A General Incremental Technique for Maintaining Discovered
Association Rules

David W. Cheung

S.D. Lee

Benjamin Kao

Department of Computer Science
The University of Hong Kong
Pokfulam Road, Hong Kong

{dcheung,sdlee,kao} @cs.hku.hk

Abstract

A more general incremental updating technique
is developed for maintaining the association
rules discovered in a database in the cases
including insertion, deletion, and modification of
transactions in the database. A previously proposed
algorithm FUP can only handle the maintenance
problem in the case of insertion. The proposed
algorithm FUP2 makes use of the previous mining
result to cut down the cost of finding the new
rules in an updated database. In the insertion
only case, FUP2 is equivalent to FUP. In the
deletion only case, FUP2 is a complementary
algorithm of FUP which is very efficient when the
deleted transactions is a small part of the database,
which is the most applicable case. In the general
case, FUP2 can efficiently update the discovered
rules when mnew transactions are added to a
transaction database, and obsolete transactions
are removed from it. The proposed algorithm has
been implemented and its performance is studied
and compared with the best algorithms for mining
association rules studied so far. The study shows
that the new incremental algorithm is significantly
faster than the traditional approach of mining the
whole updated database.

Keywords: Association Rules, Data Mining,
Knowledge Discovery, Large Databases, Mainte-
nance.

1 Introduction

In recent years, data mining has attracted much at-
tention in database research. This is due to its wide
applicability in many areas, including the retail
industry and the finance sector [6]. The availabil-
ity of automated tools has enabled the collection
of large amount of data. These large databases
contain information that is potentially useful for
making market strategies and financial forecasts.
Data mining is the task to find out such useful

Proceedings of the Fifth International Confer-
ence on Database Systems for Advanced Appli-
cations, Melbourne, Australia, April 1-4, 1997.

information from large databases. The information
includes association rules, characteristic rules, clas-
sification rules, generalized relations, discriminant
rules, etc. [9]

Of the various data mining problems, mining
of association rules is an important one [3]. A
classical example is about the retail industry.
Typically, a record in the sales data describes all
the items that are bought in a single transaction,
together with other information such as the
transaction time, customer-id, etc. Mining
association rules from such a database is to find
out, from the huge amount of past transactions,
all the rules like “A customer who buys item X
and item Y is also likely to buy item Z in the
same transaction”, where X, Y and Z are initially
unknown. Such rules are very useful for marketers
to develop and implement customized marketing
programs and strategies.

Recently, many interesting works have been
published in association rules mining including
mining of quantitative association rules and
multi-level association rules, and parallel
and distributed mining of association rules
[2, 3, 4, 5, 8, 10, 12, 13, 14].

A feature of data mining problems is that in
order to have stable and reliable results, a giant
amount (often of the order of gigabytes) of data has
to be collected and analyzed. The large amount
of input data and mining results poses a mainte-
nance problem. While new transactions are being
appended to a database and obsolete ones are being
removed, rules or patterns already discovered also
have to be updated. In this paper we examine
the problem of maintaining discovered association
rules. We propose a new incremental algorithm
FUP:2 in this paper which can efficiently handle all
the update cases including insertion, deletion and
modification of transactions.

Previous works

The problem of mining association rules was first
introduced in [2]. In that paper it was shown that
the problem can be decomposed into two subprob-
lems:

185

1. Find out all large itemsets, which are the sets
of items that are contained in a sufficiently
large number of transactions, with respect to
a threshold méinimum support.

2. From the set of large itemsets found, find out
all the association rules that have a confidence
value exceeding a threshold minimum confi-
dence.

Since the solution to the second subproblem
is straightforward [3], major research efforts have
been spent on the first subproblem. Among the
algorithms proposed to solve the first subproblem
efficiently, the Apriori [3] and DHP [12] algorithms
are the most successful. The Apriori algorithm
finds out the large itemsets iteratively. In each
iteration, it generates a number of candidate
large itemsets and then verify them by scanning
the database. The key success is the use of the
apriori_gen function to generate a small number
of candidate itemsets. DHP improves over Apriori
by further reducing the number of candidate
itemsets using a hashing technique.

While both Apriori and DHP efficiently discover
association rules from a database, the rules main-
tenance problem is not addressed. The problem of
maintaining association rules is first studied in [4].
That paper proposes the FUP algorithm, which can
update the association rules in a database when
new transactions are added to the database. It is
based on the framework of Apriori and it also finds
new large itemsets iteratively. The idea is to store
the counts of all the large itemsets found in a pre-
vious mining operation. Using these stored counts
and examining the newly added transactions, the
algorithm can generate a very small number of can-
didate new large itemsets. The overall count of
these candidate itemsets are then obtained by scan-
ning the original database. Consequently, all new
large itemsets are found. The FUP algorithm is
very efficient. However, the algorithm does not
handle the case of deleting transactions from the
database. The modification of transactions is not
addressed, either.

In this paper we propose a new algorithm,
called FUP2, that can update the existing
association rules when transactions are added and
deleted from the database. It is a generalization
of the FUP algorithm [4]. Like FUP, FUP2 makes
use of the previous mining result to cut down the
amount of work that has to be done to discover
the new set of rules.

The remaining of this paper is organized as fol-
lows. Section 2 gives a detailed description of the
problem. The new algorithm is described in Sec-
tion 3. A performance study of FUP2 is presented
in Section 4. We discuss some implementation is-
sues of FUP2 in Section 5 and this paper is ended
with a conclusion in Section 6.

2 Problem Description
2.1 Mining of association rules

Let I = {iy,12,...,im} be a set of literals, called
items. Let D be a database of transactions, where
each transaction T is a set of items such that 7' C I.
For a given itemset X C I and a given transac-
tion T, we say that T contains X if and only if
X C T. The support count of an itemset X is
defined to be oy = the number of transactions in
D that contain X. We say that an itemset X is
large, with respect to a support threshold of s%,
if oy > |D| x s%, where |D| is the number of
transactions in the database D. An association
rule is an implication of the form “X = Y, where
XCIY CIand XNY = 0. The association
rule X = Y is said to hold in the database D with
confidence c¢% if no less than c% of the transactions
in D that contain X also contain Y. The rule X =
Y has support s% in D if oy = |D| x s%. For
a given pair of confidence and support thresholds,
the problem of mining association rules is to find
out all the association rules that have confidence
and support greater than the corresponding thresh-
olds. This problem can be reduced to the problem
of finding all large itemsets for the same support
threshold [2].

Thus, if s% is the given support threshold, the
mining problem is reduced to the problem of finding
theset L ={X|X CI A ox > |D|x3s%}. For the
convenience of subsequent discussions, we call an
itemset that contains exactly k items a k-itemset.
We use the symbol Ly to denote the set of all k-
itemsets in L.

2.2 TUpdate of association rules

After some update activities, old transactions are
deleted from the database D and new transactions
are added. We can treat the modification of exist-
ing transactions as deletion followed by insertion.
Let A~ be the set of deleted transactions and At
be the set of newly added transactions. We as-
sume, naturally, that A~ C D. Denote the updated
database by D’. Note that D' = (D — A™) U A*.
We denote the set of unchanged transactions by
D =D-A =D - A"

support count | Large k-

database | ¢itemset X | itemsets
&F 8% _
D- - —
A O -
D=A"uUD- ox Ly
D' =D-uUAt U'X L;c

Table 1: Definitions of several symbols

As defined in the previous subsection, oy is
the support count of itemset X in the original
database D. The set of large itemsets in D is L

186

and Ly is the set of k-itemsets in L. Define o'y
to be the new support count of an itemset X in
the updated database D', and L' to be the set of
large itemsets in D'. L} is the set of k-itemsets
in L'. We further define 6} to be the support
count of itemset X in the database A* and 6% to
be that of A™. These definitions are summarized
in Table 1. We define é6x = 6} — 6% which is the
change of support count of itemset X as a result
of the update activities. Thus, we have:

Lemma 1 oy =0y +6} —by =0ox +0x
Proof. By definition. []

As the result of a previous mining on the old
database D, we have already found L and oy VX €
L. Thus, the update problem is to find L' and
o'y VX € L' efficiently, given the knowledge of D,
D',A~,D~,Af,Land o4 VX € L.

3 The FUP:2 algorithm

In this section, we introduce the FUP2 algorithm
step by step. We first focus on the special case for
transaction deletion only (At = @). This special
case can be considered as a complement of the FUP
algorithm [4], which handles transaction insertion
only. Next, we generalize the deletion algorithm to
handle the case for transaction deletion as well as
insertion (|A*| > 0).

3.1 The special case for transaction dele-
tion only (AT = 0)

For the delete-only case, we have At = @ and hence
D'=D" U@ =D =D - A". Note also that
§F=0VXCI

To discover the large itemsets in the updated
database D’, the FUP2 algorithm executes itera-
tively. In the k-th iteration, all the large k-itemsets
in D’ are found as follows. As in Apriori [3], we
form a set of candidates Cj which is a superset
of L;. In the first iteration, C; is exactly the
set I. In subsequent iterations, Cj is calculated
from Lj,_,, the large itemsets found in the previous
iteration, using the same apriori_gen function as
in Apriori [3]. All the itemsets in L), are guaranteed
to be contained in Cj.

Next, we use the old large k-itemsets Ly from
the previous mining result to divide the candidate
set Cf into 2 parts: P, = CxNLy and Q@ = Cr— Fk.
In words, P (Qr) is the set of candidate itemsets
that are previously large (small) with respect to D.
Again, our goal is to select those itemsets that are
currently large (w.r.t. D’). We treat the candidates
in these two partitions separately.

With this partitioning, for all candidates X €
P, we already know its support count oy from the
previous mining results. We find out 3 by scan-
ning A~. Then, we can obtain the updated support

count o’ using Lemma 1. Thus, a candidate X
from Py goes to L}, if and only if oy > |D’| x s%.

For the candidates in Qg, we only know that
they were not large in the original database D.
We do not know their support counts. However,
since they were not large, we know that oy <
ID| x s% V X € Qr. We can make use of this
information to tell which candidates from Q; may
be large and which will not.

Lemma 2 If X ¢ L and 6% = 0, then o <
|D'| x $% if 6% > |A7| x s%.

Proof. Since X ¢ L, we have oy < |D| x s%.
Hence, o'y = o5 — 63 + 6% < |D| x s% — |A™| x
s% +0=(|D| - |A|) x s% = |D'| x s%

That is to say, for each candidate in Qy, if it is
large in A~, then it cannot be large in L. We first
scan A~ and obtain 8% for each X € Q. Then, we
delete those candidates for which 63 > |A™| x s%,
thus leaving in @y, those that are small in A~. Note
that we are not checking all small itemsets in A~.
We are only checking for those small itemsets of
A~ that are in Q. The number of such itemsets
is not large, as Qr C Ci. For the candidates X
that remain in Qx, we scan D~ to obtain their new
support counts ¢’ . Finally, we add to L} those
candidates X from @ for which o’ > [D'| x s%.

Thus, we have discovered which candidates from
P, and Q;, are large and put them into L} . More-
over, we have also found out ¢’y for each X € L;.
We have completed one iteration. In the subse-
quent iterations, large itemsets of larger sizes are
discovered. The iterations go on until either Cx, = 0
or |Ly| < k + 1 for some k. The steps of the kth-
iteration are summarized as follows.

1. Obtain a candidate set C of itemsets. Halt if
Cr=0.

2. Partition Cx into Py and Q, where P, =

Cr. N L and Qi = Cy — Pi.

Scan A~ to find out 6y for each X € Pr UQx.

For each X € Py, Calculate o'y.

5. Delete from Q) those candidates X where
6% > |A7| x s%. (Application of Lemma 2.)

6. Scan D~ to find out o’y of the remaining can-
didates X € Q.

7. Add to L) those candidates X from P U Q
for which o'y > |D’| x s%.

8. Haltif |[Li| < k+ 1.

Ll

As found in previous works, the speed of the
Apriori algorithm depends very much on the size
of the candidate set. To improve performance,
our FUP2 algorithm makes use of the information
L; and o4 V X € Li to reduce the size of the
candidate set. It scans the updated database
D’ with a candidate set (Qr C Ci) which is
significantly smaller than that (Cx) of Apriori

187

(see Section 4). The algorithm, however, does
scan the deleted transactions A~ with the same
number of candidates as Apriori does. We can
reduce this number of candidates by the following
optimization.

3.2 An optimization

Observe that in step 5 of the FUP2 algorithm, we
are removing from Qj those candidates which are
large in A~. Those that are small in A~ always
remain. Now, there is a way to determine whether
a candidate itemset X is small prior to knowing 6,
thus saving the work of finding the value of §%.

Lemma 3 For any itemsets X and Y such that
XCY,6x >b6y

Proof. Any deleted transaction that contains Y
must also contain X. |

Corollary 1 All supersets of a small 1-itemset are
small.

Hence, if we remember which 1-itemsets are
small in A~ during the first iteration, then in the
subsequent iterations, we can quickly determine if
a candidate from Qj is small in A~ without finding
its support count in A~. Thus, we can optimize
the above algorithm by adding the following steps:

2.5 For each candidate X € Qy, if X contains
any item which is a small 1-itemset in A,
move it to the set R;. All the candidates so
moved to R are those that are small in A~ by
corollary 1.

5.5 Move all candidates from Rj to Q.

This modification significantly reduces the num-
ber of candidates during the scan of A~. The only
additional cost is to remember the set of small 1-
itemset in the first iteration. This requires extra
memory space of size linear to |I|. The extra CPU
time required is negligible, since we have to find 6
for all 1-itemsets X anyway. So, the additional cost
of this optimization is relatively inexpensive. The
number of the candidates for scanning D~ is not
affected by this optimization, but the number of
candidates for scanning A~ is significantly reduced.
So, this optimization speeds up the performance of
the algorithm at negligible cost.

Let us illustrate this special case of the FUP2
algorithm with the example shown in Table 2. The
original database D contains 5 transactions and we
set the support threshold to 25%. So, itemsets with
a support count oy no less than 5 x 25% = 1.25
are large. The large itemsets in L are shown in the
same table. For convenience, we write XY Z for the
itemset {X,Y, Z} when no ambiguity arises. One
transaction is deleted, leaving 4 transactions in the
final database D'. Now, let us apply the FUP2
algorithm to see how L’ is generated.

Transactions: (I = {A4,B,C,D,£})

A {[A B £]
A B C
DS __J[A D ;
D s D
C D

Large itemsets (support threshold s = 25%)
inD=A"UD":

Itemsets(X) | A|B|C | D | AB
oy [3]3]2]3] 2

Table 2: An example for At =

In the first iteration, C; = I = {4,B,C,D,£}.
Of these candidates, only £ was not large in D.
So, after partitioning, P, = {4,B,C,D} and @; =
{€}. Next, we scan A~ and update the support
counts of the candidates in P,. Only A and B
occur in A™. So, the counts are updated as oy =
og = 0 = 2, 0p = 3. In the same scan of A™,
we find out that 6 =1 > 0.25 = |A7| x 25%.
Hence, £ is large in A™, and it was small in D.
It cannot be large in D’ by Lemma 2. So, it is
removed from @;. This leaves); empty, hence we
need not scan D~ at all in this iteration. Since all
the remaining candidates in P, UQ; have a support
count in D~ no less than |D’| x 25% = 1, they all
fall into L]. We remember that C and D are small
in A~ for optimization.

In the second iteration, we first obtain C; by
applying the apriori_gen function on Lj. This
gives C, = {AB, AC, AD,BC,BD,CD}, of which
only AB was largein D. So, the partitioning results
in P, = {AB} and Q2 = {AC,AD,BC,BD,CD}.
Next, we scan A~ and update the count o'y =
o4 — 64 = 2—1 = 1. All the candidates in
Q> contain either item C or D, which are small
in A~. So, we know that all the candidates in Q,
are definitely small in A~ (corollary 1) and hence
potentially large in D’ (Lemma 2). There is no
need to find out % for these candidates X € Qa.
So, the next job is to scan D~ to obtain o’ for
the candidates in Q2. This gives 0/ye = 04p =
0ge = 0pp = Opgp = 1. Consequently, AB, AC,
AD, BC, BD, CD are large in D’ and hence are
included in Lj.

In the third iteration, apriori_gen gives a can-
didate set C3 = {ABC, ABD, ACD, BCD}. None of
these candidates were large. So, P; = @ and Q3 =
C3. Since all the candidates contain item C or item
D, we know that they are all small in A~ without
having to find out their support counts in A~. So,
there is no need to scan A~ in this iteration! We
only have to scan D~ to obtain the support counts
in D’ for the candidates. The results are o/yg. = 1,
048D = 0acp = 0pep = 0. Only ABC goes to Lj.

188

There is only 1 large itemset found in this iteration.
This is insufficient to generate any candidates in
the next iteration. Hence, the algorithm stops after
3 iterations.

Table 3 compares the size of candidates when
Apriori is applied on D’ and when FUP2 is em-
ployed. While Apriori scans D~ three times, with a
total of 15 candidate itemsets, FUP2 scans D~ only
twice, with a total of 9 candidates only. Although
FUP2 has to scan A~ with 6 candidate sets, the
time spent on this is insignificant, as |D~| > |A™|
in most practical applications. In our example,
FUP2 has reduced the number of candidates for

scanning D~ by 1322 = 40%—a significant im-
provement.
Iteration | Apriori FUP2
scan D~ | scan D~ | scan A~
1 5 0 5
2 6 5 1
3 4 4 0
Total 15 9 6

Table 3: Size of candidates for the example

3.3 The general case for transaction dele-
tion and insertion

Now, we extend the algorithm introduced in the
previous subsection to handle the general case for
transaction insertion as well as deletion. We no
longer assume that At = @. So, §} may be positive
for any X C I. Consequently, Lemma 2 cannot be
applied and corollary 1 is no longer useful.

As before, we find out L} and o V X € Lj,
in the kth-iteration. In each iteration, we first
form a candidate set Cy and then partition it into
two parts P, and @ as before. Again for each
candidate X € P, we know oy from the previous
mining result. So, we only have to scan A~ and At
to update the support count for the candidates in
Py.. In the FUP2 algorithm, we choose to scan A~
to find 6% for each candidate X first. As we scan
A~, we can deduct the support count at the same
time, and remove a candidate from Py as soon as its
support count drops below |D’| x s% — |A*|. This
is because such a candidate has no hope to have
oy > |D'| x %, as 6% < |AF|. Next, we scan A"
to find 6% for each candidate X that remains in P;.
Finally, we calculate ¢y for each candidate in Px
using Lemma 1, and add those with oy > |D’|xs%
to Lj.

For the candidates X € Qy, again we do not
know o, but we know that oy < [D| x s%. By
a generalization of Lemma 2, we are able to prune
some candidates from Q) without knowing their
counts in D~

Lemma 4 If X ¢ L and §x = 6% — 63 < (|AF| -
|A~|) x s%, then X ¢ L'.

Proof. If X ¢ L, then 05 < |D| x s%. Hence,
o'y = ox + (6% —6%) < |D| x 5%+ (JA&F] —|A7]) x
s% = (|D] + |AF| — |&7]) x s% = |{D'| x s%. Thus
X ¢ L' by the definition of L'. [|

So, for each candidate X in Qj, we obtain the
values of §% and 8y during the scans of A* and A™.
Then, we calculate 6x and remove those with éx <
(|&F] — A7) x s%, because Lemma 4 tells us that
they will not fall into L}. For the remaining candi-
date in Qy, we scan D~ and obtain their support
counts in D~. Adding this count to 6% gives o’.
We add those candidates with o’ > |D'| x s%
from Qi to Li. This finishes the iteration. This
algorithm scans A~ and A* with a candidate set
of size | P, U Qx| = |Ck|, the same as Apriori does.
However, it scans D~ with a candidate set much
smaller than the initial size of Q; C Cy, thereby
saving time, assuming that |D~| > |A™|. The
algorithm saves a lot of time when compared to
Apriori.

3.4 Optimizations

In the algorithm described in the above paragraphs,
the databases A~ and At have to be scanned with
a candidate set of size |Ci|. As an improvement to
the algorithm, we can reduce this size by finding
bounds on the values of 6% and 6% for each candi-
date X prior to the scans of A~ and A*. The idea
comes from an extension of Lemma 3.

Lemma 5 For any itemsets X and Y such that
X CY, 65 > 6y and 6§ > 65.

Proof. Any transaction in A~ that contains Y
also contains X, VX C Y. The same is true for
transactions in AY. |

Using this lemma, at the k-th iteration (k >
2), we can obtain an upper bound by for éy of
candidate Y before scanning A~. The bound is
taken to be the minimum of 6y forall X CY A
|X| = |Y] — 1. Note that since Y is a candidate
generated by apriori gen [3], all its size-(k — 1)
subsets X must be in Lj_, and hence C_;; thus
6% has been found in the previous iteration. A
bound b3, can be similarly obtained for 3 for each
candidate Y before scanning A*. Lower bounds for
6% and 63 are zero, of course.

Now, before we scan A~, we do not know the
values of 65 and 6} for each candidate X. We
cannot apply Lemma 4 directly. However, combin-
ing lemmas 4 and 5, we can do some pruning at
this stage: For each candidate X in Q, if b} <
(|AF] - JA7]) x s%, then X cannot be in L'. So,
we can remove such X from Q. Similarly, we may
use the bound b} to remove the candidates X in
P, which satisfy oy +b% < |D’|x s%. This reduces
the number of candidates before scanning A~ at a
negligible cost.

189

After scanning A~ and before scanning At, we
know the value of §%, but not §% for a candidate X.
Combining lemmas 4 and 5 gives us the following
pruning: Delete from Q) those candidate for which
bk —6% < (|A*|{—|A"|)xs%. For the candidates X
in P, those satisfying oy +b% —63 < |D'| x s% are
deleted. Thus, the number of candidates is reduced
at a negligible cost before scanning At.

We still have not made use of the bound b%.
It is employed in the following optimization which
corresponds to the optimization introduced in Sec-
tion 3.2. We note that for a candidate X in Qy, we
actually do not need to find 6%, since the deleted
transactions contribute nothing to the final sup-
port count ¢’y. However, the value of §5 helps us
to remove some candidates from Qj before scan-
ning D~. So, it helps to improve performance.
For a candidate X satisfying b} — b > (|A*| —
|A~]) x s%, whatever the value of §% be, we have
bk — 6% > bk by > (JAF|—|A7|) x s%. Thus, we
do not need to find é} for these candidates. As in
Section 3.2, we remove such candidates to the set
Ry, before we scan A~ thus reducing the size of the
candidates in this scan.

A candidate X in Rj; may be finally found to
be in Lj,. However, 8% is not available for such a
candidate. This causes troubles in the calculation
of by for the candidates in the nezt iteration. As
a remedy, we assign by to 6y for all candidates X
in Ri. The bounds so calculated will still be valid,
though not optimal. In the scan of At we cannot
directly apply Lemma 4 to the candidates in R;
directly. We can only prune out those candidates
X from Ry, for which 6% < (|AT] - |A™|) x 5%.

In the deletion-only case (Section 3.2), we intro-
duced the set Ry to optimize the algorithm without
paying much cost. This is not true for the general
case. Although R; reduces the candidate set for
the scan of A™, it also causes the candidate set in
the scan of D~ to be larger. Moreover, a candidate
X that gets moved to Rj will not have its count
(6%) in A~ tallied. If we want to apply Lemma 4
to test if X can be ignored in the scan of D™,
only a trivial lower bound (zero) of 6% is used.
Therefore, the test and thus the pruning is less
effective. The tradeoffs of whether to use Ry is
thus on the amount of work saved in scanning A~
and the effectiveness of the pruning (Lemma 4).
Naturally, if |A™| is large, using Ry can save much
work. Our algorithm therefore applies Ry only
when |A™| > |A*|. Here is the final version of
our FUP2 algorithm, for iteration k where k£ > 2.
For the first iteration, set C; = I, b% = |A*| and
b} = lA_l

1. Obtain a candidate set Cy of itemsets. Halt if
Cip =0.

2. Calculate b} for each X € Cy.

3. Partition Cy into P and Q.

4. For each X € Py, remove it if oy + b} <
|D'| x 5%.

5. For each X € Qx, remove it if b} < (JAY| -
|A]) x s%.

6. If |A™| < |A*|, let Ry = 0. Otherwise, cal-
culate by for each X € Qx and if b} — by >
(|AT| = |A™|) x s%, move it to Ry and assign
by to 0.

7. Scan A~ to find out 6 for each X € P, U Q.

8. Delete from P those candidates X where o, +
b",} — 6% <|D’'| x s%.

9. Delete from Q those candidates with b% —
6% < (IAF] - |A7) x s%.

10. Scan A* to find 6} for each X € P,UQxUR.

11. For each candidate X € P, calculate o'.

12. For each candidate X € Qx, delete X if 6} —
8x < (IAF] - |A7]) x s%.

13. For each candidate X € Ry, delete X if 6}'{ <
(1at] = A7) x s%.

14. Scan D~ and get the count of each X € QU
Ry.. Then, add this count to 6} to get o'y

15. Add to Lj, those candidates X from P, UQx U
Ry where o'y > |D'| x 5%.

16. Halt if [L}| < k+ 1.

It is interesting to note that this algorithm re-
duces to Apriori [3] if we set A~ = D~ = @, FUP [4]
if we set A~ = @ and the transaction deletion algo-
rithm in Section 3.2 if we set At = 0. So, it is a
generalization of these three algorithms.

A further improvement can be made by apply-
ing the DHP technique [12]. The technique can be
introduced into the FUP2 algorithm to hash the
counts of itemsets in D’. This brings the benefits
of the DHP algorithm into the FUP2 algorithm
immediately. We call this DHP-enhanced update
algorithm FUP2H, to distinguish it from FUP2.1

Let us illustrate this final FUP2 algorithm with
the example in Table 4. This example is the same
as the previous one, except that we have At con-
taining one transaction {C,D} this time. Large
itemsets and their counts in D’ are shown in the
same table.

In the first iteration, we have C; = I =
{A,B,C,D, &}, P = {A,B,C,D}, @1 = {£} and
R; = 0. Note that for this iteration, b}y = |A*| =1
and by = |A"| =1 for all X C I. Next, A” is
scanned and we find §; = 65 = 6y = 1 and
6z = 65 = 0. After pruning (step 9), @; = 0.
Then, A" is scanned and we have 6% = 6% = 0;
63 = 6,“; = 1. Since both Q; and R, are now
empty, steps 12-14 can be skipped. D~ need not
be scanned in this iteration. Finally, 0’y = op = 2;
op = 3 and o, = 4. All of them are large in D'.
So, L} = {A,B,C,D}.

1We remark that the DHP algorithm requires extra
memory to store a big hash table. Algorithm FUP2¥ should
therefore be applied only when memory is plentiful.

190

Transactions: (I = {A4,B,C,D,£})

A {[A B £
A B C
D _JrA D
b B D D'
C D
at || cC D |

Large itemsets (support threshold s = 25%)
in D) = D™ UAt:

Itemsets(X) | A | B|C | D | CD
o'y [2]2]3]4] 2

Table 4: An example for [AT| >0

In the second iteration, C2 = {AB, AC, AD,
BC, BD, CD}, Q2 = {AC,AD,BC,BD,CD} and
P, = {AB}. Since bh, = bhip = b, = bfp =0
(because 6% = 6f = 0), the corresponding can-
didates are removed from @2 in step 5, leaving
Q2 = {CD}. Next, wescan A~ and obtain 6 ;5 = 1,
op = 0. Since b’z = 0, AB is removed from P,
in step 8, leaving P, = @. Then, At is scanned to
get 631D = 1, followed by the scan of D~. Finally
opp is found to be 2, enough for CD to be large.
Thus L,y = {CD}. This is the last iteration, since
|L5] =1 < 3 is insufficient to generate a C3 in the
third iteration.

Hence, we find that in the updated database D',
L' = {A,B,C,D,CD}. The large itemset AB € L
is now obsolete and the new large itemset CD is
added to L'. Note that FUP2 scans D~ only once,
to obtain the count of CD in the second iteration.
If we apply the Apriori algorithm on D’ instead,
we will have to scan D~ twice, with 11 candidates
from C; and C3. So, FUP2 reduces the candidate
size by % = 91%, a very significant improvement
over Apriori.

4 Performance Analysis

To assess the performance of our new algorithms,
Apriori, DHP, FUP2 and FUP2H are implemented
on an RS/6000 workstation (model 410) running
AIX. Several experiments are conducted to com-
pare their performance.

4.1 Generation of synthetic data

In the experiments, we used synthetic data as the
input databases to the algorithms. The data are
generated using the same technique as introduced
in [3] and modified in [12]. Readers are referred
to these papers for a detailed description. Table 5
gives a list of the parameters used in the data gener-
ation method. To model the change of association
rules as a result of inserting and deleting trans-

actions, we slightly modified the data generation
method as follows.

|A™| | number of deleted transactions
|D~| | number of unchanged transactions
|A*| | number of added transactions

|T'| | mean size of transactions

|Z| | mean size of potentially large itemsets
|£] | number of potentially large itemsets
N | number of items

Table 5: Parameters for data generation

We split the data generation procedure into 2
steps. In the first step, a set £ of potentially large
itemsets is generated. In the second step, a subset
of £ is used to generate the database transactions.
To model a change of association rules, we choose
two integers p and ¢ in the range from zero to |£|,
such that p+q > |£|.2 We use the first p potentially
large itemsets from £ to generate A~ and the last
q potentially large itemsets from £ to generate A*.
D~ is generated from the whole £. As a result, the
first p potentially large itemsets in £ have a higher
tendency to be largein D = A"UD™ thanin D' =
D~ U A*. They correspond to large itemsets that
turn obsolete due to the updates. Similarly, the last
g potentially large itemsets have a higher tendency
to be large in D' than in D. They correspond to
new large itemsets in the updated database. The
middle p + ¢ — |£| potentially large itemsets take
part in the generation of all of A=, D~ as well
as At. So, they would be large in both D and D’.
They represent the association rules that remain
unchanged as a result of the update. By varying
the values of p and ¢, we can control the degree of
similarity between D and D'.

In the following we wuse the notation
Tz.IyDi—j+k, modified from the one used
in [3], to denote an experiment using databases
with the following sizes: |D| = |A™ |+ |D~| =i
thousand, |A~| = j thousand, |A*} = k thousand,
|7} = z and |Z| = y. In the experiments, we set
|£| = 2100, N = 1000 and p = q = 2000.> For
DHP and FUP2H, we use a hash table of 4096
entries. The hash table is used to prune size-2
candidates (i.e. C3) only.

In each experiment, we first use DHP to find out
the large itemsets in D. Then, we run FUP2 and
FUP2H, supplying to them the databases A~, D~
and A" and the large itemsets and their support

2This condition is used to model rules that stay in the
old as well as new databases.

3There are several other parameters for the data gener-
ation procedure reported in [4] and {12]. For example, Sg
is the clustering size used in the generation of potentially
large itemsets, P, is the size of the pool of potentially large
itemsets from which transactions are generated, My is the
multiplying factor associated with the pool. Following {4],
we set S; = 5,P, = 50, My = 200. Readers are referred
to [12] for a detailed explanation of these parameters.

191

counts in D. The time taken is noted. To compare
with the performance of Apriori and DHP, we run
these two algorithms on the updated database D’,
and note the amounts the time they have spent.
The time taken by the algorithms are then com-
pared.

4.2 Comparing the four algorithms

The four algorithms are tested against the setting
T10.14.D100—-5+5. The support thresholds is var-
ied between 1.0 and 3.0. The results are plot-
ted in Figure 1. It is found that FUP2 is 1.83
to 2.27 times faster than Apriori, while FUP2x
is 1.99 to 2.96 times faster than DHP and is 2.05
to 3.40 times faster than Apriori. To explain the
performance gain, let us examine the number of
candidate itemsets generated by each algorithm in
the scan of D~ for the particular instance with
support threshold 2.0 (see Table 6). The total
number of candidates generated by FUP2 is 38%
of that of Apriori. The candidate size of FUP2H
is 28% of that of DHP and is 21% of that of Apri-
ori. This significant reduction in the number of
candidates is the main reason for the performance
gain. Clearly, FUP2¥ is very efficient because it
combines the techniques of both FUP2 and DHP
to greatly reduce the number of candidates.

T10.14.D100—-5+5

Execution Time (seconds)

S — PR T
1.0 1.25 1.5 1.76 2.0 2.25 2.5 2.75 3.0
support threshold (%)

Figure 1: Comparison of the four algoritms

Itera-

e Apriori | DHP | FUPa2 FUPaH
tion

1 59 95 3 7

2 4095 1615 1794 75

3 3814 3814 2018 2018

4 805 805 34 34

5 607 697 29 20

6 495 495 20 20

7 258 258 7 4

8 92 02 1 1

9 20 20 0)

10 2 2 0 0
Total 10377 7897 3505 3186
% 100% | 76.1% 37.6% 21.1%
w 131% | 100% | 49.4% 27.1%

Table 6: Number of candidate iterasets

4.3 Effect of the size of updates

Our next experiment is to find out how the size
of A~ and At affects the performance of the algo-
rithms. We use the setting T10.14.D100—z+2 for
the experiment, with a support threshold of 2%.
In other words, we use an initial database of 100

192

thousand transactions. From this database, z thou-
sand transactions are deleted and another z thou-
sand are added to it. Figure 2 shows the results
of this experiment. As expected, both FUP2 and
FUP2# have to spend more and more time as the
size of updates increases. On the other hand, since
the size of the final database D’ is constant (100
thousand transactions), the amounts of time spent
by Apriori and DHP algorithms are not sensitive
to r. Note that FUP2 is faster than Apriori as
long as £ < 30 and FUP2H is faster than DHP
for x < 40. As Apriori and DHP do not have
to scan through A~, their performances are better
when |A~| is very large. These results indicate that
the incremental update algorithms are very efficient
for a small to moderate size of updates. When
the size of the updates exceeds 40% of the original
database, Apriori and DHP perform better. This
is primarily because that as the amount of changes
to the original database becomes large, the updated
database is so different from the original one that
the previous mining results are not helpful. So, we
are better off mining the updated database from
scratch when the amount of updates is too large.

T10.14.D100—z+z (support=2.0%)

DHP <
-PUPy -
rupPa™t |

Execution Time (seconds)

T | I—
1.0 2.5 5.0 7.5 10 15 20 30 40
z (thousands of tuples inserted/deleted)

Figure 2: Effect of |A~| and |At|

4.4 Varying the number of deleted and
added transactions independently

Another experiment is conducted to find out how
the size of A~ affects the performance of the algo-
rithms. We use the setting T10.14.D100—z+10 for
the experiment. The support threshold is 2%. In
other words, we use an initial database of 100 thou-
sand transactions. Ten thousand transactions are
added to the database and z thousand are deleted.
Figure 3 shows the results of this experiment. As
the number of deleted transactions increases, the
amounts of time taken by Apriori and DHP de-
crease, since the size of the final database decreases.
For example, at z = 1.0, FUP2 is 4.5 times faster
than Apriori. As z increases, the number of trans-
actions that FUP2 and FUP2X have to handle in-
creases; therefore, these algorithms take more and
more time as z grows. However, FUP2 and FUP2H
still outperform Apriori and DHP for z < 30. Be-
yond that, Apriori and DHP take less time to fin-

ish. This means that as long as the number of
deleted transactions is less than 30% of the original
database, the incremental algorithms win. Prac-
tically, the original database D in a data mining
problem is very large. The amount of updates
should be much less than 30% of D.

T10.14.D100—x+10 (support=2.0%)

Execution Time (seconds)

| —
1.0 2.5 5.0 7.5 10 15 20 30 40
z (th ds of tuples del d)

Figure 3: Effect of |A™|

A similar experiment is done using the setting
T10.14.D100-10+z and the same support thresh-
old of 2%. This time, we keep the size of A~
constant and vary the size of A*. The results are
plotted in Figure 4. As z increases, |D'| increases.
So, the execution time of Apriori and DHP in-
creases with z. They do not run faster than FUP2
and FUP2H even when z is as large as 40.

T10.14.D100— 104z (support=2.0%)

Apriori 90—

Execution Time (seconds)

T T) I
1.0 2.5 5.0 7.5 10 15 20
z (thousands of tuples inserted)

Figure 4: Effect of |A*]

Examining Figure 4 more closely, we notice that
the execution time of FUP2 and FUP2H is quite
steady in the range 1.0 < z < 7.5. For z > 15, the
execution time increases with z. This is because
the greater the value of z, the more the transactions
the algorithms have to handle. However, in the
range 7.5 < z < 15, the execution time drops as
z increases! Also, if we examine Figure 3 more
carefully, we can also notice sharper rises in the
execution times of FUP2 and FUP2¥ in that range
of z.

To understand this phenomenon, recall that in
iteration k, if an itemset V was not large in D but
is in C, it is put in Qx. Suppose that V is also
small in D’. Then, since V is small in both D
and D', it does not occur frequently in D and D’.
Statistically, 6; and §;, are small in magnitude and

193

they are close to each other. So, 6y = 67 — 6y,
has a very small magnitude. It may be positive
or negative. When Lemma 4 is applied to prune
Q. in step 12 of FUP2, a candidate X in Qi is
pruned if 6x < (JAT| — |A7]) x s%. So, when
IAT|—|A™| > 0, V has a very high change of being
deleted from Q. If |AY| — |A™| > 0 but is small in
magnitude, V may escape the pruning if 6y is large
enough, although there is still a high chance that
V is pruned away. If, however, |AY| — |A"| < O,
then V will only be pruned away if 6y is negative
enough, but the chance of this is low. Hence, as
|At| — |AT| increases from a negative value to a
small positive value (e.g., as z in Figure 4 varies
from 10 to 15 thousands), the chance that V gets
pruned increases.

As there are many itemsets that behave like V,
the drop in execution time of FUP2 and FUP2%
is very dramatic when |A*| increases from slightly
below |A~| to slightly above |A™|. A similar result
occurs as |A~| decreases from slightly above |AT|
to slightly below it.

4.5 Scale-up experiment

To find out if FUP2 and FUP2* work also for large
databases, experiments with scale-up databases are
conducted. We use the setting T10.14.Dz—5+75-
Again, we use a support threshold of 2%. The
results are shown in Figure 5. The execution times
of all the four algorithms increase linearly as x
increases. This shows that FUP2 and FUP2* are
scalable and can work with very large databases.

’r1o.u.Dz—ﬁ+ﬁ- (support=32.0%)

Apriorii -©0—
:DHP: -
5000~ FUPa - -

4000
3000+

2000~

1000+ -

Execution Time (seconds)

e s

N : ; s é ?
130 2;0 560 740 10’00 12|50 IBIDO

z (number of tuples in original/final database)

Figure 5: Scale-up experiment

5 Discussion

Our new incremental algorithms make use of cer-
tain information to achieve their high performance.
This information includes the old large itemsets
and their support counts, the transactions that are
not changed by the update (D~), and the trans-
actions that are inserted or deleted (At,A7). Is
it reasonable to assume that such information be
available? The answer is yes.

The large itemsets and their support counts in
the original database come from the results of a
previous mining activity. We assume that this in-
formation is stored. As the association rules can be
calculated from these counts efficiently, it is more
desirable to store the counts rather than the as-
sociation rules. Storing the counts enables us to
maintain of the association rules efficiently.

A database system that supports recovery keeps
all updates into the log files. Consequently, it is
possible to retrieve from the log files all the deleted
and newly added transactions since the last mining.
By identifying the newly inserted transactions in
the current updated database (e.g. with the help
of transaction IDs), we can select from the updated
database those transactions which have remained
unchanged since the last mining activity. Thus,
we can obtain the set of unchanged transactions.
Hence A~, D~ and At are available.

6 Conclusions

We studied an efficient incremental updating tech-
nique for the maintenance of association rules dis-
covered by database mining. This technique up-
dates the association rules when old transactions
are removed from the database and new transac-
tions are added to it. It uses the information avail-

able from a previous mining to reduce the amount

of work that has to be done to discover the associa-
tion rules in the updated database. It is a general-
ization of two previous algorithms: Apriori [3] and
FUP [4]. Performance studies show that the new
technique is significantly faster than mining the
updated database from scratch. The new technique
works well over wide ranges of system parameter
values. In particular, it works well for updates of a
wide range of insertion sizes and small to moderate
deletion sizes.

References

[1] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer,
and A. Swami. An interval classifier for
database mining applications. In Proc. 18th
Int. Conf. Very Large Data Bases, pp. 560-573,
Vancouver, Canada, August 1992.

[2] R. Agrawal, T. Imielinski and A. Swami. Min-
ing association rules between sets of items in
large databases. In Proc. ACM SIGMOD Inter-
national Conference on Management of Data,
Washington, DC, May 1993.

[3] R. Agrawal and R. Srikant. Fast Algorithms for
Mining Association Rules in Large Databases.
In Proc. 20th Int. Conf. on Very Large
Databases, pp. 487-499, Santiago, Chile, 1994.

[4] D. W. Cheung, J. Han, V. T. Ng and C. Y.
Wong. Maintenance of discovered association

rules in large databases: An incremental updat-
ing technique. In Proc. 12th Int. Conf. on Data
Engineering, New Orleans, Louisiana, 1996.

[5] D. W. Cheung, J. Han, V. T. Ng, A. Fu and Y.
Fu. A Fast Distributed Algorithm for Mining
Association Rules. In Proc. fth Int. Conf. on
Parallel and Distributed Information Systems,
Miami Beach, Florida, Dec. 1996.

[6] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy. Advances in Knowledge
Discovery and Data Mining. AAAI/MIT Press,
1996.

(7] J. Han, Y. Cai, and N. Cercone. Data-driven
discovery of quantitative rules in relational
databases. IEEE Trans. Knowledge and Data
Engineering, Vol. 5, pp. 29-40, 1993.

[8] J. Han and Y. Fu. Discovery of multiple-level
association rules from large databases. In Proc.
1995 Int. Conf. Very Large Data Bases, Ziirich,
Switzerland, pp. 420-431, Sept. 1995.

[9] J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong,
K. Koperski, D. Li, Y. Lu, A. Rajan, N. Ste-
fanovic, B. Xia and O. R. Zaiane. DBMiner: A
system for mining knowledge in large relational
databases. In Proc. International Conf on
Data Mining and Knowledge Discovery (KDD-
96), Portland, Oregon, August 1996.

[10] M. Klemettinen, H. Mannila, P. Ronkainen,
H. Toivonen, and A. I. Verkamo. Finding
interesting rules from large sets of discovered as-
sociation rules. In Proc. 3rd Int. Conf. on Infor-
mation and Knowledge Management, pp. 401-
408, Gaithersburg, Maryland, Nov. 1994.

[11] H. Lu, R. Setiono, and H. Liu, NeuroRule:
A Connectionist Approach to Data Mining In
Proc. 21th Int. Conf. Very Large Data Bases,
pp. 478-489, Ziirich, Switzerland, Sept 1995.

[12] J. S. Park, M. S. Chen and P. S. Yu. An
effective hash-based algorithm for mining asso-
ciation rules. In Proc. ACM SIGMOD Interna-
tional Conference on Management of Data, San
Jose, California, May 1995.

[13] J. S. Park, M. S. Chen, and P. S. Yu, Efficient
Parallel Data Mining for Association Rules. In
Proc. 1995 Internation Conference on Informa-
tion and Knowledge Management, Baltimore,
MD, Nov 1995.

[14] R. Srikant and R. Agrawal. Mining Quan-
titative Association Rules in Large Relational
Tables. In Proc. ACM SIGMOD International
Conference on Management of Data, pp. 1-12,
Montréal, Canada, June, 1996.

194

