our discussions
on the implementation of a prototype system based on the “Relevant Observable ContextS” (ROCS)
technique.3 The implementation illustrates an innovative idea of embedding testing algorithms into an
interpreter to facilitate software testing.

Section 2 introduces the basic concepts to be used in this paper. In Section 3, we outline our black
and white integrated approach. In Section 4, we present the implementation and experiment of a
prototype system based on the ROCS technique, including the representation, the construction and path
traversal of a data member relevance graph for a given class, the generation and execution of relevant
observable contexts on the objects under test, and the determination of implementation errors. Finally,
Section 5 concludes the paper.

2 BASIC CONCEPTS
Among formal methods for the specification of object-oriented programs, algebraic specifications are
one of the more popular approaches [16-19]. A syntax declaration and a semantic specification
compose an algebraic specification for a class. The syntax declaration declares the operations
involved, plus their domains and co-domains, corresponding to the input parameters and output of the
operations. The semantic specification contains equational axioms that specify the behavioral
properties of the operations.

Example 1
An algebraic specification for the class of integer stack.

module INTSTACK is
classes Int Bool IntStack
inheriting INT
operations

new: → IntStack
_.empty: IntStack → Bool
.push(): IntStack Int → IntStack
_.pop: IntStack → IntStack
_.top: IntStack → Int ∪ {NIL}

variables
S: IntStack
N: Int

3 If we regard “Black and White” as a Scotch Whiskey, it will be nice to have it “on the ROCS”.

 3

axioms
a1: new.empty = true
a2: S.push(N).empty = false
a3: new.pop = new
a4: S.push(N).pop = S
a5: S.top = NIL if S.empty
a6: S.push(N).top = N

A term is a sequence of operations in an algebraic specification satisfying its syntactic
requirements. For example, new.push(1).push(2).pop is a term in the class of integer stacks above. A
term may be transformed into another using the equational axioms of the specification as progressive
left-to-right rewriting rules. It is in normal form if and only if it cannot be further transformed by any
axiom in the specification. For example, new.push(1).push(2) is in normal form but
new.push(1).push(2).pop is not, since the latter can be transformed into new.push(1) using axiom a4 as a
rewriting rule.

A term without variables is referred to as a ground term. We only consider ground terms in this
paper because actual test cases in dynamic testing involve ground terms only. An algebraic
specification is said to be canonical if and only if every sequence of rewrites on the same ground term
reaches a unique normal form in a finite number of steps. In other words, every ground term of a
canonical specification has a unique normal form. Canonical specifications are terminating and free
from confusion, and hence only such specifications will be discussed in this paper. Two ground terms
u1 and u2 are said to be equivalent (denoted by u1 ∼ u2), if and only if both of them can be transformed
into the same normal form by some axioms in the algebraic specification as left-to-right rewriting rules.

Let C be a class in a given specification. An observer of C is an operation or method that returns
attribute values of an object in C without affecting any observable attributes. A creator of C is an
operation or method that returns initial objects of C. The state of an object in C is the combination of all
the attribute values of this object. A constructor or transformer of C is an operation or method that
transforms the state of an object in C. In other words, when a constructor or transformer acts on an
object, it changes at least one attribute value of the object. The difference between a constructor and a
transformer is that the former can appear in a normal form but the latter cannot. In Example 1, for
instance, the operation new is a creator, _.push(N) is a constructor, _.pop is a transformer, and _.empty
and _.top are observers.

An observable context on C is either (a) an observer in C or (b) a sequence of operations or methods
satisfying the syntactic requirements in C, that starts with a constructor or transformer but ends with an
observer.

Given a canonical specification and its implementation in a class C, two objects O1 and O2 in C are
said to be observationally equivalent (denoted by O1 ≈ O2) if and only if, for any observable context oc
on C, O1.oc and O2.oc produce either identical results or observationally equivalent objects in the
output class of oc [15].

3 SUMMARY OF OUR APPROACH
There are two important theoretical aspects in our approach.

One is the concept of a fundamental pair, which is obtained by replacing all the variables on both
sides of an axiom by normal forms. In example 1, for instance, the pair of equivalent ground terms
new.push(2).push(6).pop ∼ new.push(2) is a fundamental pair, since it can be formed by replacing the
variables S and N in axiom a4 by the normal forms new.push(2) and “6”, respectively. However,
new.push(8).pop.push(6).push(7).pop ∼ new.push(6) is not a fundamental pair, since it cannot be
formed directly from any of the axioms.

The other theoretical aspect in our approach is the formulation of a theorem, which states that an
implementation of a canonical specification is consistent with respect to all equivalent terms if and only
if it is consistent with respect to all fundamental pairs. In this way, although the set of fundamental pairs
is a proper subset of the set of general equivalent ground terms, the testing coverage of fundamental
pairs remains identical to that of general equivalent ground terms, and hence we need only concentrate
on the testing of fundamental pairs. For example, we need only select test cases such as the

 4

fundamental pair new.push(2).push(6).pop ∼ new.push(2), and need not consider more general
equivalent ground terms such as new.push(8).pop.push(6).push(7).pop ∼ new.push(6).

Unfortunately, an axiom may induce an infinite number of fundamental pairs by assigning different
normal forms to its variables. We need some means of selecting a finite number of representative test
cases from this infinite number of cases. Assuming the regularity hypothesis and uniformity hypothesis
[3], we have proposed an algorithm GFT for Generating a Finite number of Test cases. It consists of the
following main steps:

(1) Replace each variable of a non-observable type in an axiom ax by a number of normal form patterns
with lengths no greater than a given positive integer k, thereby unfolding ax into several new
equations. Repeat the process until all the variables in the new equations are of observable types.
The integer k may be determined by a white-box technique, such as by referring to the maximum
sizes of arrays or the boundary values of variables declared in the implemented code.

(2) Partition the input domain of the operation in each derived equation in (1) into sub-domains using
the conditions in the set of the axioms defining the operation.

(3) Randomly select an element from each sub-domain obtained above. Use these elements to replace
all occurrences of the corresponding variables in the new equation to obtain a group of fundamental
pairs for the axiom ax.

On the other hand, in spite of the theorem above, an infinite set of observable contexts may be
required to check the observational equivalence of objects resulting from the fundamental pairs. We
have proved that this problem cannot be solved by any black-box technique. Based on white-box
techniques, therefore, we have constructed a heuristic algorithm to select a finite subset of the set of
relevant observable contexts. It is known as DOE for Determining Observational Equivalence. The
basic idea is as follows:

Suppose we want to decide whether the objects O1 and O2 resulting from the execution of a test case
are observationally equivalent. Suppose, further, that O1 and O2 have different values for the same data
member dx of the implemented class. Such different values may or may not have an effect on the
observable attributes of O1 and O2. If no observable attribute is affected, dx need not be considered. If
some observable attribute is affected, dx must have affected the attribute through some series of methods
in the implemented class. Such a series of methods is called a relevant observable context. We need
only use the relevant observable contexts to decide whether O1 and O2 are observationally equivalent.
We can ignore any other observable contexts for this decision. The relevant observable contexts are
constructed from a Data member Relevance Graph (DRG), which is an abstraction of the given
implementation of a given specification.

In the DRG of an implemented class, a bold rectangular node denotes a data member and a thin
rectangular node represents some constant coming from the program under test. If a data member d2
directly affects another data member d1 in the method m1 under a condition p(...), we draw an arc from
d2 to d1 and label it as (p, m1). We call [d2, (p, m1), d1] a segment of the DRG, d2 a start node of the
segment, d1 an end node of the segment, (p, m1) an output arc of d2, and (p, m1) an input arc of d1. If d2
is identical to d1, the segment is said to be a cycle. Otherwise it is said to be acyclic. If m1 is an observer,
the segment is called an observable segment. Each DRG contains a special node called observed, which
is the end node of an observable segment. An arc with observed as an end node is call an observer arc.

Example 2
Consider the specification in Example 1. Suppose the implementation of the specification is as follows.

#include <iostream.h>
#define SIZE 100
#define NIL 0
enum bool { false, true };

 5

class intStack
 {
 /* intStack consists of 2 data members: */
 int array[SIZE];
 int height;
 public:
 void newStack();
 bool empty();
 void push(int i);
 void pop();
 int top();
 };

void intStack :: newStack()
 {
 height = 0;
 for (int j = 1; j <= 100; j++)
 array[j] = NIL;
 }

bool intStack :: empty()
 {
 if (height = = 0)
 return true;
 else return false;
 }

void intStack :: push(int i)
 {
 if (height = = SIZE)
 cout << "Stack is full";
 else
 {
 height = height + 1;
 array[height] = i;
 }
 }

void intStack :: pop()
 {
 if (height > 6) /* Error: The condition should be height > 0 */
 height = height − 1;
 }

int intStack :: top() {
 if (height > 1) /* Error: The condition should be height > 0 */
 return array[height];
 else return NIL;
 }

The DRG of the implementation is shown in Figure 1.

 6

arc4

arc1array NIL

arc4

arc6

false

arc3

arc2
arc5 arc7 truearc1

height observed

0

i

NIL

arc1: (true, newStack);
arc2: (height = 0, empty);
arc3: (height ≠ 0, empty);
arc4: (height ≠ size, push(i));
arc5: (height > 6, pop);
arc6: (height > 1, top);
arc7: (height ≤ 1, top);

Figure 1. DRG of Integer Stacks Implemented in Example 1

Suppose dx is a data member of an implemented class C, and O1 and O2 are two objects of C. If (a)
O1.dx ≠ O2.dx, (b) there is a path P from the node dx to the node observed in the DRG of class C, and (c)
the methods in the labels of the arcs in path P are op1, op2, ..., opt, and obs, then op1.op2...opt.obs will be
a relevant observable context induced from the path P with respect to O1 and O2.

The benefits of our integrated approach are as follows.

(a) We reduce the selection domain of test cases but the test coverage remains identical.

(b) We skip the testing of many irrelevant observable contexts when deciding whether the objects O1
and O2 resulting from the execution of a test case are observationally equivalent.

(c) We have overcome the problem of “missing paths” in pure white-box techniques.

(d) When compared with the work of Doong and Frankl [6, 7], we need not require the specifier to add
a special-purpose axiom eqn to each class in order to define the operational semantics of the
equivalence of objects. Nor do we require the designer and programmer to implement a
special-purpose recursive method for the respective eqn axiom in each class. Thus, we can avoid
rejecting a correct implementation of the original class having a problematic eqn axiom or
implementation. 4

4 The situation is acceptable only if the eqn function happens to be part of the original class under test.

 7

4 IMPLEMENTATION OF THE ROCS SYSTEM
The main objective of our previous paper [15] was to present the theoretical details of our approach. It
only provided an outline of the algorithms involved. We are presenting in this paper the
implementation details of the ROCS system so that readers may have a better insight on the working of
the methodology.

A special feature of our implementation of the ROCS system is that the test algorithm DOE has
been embedded into a C++ interpreter, which is an extension of the interpreter for Little C [20]. Thus,
ROCS can be regarded as an interpreter that has been enhanced to include testing functions. It covers
the construction and path traversal of DRG, the execution of relevant observable contexts, and the
determination of implementation errors. In general, testing techniques should scan the program code
under test, and hence it is natural and effective to consider embedding them into a compiler or
interpreter. Our implementation of the ROCS prototype provides a successful experience in this aspect.

The prototype of ROCS has been implemented using Borland C++. It consists of five modules:
parser.c, drg.c, pigeonC.h, subLib.c, and pigeonC.c. The module pigeonC.h defines the main data
structure, and subLib.c defines the interfaces to internal library functions. The module parser.c consists
of a lexical analyzer and a recursive descent parser. The lexical analyzer can also be called by drg.c and
other modules. The module drg.c constructs the DRG, traverses executable paths by backtracking, and
generates and executes the corresponding relevant observable contexts for any two given objects.
Finally, pigeonC.c serves as the main module of the prototype. It reads the C++ program code for a
given class under test, allocates memory for the program, pre-scans it, and calls and coordinates other
modules to perform the tasks.

Let O1 be an object of the implemented class C, and let d1, d2, ..., dn be the data members. A path P
in the DRG of C is said to be executable for O1 if O1.di satisfies all the conditions on the labels of the
arcs in P as initial data. Otherwise P is said to be inexecutable for O1.

The tasks of the ROCS system are as follows.

(1) Read the code of the class C under test.

(2) Read a given fundamental pair as a test case generated by Algorithm GFT from the specification of
C.

(3) Scan the code of C and draw all the arcs from the code.

(4) Generate the segments from the arcs and obtain the data structure of the DRG.

(5) Execute the method sequences corresponding to the given fundamental pair.

(6) Let O1 and O2 be two objects resulting from the execution.
 For each data member dx such that O1.dx ≠ O2.dx,
 traverse some executable paths from the node dx to the node observed in the DRG
 (with backtracking if necessary) and
 obtain some relevant observable contexts ocj induced from these paths.

(7) Execute O1.ocj and O2.ocj in the program under test.
If some execution result shows that O1.ocj ≠ O2.ocj, then

report an implementation error.

In order to implement these tasks, we should first of all consider the data structure of the DRG. The
data structure will affect significantly the space efficiency of the system.

4.1 Data Structure of DRG
A DRG consists of three kinds of basic elements, namely nodes, arc labels, and segments. A segment
denotes the connection between two nodes as well as the arc label involved. The module pigeonC.h
defines three data structures to represent the arc labels, segments, and nodes as follows:

 8

struct arcLabel
 { /* The representation of arc label (p, m) */
 char condition[STATEMENT_LEN]; /* Condition p */
 char method[ID_LEN]; /* Method m */
 };

struct segment
 { /* The representation of a segment starting from a given node */
 int arcLabelIndex; /* The index of the arc label of the segment */
 int endNodeIndex; /* The index of the end node of the segment */
 int iterationNumb /* For the case of cycles, the number of iterations required
 when backtracking */
 };

Since a number of segments may have the same arc label and since the number of segments is much
more than that of nodes, we use indices rather than real entities in the fields of the struct segment. In this
way, the space for storing segments will be reduced. We will explain later why there is no need to
include a field in struct segment to denote its start node.

struct node
 { /* The representation of a data member */
 char dataMembName[ID_LEN]; /* Name of the data member */
 int dataMembType; /* Type of the data member */
 int value; /* Value of the data member, if the data member is of
 a simple type */
 int arraySize; /* Array size if this data member is an array; otherwise it is 0 */
 struct segment acycSegList[LIST_LEN];
 /* The list of acyclic segments starting from the node */
 int acycSegsSize; /* The size of acycSegList */
 int acycSegsIndex; /* The current position of acycSegList */
 struct segment obsSegList[LIST_LEN];
 /* The list of observable segments starting from the node */
 int obsSegsSize; /* The size of obsSegList */
 int obsSegsIndex; /* The current position of obsSegList */
 struct segment cycSegList[LIST_LEN];
 /* The list of cycle segments starting from the node */
 int cycSegsSize; /* The size of cycSegList */
 int cycSegsIndex; /* The current position of cycSegList */
 }

Here, the field acycSegList, obsSegList, or cycSegList in struct node is called a segmentList field. The
data elements acycSegsIndex, obsSegsIndex, and cycSegsIndex are used to mark the first untraversed
segment for backtracking in the traversal of the executable paths of a given object. Their initial values
are 1.

A natural representation of a segment is [d2, (p, m1), d1], where d2 is the start node of the segment.
We need not, however, define a field in struct segment to denote d2. It is because struct segment is used
only in the segmentList fields of struct node, and hence the start node of struct segment is just the struct
node self. By omitting the obvious start node, the space for storing struct segment can also be reduced.

The module pigeonC.h uses the following data structures for representing a DRG for a given class
under test:

(1) An array known as arcLabelList, containing all the arc labels of the DRG. It is declared by the
statement

 struct arcLabel arcLabelList[NUM_ARCS].

 9

(2) A struct node for each data member of the class. All of these struct nodes make up an array known
as nodeList, which is declared by the statement

 struct node nodeList[NUM_DATA_MEMBERS].

4.2 Construction of DRG
The process of constructing a DRG is as follows.

(1) The module pigeonC.c pre-scans the program code for the given class under test, finds the locations
of all the functions, methods, and global variables in the program, and sets up corresponding tables
for future use, such as functionsTable, methodsTable, and globalVarsTable.

(2) The module pigeonC.c calls another module parser.c to perform lexical analysis and recursive
descent parsing. The module parser.c also conducts the initialization for drg.c and other modules,
including the supply of information to the appropriate fields in the struct nodes in nodeList, such as
dataMembName and dataMembType.

(3) Based on the tables and the information above, the function constructDRG() in the module drg.c
creates the arcLabelList of the DRG for the implemented class under test. It also completes the
remaining fields of the struct nodes in nodeList, such as struct segment acycSegList[] and int
acycSegsSize, by means of a function scanBlock(), which is a variant of the function interp_block(
) in an interpreter [20].

(4) Suppose d1 and d2 are two data members in the implemented class. Let p be a predicate and c be a
constant. In order to construct the DRG, the function scanBlock() performs the following tasks for
each method mi. The generated segments corresponding to the scanned statements in this step is
listed in Table 1.

(a) Scan the code of mi.

(b) When a statement of the form “d1 = c” or “d1 = f(..., d2, ...)” is found,
 put the arcLabel (true, mi) into the arcLabelList, and
 put the segment [index of arcLabel (true, mi), index of d1]
 into a segmentList field of the node c or the node d2.

(c) When a statement such as “if (p) {...; d1 = c; ...}” or “if (p) {...; d1 = f(..., d2, ...); ...}” is found,
 put the arcLabel (p, mi) into the arcLabelList,
 put the segment [index of arcLabel (p, mi), index of d1]
 into a segmentList field of the node c or the node d2,

if p = p(..., d3, ...), d3 is a data member different from d2,
 put the segment [index of arcLabel (p, mi), index of d1]
 into a segmentList field of the node d3.

(d) If the statement also contains “else {...; d4 = c0; ...}” or “else {...; d4 = g(..., d5, ...); ...}”,
 put the arcLabel (¬ p, mi) into the arcLabelList, and
 put the segment [index of arcLabel (¬ p, mi), index of d4]
 into a segmentList field of the node c0 or the node d5.

(e) Skip the other statements in the method mi.

The time complexity for constructing the DRG of the class has been analyzed in [15].

 10

Scanned Statement Corresponding Generated Segment

d1 = c
(true, mi)

c ⎯⎯⎯→ d1

d1 = f(..., d2, ...)
(true, mi)

d2 ⎯⎯⎯→ d1

if (p) {...; d1 = c; ...}
(p, mi)

c ⎯⎯→ d1

if (p) {...; d1 = f(..., d2, ...); ...}
(p, mi)

d2 ⎯⎯→ d1

if (p(…, d3, …))
 {...; d1 = f(..., d2, ...); ...},
 [where d3 ≠ d2]

(p, mi)
d3 ⎯⎯→ d1

else {...; d4 = c0; ...}
(¬ p, mi)

c0 ⎯⎯⎯→ d4

else {...; d4 = g(..., d5, ...); ...} (¬ p, mi)
d5 ⎯⎯⎯→ d4

Table 1. Correspondence between Scanned Statements and Generated Segments

A question arises here. If the condition p appears in a for or while statement, how do we deal with
it? We note that the DRG technique is concerned with the “directly affects” relations only among the
data members and constants coming from the given program, rather than among other local auxiliary
variables. If we regard a for loop or while loop as a function, we can concentrate only on the effects of
the input data members of the function to the output data members of the function, and ignore the effects
from local auxiliary variables. Suppose, for instance, that the code for operation push(i) in Example 1 is
as follows:

void intStack :: push(int i)
 {
 for (int j = 1; j <= 99; j++)
 array[j] = array[j+1];
 array[100] = i;
 }

Since the condition j <= 99 in the for statement is related only to a local auxiliary variable j, it need not
be considered in the construction of the DRG. We can regard this for statement as a function through
which the data member array[] affects itself. Since i in the statement “array[100] = i” represents a
constant rather than an auxiliary variable, the effect of i on the data member array[] must also be
considered. Thus, we obtain two segments [array[], (true, push(i)), array[]] and [i, (true, push(i)),
array[]] from the code.

4.3 Traversal of Executable Paths in DRG
The construction of a DRG for the given class is independent of the given fundamental pair as a test
case. After constructing a DRG, ROCS executes the method sequences corresponding to the given
fundamental pair, and produces two objects O1 and O2. For each data member dx such that O1.dx ≠ O2.dx,
ROCS must traverse the executable paths from the node dx to the node observed in the DRG (with
backtracking if necessary) to obtain the corresponding relevant observable contexts ocj, and then
perform ocj on the current states of O1 and O2. These tasks are conducted by the module drg.c. The
following stack is used for the traversal and backtracking:

 11

struct stack
 {
 int topIndex; /* The index of the top of the stack */
 struct traversedSegment travdSegList[LIST_LEN];
 /* The list of traversed segments */
 };

struct traversedSegment
 { /* A traversed segment */
 int arcLabelIndex; /* The index of the arc label of the segment */
 int endNodeIndex; /* The index of the end node of the segment */
 char preObject1[OBJECT_SIZE]; /* The state of object O1 before running the method
 in the arc label */
 char preObject2[OBJECT_SIZE]; /* The state of object O2 before running the method
 in the arc label */
 };

Suppose a segment Seg2 is contiguous to another segment Seg1 in the travdSegList[]. The state of
object Oi after running the method in the arc label of segment Seg1 is the same as that of object Oi before
running the method in the arc label of segment Seg2. Hence, there is no need to include a field in struct
traversedSegment to denote the state of object Oi after running the method in the arc label of the
segment. In this way, the space for storing the segments in travdSegList[] can also be reduced.

For each given data member dx such that O1.dx ≠ O2.dx, the path traversal process starts from the
node dx and consists of the following steps. Readers may also refer to the flowchart in Figure 2 for a
better understanding the procedure.

(1) Assign data member dx to a working variable d, and
empty the stack by setting stack.topIndex to 1.

(2) Select an untraversed segment and use it as the value of the working variable thisSeg, as follows:

(a) If d.obsSegsIndex ≤ d.obsSegsSize, then
 select the segment d.obsSegList[obsSegsIndex],
 copy it to thisSeg, and
 increase obsSegsIndex by 1.

(b) Otherwise if d.acycSegsIndex ≤ d.acycSegsSize, then
 select the segment d.acycSegList [acycSegsIndex],
 copy it to thisSeg, and
 increase acycSegsIndex by 1.

(c) Otherwise if (d.cycSegsIndex ≤ d.cycSegsSize)
 and (d.cycSegList[cycSegsIndex].iterationNumb ≤ T),

5 then
 select the segment d.cycSegList[cycSegsIndex],
 copy it to thisSeg,
 increase d.cycSegList[cycSegsIndex].iterationNumb by 1, and
 if the updated d.cycSegList[cycSegsIndex].iterationNumb > T, then
 increase d.cycSegsIndex by 1.

(d) If (d.obsSegsIndex > d.obsSegsSize) and (d.acycSegsIndex > d.acycSegsSize)
 and (d.cycSegsIndex > d.cycSegsSize), then

 /* there is no untraversed segment in d.obsSegList[obsSegsIndex],
 d.acycSegList[acycSegsIndex], or di.cycSegList[cycSegsIndex] */
 perform backtracking as described below.

5 Here, T is a global ceiling allowed by the system for the number of iterations of any cycle segment.

 12

(3) If the condition thisSeg.arcLabelIndex↑.condition is satisfied by the current states of O1 and O2,
then
 copy the values of arcLabelIndex and endNodeIndex in thisSeg
 to the corresponding fields of stack.travdSegList[topIndex].
 copy the current state of O1 to the field preObject1 of stack.travdSegList[topIndex],

copy the current state of O2 to the field preObject2 of stack.travdSegList[topIndex],
execute the method thisSeg.arcLabelIndex↑.method on O1 and O2,

6
increase stack.topIndex by 1, and
conduct the following:

(a) If thisSeg.endNodeIndex↑ is the special node observed, then
 /* thisSeg.arcLabelIndex↑.method should in fact be an observer */
 if the values resulting from the executions of step (3) are not identical, then
 report that an implementation error has been found
 because the original O1and O2 are not observationally equivalent, and
 exit from the process;
 otherwise perform bcktracking as described below.

(b) If thisSeg.endNodeIndex↑ is not the special node observed, then
 update the working variable d to thisSeg.endNodeIndex↑, and
 go to step (2) above.

(4) If the current states of O1 and O2 do not satisfy the condition thisSeg.arcLabelIndex↑.condition,
then backtrack to step (2) to select another untraversed segment.

When backtracking is required, the following will be conducted:

(i) If stack.topIndex = 1, that is, if stack is empty,
 report that the given data member dx has successfully passed the check, and
 exit from the process.

(ii) If stack.topIndex > 1, decrease stack.topIndex by 1.

(iii) Restore O1 to stack.travdSegList[topIndex].preObject1[] and
 O2 to stack.travdSegList[topIndex].preObject2[].

(iv) Update the working variable d to stack.travdSegList[topIndex − 1].endNodeIndex↑.

(v) Go to step (2) to update thisSeg by selecting an untraversed segment from
 d.obsSegList[obsSegsIndex], d.acycSegList[acycSegsIndex], or d.cycSegList[cycSegsIndex].

Note that the concept of executability of a given path for a given object defined in previous section
is very different from the concept of feasibility of a path in other flow graph techniques [21]. An
infeasible path is usually defined as a path whose conditions cannot be satisfied by any input value, and
is well-known to be undecidable. However, since the executable and unexecutable paths defined in the
previous section are related to a given object O1, their conditions can be determined from the known
values O1.di of the data members of the given object O1. Thus, unlike the concept of feasibility, the
executability of a given path for a given object is decidable.

6 Note that the states of O1 and O2 may be changed after the execution of this step.

 13

4.4 Execution of Relevant Observable Contexts
We see from the previous subsection that the execution of a relevant observable context on the given
objects O1 and O2 should be synchronized with the traversal of the corresponding executable path in the
DRG. In the graph traversal process, whenever a path is extended by a segment, the method contained
in the arc label of the segment is executed on the current states of O1 and O2.

Figure 2. Flowchart on Traversal of Executable Paths in DRG

4.5 Determining Object Equivalence or Implementation Error
During the path traversal process for a given data member dx such that O1.dx ≠ O2.dx, when we reach the
special node observed, we have completed traversing the entire executable path and executing the
corresponding relevant observable context on O1 and O2. If the results of the execution on O1 and O2 are
not identical, ROCS concludes that the original O1 and O2 are not observationally equivalent, report an

no

yes

backtrack to the appropriate “select one”

no

yes

yes

no

no

no

select one to thisSeg

Any untraversed observable segment starting from d?

d = the end node of thisSeg;

select one to thisSeg

Any untraversed acyclic segment starting from d?

select one to thisSeg

Any untraversed cyclic segment starting from d?

yes

yes
Is the end node of thisSeg observed?

end the path

extend the path by adding thisSeg

Is the condition in thisSeg satisfied?

d = dx;

backtrack to the previous node in the path
and update d

 14

implementation error, and then exit from the task. Otherwise it will trigger backtracking, with a view to
traversing another untraversed path. If all the data members dx such that O1.dx ≠ O2.dx have successfully
passed the check, then ROCS reports that O1 ≈ O2 and exit from the system.

4.6 Experimentation and Analysis
We have implemented the system on a Pentium II and experimented it with Example 2. All the errors in
the example can be exposed. The time for constructing the DRG is 0.038731 s. The respective number
of observable contexts generated and the total run time required are shown in Table 2.

Global ceiling supplied by
the user for the number of
iterations of any cycle

0 1 2 3 4

Number of observable
contexts generated by the
prototype

5 8 19 25 37

Total run time for all
observable contexts 0.083 686 s 0.184 558 s 0.305 763 s 0.576 521 s 0.734 295 s

Run time for the first
observable context that
reports the error

- - 0.186 549 s 0.195 764 s 0.274 391 s

Table 2. Run Times for Example 2

We have also experimented with the prototype using other programs that contain various types of
error. Some programs contain common typos, such as having a condition height > 0 coded as height <
0 or height > 10. Some refer to non-existent elements of arrays, such as array[1000]. Some contain
faults caused by placing statements in erroneous positions. Others have errors in the general ideas
behind the programs, rather than in individual statements. All types of errors have been exposed by the
system. The run times are acceptable.

Let s be the number of statements in the code for a given class C. Since the construction of the DRG
for class C is based on scanning and processing each statement in the code, and the time for processing
each statement is bounded, the time for constructing the DRG for C is O(s).

Let L be the maximum length of all acyclic paths from any node to the node observed. Given any
objects O1 and O2, let n be the maximum number of output arcs in any node such that the Boolean
conditions in the arcs are true for the current values of O1.di and O2.di. . Here, L is a constant and n is a
variable depending on different objects O1 and O2. Since the ceiling for the number of iterations of
cycles is a constant, the complexity of traversing executable paths is O(nL) for the worst case.

5 CONCLUSION
We have proposed an integrated approach for selecting fundamental pairs of equivalent ground terms as
class-level test cases for object-oriented programs and applying observable context technique to
determine whether the objects resulting from the execution of a test case are observationally equivalent.
After outlining the basic idea of the approach, this paper describes in detail the prototype system based
on the relevant observable contexts (ROCS) technique, including the representation, construction, and
path traversal of a data member relevant graph for a given class, the generation and execution of
relevant observable contexts on the objects under test, and the determination of implementation errors.
The production of a prototype of the ROCS system provides an innovative experience for embedding
testing processes into the language interpreter. A white-box testing technique involves the scanning
and parsing of program code, and hence its integration with interpreters or compilers would help to

 15

expedite the process. Some experiments have been conducted via the prototype system, and the
empirical results agree with the outcome predicted by our framework.

REFERENCES
[1] Guerraoui R et al., Strategic directions in object-oriented programming, ACM Computing Surveys

28 (4) (1996) 691-700.

[2] Smith M D and Robson D J, A framework for testing object-oriented programs, Journal of
Object-Oriented Programming 5 (3) (1992) 45-53.

[3] Bernot G, Gaudel M-C, and Marre B, Software testing based on formal specifications: a theory and
a tool, Software Engineering Journal 6 (6) (1991) 387-405.

[4] Bouge L, Choquet N, Fribourg L, and Gaudel M-C, Test sets generation from algebraic
specifications using logic programming, Journal of Systems and Software 6 (1986) 343360.

[5] Dauchy P, Gaudel M-C, and Marre B, Using algebraic specification in software testing: a case
study on the software of an automatic subway, Journal of Systems and Software 21 (3) (1993)
229244.

[6] Doong R-K and Frankl P G, Case studies on testing object-oriented programs, in: Proceedings of
4th ACM Annual Symposium on Testing, Analysis, and Verification (TAV 4) (ACM Press, New
York, 1991) 165-177.

[7] Doong R-K and Frankl P G, The ASTOOT approach to testing object-oriented programs, ACM
Transactions on Software Engineering and Methodology 3 (2) (1994) 101-130.

[8] Frankl P G and Doong R-K, Tools for testing object-oriented programs, in: Proceedings of 8th
Pacific Northwest Conference on Software Quality (1990) 309-324.

[9] Chen T Y and Low C K, Dynamic data flow analysis for C++, in: Proceedings of 2nd Asia-Pacific
Software Engineering Conference (APSEC ’95), IEEE Computer Society (Los Alamitos,
California, 1995) 2228.

[10] Chen T Y and Low C K, Error detection in C++ through dynamic data flow analysis, Software:
Concepts and Tools 18 (1) (1997) 113.

[11] Fiedler S P, Object-oriented unit testing, Hewlett-Packard Journal 40 (4) (1989) 6974.

[12] Parrish A S, Borie R B, and Cordes D W, Automated flow graph-based testing of object-oriented
software modules, Journal of Systems and Software 23 (2) (1993) 95109.

[13] Turner C D and Robson D J, State-based testing and inheritance, Technical Report TR-1/93
(Computer Science Division, School of Engineering and Computer Science, University of
Durham, Durham, UK, 1993).

[14] Turner C D and Robson D J, A state-based approach to the testing of class-based programs,
Software: Concepts and Tools 16 (3) (1995) 106112.

[15] Chen H Y, Tse T H, Chan F T, and Chen T Y, In black and white: an integrated approach to
class-level testing of object-oriented programs, ACM Transactions on Software Engineering and
Methodology 7 (3) (1998) 250-295.

[16] Breu R, Algebraic Specification Techniques in Object-Oriented Programming Environments,
Lecture Notes in Computer Science 562 (Springer-Verlag, Berlin, 1991).

[17] Goguen J A and Diaconescu R, Towards an algebraic semantics for the object paradigm, in: Ehrig
H and Orejas F, eds., Recent Trends in Data Type Specification: Proceedings of 9th International
Workshop on Specification of Abstract Data Types, Lecture Notes in Computer Science 785
(Springer-Verlag, Berlin, 1994) 129.

 16

[18] Goguen J A and Meseguer J, Unifying functional, object-oriented, and relational programming
with logical semantics, in: Shriver B and Wegner P, eds., Research Directions in Object-Oriented
Programming (MIT Press, Cambridge, Massachusetts, 1987) 417477.

[19] Wolfram D A and Goguen J A, A sheaf semantics for FOOPS expressions, in: Tokoro M,
Nierstrasz O M, and Wegner P, eds., Object-Based Concurrent Programming: Proceedings of
ECOOP ’91 Workshop, Lecture Notes in Computer Science 612 (Springer-Verlag, Berlin, 1992)
8198.

[20] Schildt H, The Craft of C: Take-Charge Programming (Osborne McGraw-Hill, Berkeley,
California, 1992).

[21] White L J and Cohen E I, A domain strategy for computer program testing, IEEE Transactions on
Software Engineering SE-6 (3) (1980) 247257.

