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A method of estimating the noise level in a chaotic time series
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An attempt is made in this study to estimate the noise level present in a chaotic time series. This is
achieved by employing a linear least-squares method that is based on the correlation integral form
obtained by Diks in 1999. The effectiveness of the method is demonstrated using five artificial
chaotic time series, the Hénon map, the Lorenz equation, the Duffing equation, the Rossler equation
and the Chua’s circuit whose dynamical characteristics are known a priori. Different levels of noise
are added to the artificial chaotic time series and the estimated results indicate good performance of
the proposed method. Finally, the proposed method is applied to estimate the noise level present in
some real world data sets. © 2008 American Institute of Physics. [DOI: 10.1063/1.2903757]

Almost all types of observed time series are contaminated
with noise which may arise from a number of sources
such as measurement errors, human errors, and tran-
scribing errors. For many types of time series analysis, it
is ideal, and sometimes necessary, to have data that are
noise free. This is particularly so in the case of nonlinear
time series, which have signatures of chaotic dynamics,
because the techniques of analysis and prediction have
been developed under the assumption that the series are
noise free. In this paper, the authors present a method of
estimating the noise level in a deterministic time series
using a linear least-squares method. The method has been
verified using known chaotic time series, and applied to
some real world data series.

I. INTRODUCTION

Almost all types of observed time series are contami-
nated with noise that may arise from a number of sources
such as measurement errors, human errors, and transcribing
errors. For many types of time series analysis, it is ideal, and
sometimes necessary, to have data which are noise free. This
is particularly so in the case of nonlinear time series, which
have signatures of chaotic dynamics, because the techniques
of analysis and prediction have been developed under the
assumption that the series are noise free. The presence of
noise may limit the performance of the techniques of identi-
fication, estimation of invariant measures, model selection,
and prediction of deterministic dynamical systems. For ex-
ample, the presence of noise in the time series can destroy
the self-similarity of the attractor, may distort the phase-
space reconstruction and result in the prediction errors be
bounded from below regardless of the prediction method
used.

Because of the potential problems that could be encoun-
tered in the analysis and prediction processes, and the fact
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that noise is inherently present in almost all observational
time series, the question of dealing with noise has attracted
the attention of many investigators from different disciplines
(Schreiber 1993a, 1993b; Diks 1999; Kantz and Schreiber
1997; Oltmans and Verheijen 1997; Jayawardena and Gu-
rung 2000; among others). Attempts have been made to deal
with the problem by noise reduction methods (e.g., Schreiber
1993b; Schreiber and Grassberger 1991; Grassberger et al.
1993), as well as by modifying the scaling law (Schouten
et al. 1994). The verification of such methods can be carried
out only for series in which the clean signal is known a
priori. For practical time series, such methods are therefore
not very useful. Alternatively, methods for determining the
noise level have been proposed by Schreiber (1993a), Olt-
mans and Verheijen (1997), and Diks (1999), but their appli-
cation is extremely difficult except in the limiting situations.

In this paper, the authors present a method of estimating
the noise level in a deterministic time series using a linear
least-squares method. The method is based on the correlation
integral form obtained by Diks (1999) coupled with the spe-
cial property of Kummer’s confluent hypergeometric func-
tion. It is tested with five mathematical series, which are
known to become chaotic under certain parameter condi-
tions: the Hénon map, the Lorenz equation, the Duffing
equation, the Rossler equation and the Chua’s circuit. The
tests show consistent satisfactory results. It is then applied to
three real-world data series: the southern oscillation index
(SOI), eastern equatorial Pacific sea surface temperature
anomaly index (SSTA), and the normalized Darwin-Tahiti
mean sea level pressure differences.

Il. CORRELATION INTEGRAL

The first step in treating a time series as chaotic is to
diagnose the system; i.e., to determine whether the time se-
ries is driven by a low dimensional deterministic system. It
can be done by computing several invariant measures, such
as the fractal dimension, the correlation dimension, the
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Lyapunov exponent, and the Kolmogorov entropy among
others. Of these, the correlation dimension plays a significant
role in identifying the system as well as for prediction of the
future states of the system. For a deterministic time series
generated by a dynamical system, the correlation integral
C,(r), for small r and large m, is given by the scaling rela-
tionship,

Cplr) ~ ™52, (1)

where r is the radius, m is the embedding dimension, 7is the
time delay, D is the correlation dimension, and K is the cor-
relation entropy per time unit, or simply correlation entropy.
The correlation dimension and the correlation entropy can
respectively be interpreted as an approximate measure of the
number of degrees of freedom, and a measure of the rate
(T°') at which initially nearby orbits diverge.

The standard method of calculating the correlation inte-
gral is by the correlation sum method [Grassberger and Pro-
caccia (1983a, 1983b)], as defined below:

N-1 N

> EH(V—”Yi—Yj

i=1 j=1

1

Cy(r) = NN-D)

), i#j. (2

where H is the Heaviside step function with H(u)=1 for u
>0, and H(u)=0 for u<0; N is the number of points in the
vector time series, Y;, ¥; are points in the reconstructed
phase space; r is the radius of sphere centered on either of
the points Y;, or ¥;. A point in the phase space is defined as

YO)=(x(0),x(t=17), ... ,x(t—=(m—-1)7), (3)

where x(), ] <t<N is a chaotic time series embedded in the
reconstructed phase space of dimension m and time delay 7.
The norm [[¥;-Y || may be any one of the three usual norms,
the maximum norm, the diamond norm, or the Euclidean
norm. Correlation integrals are calculated for a series of em-
bedding dimensions.

Equation (2), as well as other methods, is generally ap-
plicable to noise free time series. The presence of noise (dy-
namical and observational) strongly affects the correlation
integral and the results may become distorted or even com-
pletely wrong. Several authors (for example, Ott and Hanson
1981; Ott et al. 1985; Smith 1992; Schreiber 1993a; Kantz
and Schreiber 1997; Oltmans and Verheijen 1997; Diks
1999) have addressed the problem resulting from the pres-
ence of noise but it still remains a topic of current research
interest.

A notable contribution on this topic is that of Schreiber
(1993a), who obtained the following approximate formula
based on the maximum norm for the correlation integral for
a time series contaminated with Gaussian noise:

rexp(— r}/4o?)

d[ln(cm+l(r))] — d[ln(cm(r))]
o erf(r/20)

d[In(r)] d[In(r)]

where o is the standard deviation of the Gaussian distribu-
tion, i.e., the noise level of the time series, and “erf” refers to
the error function.

A more simple form for the correlation integral has been
obtained by Schouten er al. (1994) also based on the maxi-

(4)
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mum norm. Using an upper bound of radius r as ry, and J as
the maximum noise amplitude, they obtained the correlation
integral as

r—=0

D
5] , foré<r=r,. (5)

Cm(r) = |:

ro—

Subsequently, Diks (1999) derived the following expression
for the correlation integral in the presence of noise when
C,,(r) is based on Euclidean norm:

¢e—mTKm—D/22—maD—mrm <m -D m P )

Cinlr) = T(m/2+1) PRy

2 2
(6)

Diks’ (1999) derivation is based on the closed form expres-
sion for the correlation integral in the presence of Gaussian
noise obtained by Smith (1992) under the assumption that
the clean attractor underlying the noisy data has an integer-
valued dimension D, and a similar expression obtained by
Oltmans and Verheijen (1997) under general conditions.

In Eq. (6), ¢ is a constant and M is Kummer’s confluent
hypergeometric function, which has the following integral
representation:

T'(b) !

[ ztaa—101 _ §\b-a-1
T@lb—a) Oet (1-1 dt. (7)

M(a,b,z) =

Using Egs. (6) and (7), the correlation dimension and noise
level for the time series can be estimated by a nonlinear
least-squares method, at least in theory. However, because of
the strong nonlinearity in the equations, it is difficult in prac-
tice.

lll. NOISE LEVEL ESTIMATION

To overcome the difficulties involved in nonlinear least-
squares method, a new method that employs a least-squares
estimation procedure is introduced to estimate the correlation
dimension and the noise level. Starting from Egs. (6) and (7),
a relationship linking the correlation dimension D, the corre-
lation sum C,,(r) with respect to r, and the noise level o can
be shown to be (see Appendix A for detailed derivation)

d[In(C,(n)] _ &[In(C,,(r))]
d[In(r)] d[In(n)P

) (d[1n<cm<r>>])2} @ _dlIn(C,(1)]
d[In(r)] r d[In(r)]

In this equation, the correlation dimension is linear with re-
spect to o”. By substituting =0 in Eq. (8), the correlation
dimension for noise free chaotic data can be obtained as

D+2[m

(8)

dlInC
_dlin ()] o)
d[In r]
and, for noisy data, as r—0, as (see Appendix B for proof)
d[In C,
fim 0 Cnl )] _ (9b)
—0 d[Inr]

Equation (8) can be rewritten in the form
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y=D+207x, (10a)
where
dlInC,(r
_d[InC,(r)] (10b)

d[Inr]

_ (m - I)Ar(cn - Cn—l) - rn(cn—l - ch + Cn+1) - rn(cn - cn—1)2
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(10¢)

which, in their finite difference approximations take the form

" r,(Ar)?

for r,, =r,=Ar; ¢,=In C,(r,), r,, 1<n<L, a given radius,
and L, the number of test values of the radius r.

The least-squares estimates of the noise level and the
correlation dimension can then be shown to be

6’2 — Eﬁ;g(ynﬂ _yn)(xn+1 —xn)

T "
and
RS
D=E’§2 (v, = 257x,). (12)

IV. APPLICATION, RESULTS, AND DISCUSSION

The proposed approach is verified by using it to estimate
the noise level of the following time series that are known to
become chaotic under certain parameter and initial condi-
tions, when known levels of noise are added.

Hénon map: The Hénon map (Hénon 1976) is given as

x,,+1=1—axﬁ+bx,1_1+n,,, (13)

where 7, is a noise term and a and b are parameters. It has a
chaotic attractor when a=1.4 and b=0.3 without noise.
Lorenz map: The Lorenz map (Lorenz 1963) is defined

as
%ﬂr(y—x)’
fl—};z—xz+rx—y, (14)
%:xy—bz.

It becomes chaotic for 0=10, r=28, and b=8/3.
Duffing equation: The Duffing equation (Ueda 1979) is
defined as

Cp—Cp-1
=y —, 10d
In =TT (10d)
(10e)
T
dx _
ar
(15)
dy

—=—ax—-x>+bcos(1),
dt
and it becomes chaotic for a=0.3, b=34.0.
Rossler equation: Rossler equation (Rossler 1976) is
defined as

dx _

a0

dy

Y vay 16
PR (16)
dz

Z:b+z(x—c),

and it becomes chaotic for a=0.15, »=0.2, and ¢=10.
Chua’s equation: Chua’s circuit equation (Chua 1990;
Elwalik and Kennedy 2000), is defined as

d

—x:(l—K—er)y—(l+8,)x+8,z,

dt

dy

—=x+(K-2)y, 17
Pt (K-2)y (17)

),

sc%=sr(x+l<y—z)— az=a(lz+1|=|z-1
and it becomes chaotic for K=3.25, ¢,=1/6, £,=0.06, a;
=0.8, and a,=-0.5.

The x, values of the Hénon map are generated using Eq.
(13) with xy=0.3, x;=1.2 and assuming n, to be white noise
(n,~N(0,0)) for 1<n=<10000. To ensure that the values
of the time series are in the chaotic attractor, the first half of
the generated series is discarded and a new series is formed
using  §,=x,,5,1 <n<5000 with N=5000. Equations
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(14)—(17) have multispatial dimensions, and are solved nu-
merically using the fourth-order Runge—Kutta method with a
time step of 0.02 and initial conditions of

xo=12.5, yy=2.5, andzy=1.5 for Eq. (14),
x5=0.1, y,=0.1 for Eq. (15),

x9=0.1, y,=0.1 and zo=0.1 for Eq. (16), and
x5=0.1, y,=0.1 and z,=0.1 for Eq. (17).

After obtaining the x component for each of the above equa-
tions [Egs. (14)-(17)] for x(z), 0<¢<2000 (a total of
(2000/0.02=100 000) values will be generated), the discrete
time series for subsequent analysis is obtained using the fol-
lowing equation and with a sampling interval of 10:

s,=x(0.2n), n>0. (18)

(Note that sampling interval X time step=0.2.)

As before, out of the 10 000 values of the discrete time
series s,, only the second half is considered for further analy-
sis. If different sampling intervals are used, different time
series will be generated.

In order to embed the above time series into the phase
space, the time delay and the embedding dimension must be
given. For convenience, a time delay of unity is assumed for
all the time series. A better choice for the embedding dimen-
sion is that in accordance with the embedding theorem of
Takens (1981), which states that a D-dimensional attractor
can be embedded into a (2D+ 1)-dimensional phase space,
although other values could also be used. In this study, em-
bedding dimensions of 5 and 7, respectively, are used for the
Hénon series and other remaining series. Other values of
embedding dimensions also lead to similar results.

Although the noise levels (o) added to the artificial data
sets generated by the above systems are known, the actual
noise levels for the noisy data would be somewhat different.
In this paper, the actual noise level is calculated as follows:

1 N
EE (5:=5)°, (19)
i=1

O Actual =

where N is the sample number, and {s;,1 <i<N} and {5;,1
< i< N} are the noisy and clean data, respectively.

Figures 1-3, respectively, show the plots of In(C,,(r))
versus In(r), the corresponding plots of d[In C,,(r)]/d[Inr]
versus In(r) and y versus x for all the data sets used in this
study. The first five sets in each figure correspond to Hénon,
Lorenz, Duffing, Rossler, and Chua series, for some selected
values of added o (The last three sets correspond to the real
data sets). For the theoretical data sets, the relationships of
In(C,,(r)) versus In(r) are linear (or very near linear) when
the data are noise free. They also show that the deviation
from linearity increases as the noise level increases. The re-
lationships d[In C,,(r)]/d[Inr] versus In(r), show that the
gradients of In(C,,(r)) versus In(r) plots are independent (or
almost independent) of In(r) for clean data (except for Duf-
fing data, which give a slight deviation from the rest),
whereas some scaling regions where the variations are
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smooth can be identified for noisy data. These scaling re-
gions are different for different values of added noise levels.
They would provide more precise information for the corre-
lation integral, and, could therefore be used to estimate the
noise level.

The (x,y) plots (Fig. 3) for Hénon, Lorenz, Duffing,
Rossler, and Chua series in the neighborhood of the scaling
regions for selected values of the added noise level o show
that all the plots are concentrated around straight lines whose
slopes enable the estimation of the noise levels. It can also be
seen that the points are closer to the straight lines for lower
values of o and the spread increases as the noise level in-
creases. Table I gives the comparisons of the added, actual
and estimated noise levels by the proposal method and by
Schreiber’s method (Schreiber 1993a) together with the dif-
ferences in the estimates of noise level by the proposed
method and the added noise level, the differences between
the noise levels estimated by Schreiber’s method and the
added noise level, the differences between the noise levels
estimated by the proposed method and the actual noise level,
and the differences in the noise levels estimated by
Schreiber’s method and the actual noise level. For almost all
the results (13 out of 15 cases for the actual noise levels and
the added noise levels), the comparisons consistently show
that the noise levels estimated by the proposed method are
closer to both the added noise levels and the actual noise
levels [Eq. (19)] than those estimated by Schreiber’s method.
The corresponding standard errors between estimated and
added (or actual) noise are given in Table II, which also
consistently shows that the standard errors for the added and
actual noise are always lower by the proposed method than
those by Schreiber’s method. The standard errors should
however be interpreted with caution because the sample size
is only 3. In fact they are slightly more closer to the actual
noise levels than to the added noise levels. It should also be
noted that the proposed method has the advantage that it is
linear, whereas Schreiber’s method is nonlinear.

The estimation of (x,,y,) in Egs. (10d) and (10e) de-
pends heavily on C,,(r,), which in turn depends on r, that
should not be too small or too large. Although the curves of
d[In C,,(r)]/d[Inr] versus In(r) look noisy, there still exist
some intervals where the slope change is relatively smooth.
Such intervals (for r=0.1-0.3) are used for the calculation of
(x,,v,). The noise levels added are not insignificant (signal-
to-noise ratio ranging from about 11 to 28), but not large
enough to overshadow the signal.

The last three sets of graphs in Figs. 1-3 correspond to
three real-world time series, all of which are related to a
phenomenon known as El Nino and Southern Oscillation
(ENSO), which leads to abnormal weather patterns around
the globe. The occurrence of ENSO is characterized by two
indices known, respectively, as the southern oscillation index
(SOI), which is a normalized Darwin-Tahiti sea level pres-
sure difference, and the eastern equatorial Pacific sea surface
temperature anomaly (SSTA) index. Sustained negative val-
ues of SOI are accompanied by weak Pacific trade winds,
reduced rainfall over eastern and northern Australia, and
warming of the central and eastern tropical Pacific oceans.
On the other hand, sustained positive values bring about
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FIG. 1. Plots of In (C(r)) vs In (r) for all the data sets used in this study. The first five sets correspond to Hénon, Lorenz, Duffing, Rossler, and Chua series
for some selected values of added noise; the last three sets correspond to three real-world time series.

strong Pacific trade winds, wetter than normal rainfalls in
eastern and northern Australia, and cooler sea surface tem-
peratures in central and eastern Pacific oceans. Sustained
negative values of SOI correspond to El Nino events whereas
sustained positive values correspond to La Nina events. The
second index, SSTA, averaged over the region 6N—-6S°, 180—
90W? is also called the cold tongue index, and is widely used
to describe the occurrence of El Nino and La Nina. The third
data set used is another version of the normalized Darwin—

Tahiti sea level pressure difference but used to characterize
the same phenomenon. The differences in the three data sets
arise from the way they are averaged, normalized and the
periods of record. SOI data are for the period January 1876
to December 2006, SSTA for the period January 1893 to
December 1998 and the last data set for the period from
January 1876 to December 1998. All data sets are given as
monthly averaged values and are available in public domains
in a number of web sites (see, e.g., http://www.bom.gov.au).
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FIG. 2. Plots of d[In(C(r))]/d[In(r)] vs In(r) for all the data sets used in this study. The first five sets correspond to Hénon, Lorenz, Duffing, Rossler, and Chua
series for some selected values of added noise; the last three sets correspond to three real-world time series.

The noise levels for the SOI, sea surface temperature
anomaly index, and the sea level pressure differences are,
respectively, 1.21, 3.13, and 1.26, and the corresponding cor-
relation dimensions are 0.8015, 0.4575, and 0.9926. Al-
though these results cannot be verified, it is reasonable to
expect them to be acceptable since the method has been ex-
tensively verified using several examples.

V. CONCLUDING REMARKS

In this study, a method of estimating the noise level
present in a chaotic time series is proposed by employing the
linear least-squares method. This is an improvement over
previous methods of estimating the noise level all of which
use the nonlinear least squares method. In the present
method, a linear form connecting the correlation sum, the
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FIG. 3. Plots of y, vs x, [Eq. (12)] for all the data sets used in this study. The first five sets correspond to Hénon, Lorenz, Duffing, Rossler, and Chua series
for some selected values of added noise; the last three sets correspond to three real-world time series.

noise level and the correlation dimension is obtained. It is
easier to apply and is expected to lead to less computing
error compared to a nonlinear method. The method is veri-
fied using some artificial chaotic time series generated by
Hénon map, Lorenz equation, Duffing’s equation, Rossler
equation, and Chua’s equation with added Gaussian noise.
The numerical results consistently show that the proposal

method give better estimates of the noise level for these cha-
otic time series than those obtained by the nonlinear method
introduced by Schreiber (1993a, 1993b). The application part
includes noise level estimations of monthly SOI, monthly
eastern equatorial Pacific sea surface anomaly index, and
normalized monthly Darwin—-Tahiti sea level pressure differ-
ences.
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TABLE 1. Comparison of noise levels. o—Added noise level; o, —Actual noise level; ¢—Estimated noise level by the proposed method;
Gsenreibe—Estimated noise level by Schreiber’s method; SNR—Signal-to-noise ratio.

Data set Hénon Lorenz Duffing Rossler Chua

T 0.05 0.10 0.15 0.5 1.0 1.5 0.1 0.3 0.5 0.5 1.0 1.5 0.03 0.05 0.08
Toctual 0.0500 0.1004 0.1506 0.5020 1.0039 1.5059 0.1004 0.3012 0.5020 0.5020 1.0039 1.5059 0.0301 0.0502 0.0803
SNR 23.148 17.190 13.771 27.977 21.983 18.502 28.350 18.849 14.503 24.054 18.077 14.632 19.664 15.310 11.423
& 0.0360 0.0967 0.1468 0.7527 1.1391 1.6336 0.1897 0.3556 0.5370 0.4670 10119 1.5093 0.0297 0.0505 0.0793
Gsehreiber 0.0860 0.0711 0.0798 25115 2.0475 1.4306 0.2438 0.2756 0.3046 0.6360 0.8245 0.8986 0.0492 0.0474 0.0397
G-0 -0.014 -0.0033  -0.0032 0.2527 0.1391 0.1336 0.0897 0.0556 0.037 -0.033 0.0119 0.0093  -0.0003 0.0005  -0.0007
Gsehreiber— 0 00360  -0.0289 —0.0702 20115  1.0475  —00694  0.1438  —00244 -0.1954 01360  —0.1755 —0.6014  0.0192  -0.0026  —0.0403
G— O aerual -0.014 -0.0037  -0.0038 0.2507 0.1352 0.1277 0.0893 0.0544 0.035 -0.035 0.008 0.0034  -0.0004 0.0003  -0.001

0.0360  -0.0293  -0.0708 2.0095 1.0436 -0.0753 0.1434  -0.0256  -0.1974 0.1340  -0.1794  -0.6073 0.0191 -0.0028  -0.0406
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¢e—m7Km—D/22—moD—mrm m-D m r2
C,(r)= ,—+1;-—
TF(m/2+1) 2 72 40°
~ ¢e—mTKm—D/22—m0_D—mrm F(m/2+ 1) F( r_2> ~ ¢e—mTKm—D/22—mUD—mrm ( i) (Az)
TF(m/2+1) [((m-D)12)T(D/2+1) 4¢)  T(D12+ 1) ((m-D)/2) 407 )’
[
where D
1 In[C,,(r)]=1n(¢) - B In(m) —m In(2) + (D — m)In(o)
F(z) = f 111 = )P ds. (A3)
0 D
+mIn(r) —m7K + In[(F)] - ln{l'(z + 1)]
It can be proved that Eq. (A3) satisfies the condition
-D
afF(z) + (z=b)F'(z) —zF"(z) =0 (A4) —ln[F<mT)]. (AS)
(see Appendix C for the proof).
Taking natural logarithms of Eq. (A2), From Eq. (A1), we have

TABLE II. Standard errors between estimated and added (or actual) noise for the data sets.

Added noise Actual noise
Proposed Schreiber’s Proposed Schreiber’s
Data set method method method method
Hénon 0.010 42 0.059 41 0.010 59 0.059 86
Lorenz 0.224 8 1.604 4 0.2207 1.602 0
Duffing 0.079 08 0.172 4 0.077 97 0.1732
Rossler 0.025 66 0.453 3 0.025 50 0.4577
Chua 0.000 644 2 0.031 62 0.000 790 6 0.031 79
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d_ v PO gl _ MG
dr 202 (46) F(z) 202(r2 rdr
Since all the terms in Eq. (A5), except In[C,,(r)], m In(r) and  denote
In[F(z)], are independent of r, their derivatives with respect m d[ln(C ( r))]
to r are zero. Therefore, P(m,r) = _
rdr
dlIn(C,(nN)] _ d Then,
T g+ In(FE)] F'(2) = 20°P(m,F(2). (A8)
m __( ’ ))__ r F'(2) In addition,
= T FQar r 202 Fz)’ Ao, ede
(A7) dr(F (2)=F (z)dr ZOJF (2)
from which and
|
&P @)= S 20Pn )= zol{F(z)dP ) s ponn % (Z)} zoi{ﬂ D)Ly, r>}
dr dr dr 207
- 202{ F(2) dP(m ) ﬁ[Za’zP(m,r)F(z)]P(m,r)} 20'2{F(z)d m.r) _ er(m,r)F(z)}.
[
Therefore, m m
T—20’2< 02+E+1>P(mr)
, 200d
F'(e)====""(F'(2)) _&[%_rzpz(m’r)} —0.
_ E{zol[dP(dm r)F(z) — rP(m, r)F(z)]} Therefore,
R
m—-D 2
=—4a4{@—P2(m,r)}F(z). (A9) - —{E+02(m+2)}P(m,r)
rdr
rdP(m,r)
Substituting Eqs. (A8) and (A9) and into Eq. (A4), we get - 0'2[ ar rPX(m,r )} =0
aF () + (z - b)[20°P(m.r)F (7)] and
+ 40'4z{M —Pz(m,r)}F(z) =0, m—D =r*P(m,r) - 26*(m +2)P(m,r) - 202M
rdr dr
+20°r*P*(m,r) = 0.
which leads to
Thus, we have
4] dP(m,1) 2 rdP(m,r)
a+20%(z=b)P(m,r) + 4z0° —dr P“(m,r) ( =0. m—r2P(m,r) =D + 20 (m+2)P(m,r) + d—
r
Then, - r2P2(m,r)} . (A11)
2
a-— 2&(@ + b)P(m,r) - rzai{% - P2(m,r)} =0. Because
(A10) Plm.ry =1 _ ACaD] (A12)
rdr
Since a=(m-D)/2, b=m/2+1, we have we have
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dP(m,r) _ 2m 1dlIn(C,(1)] 1 In(C,(r)]

dr PR dr r dr?

(A13)

and

Chaos 18, 023115 (2008)

Pz(m,r) — m_42 _ z_gnd[ln(cm(r))] +

1
r r dr P

[d[ln(Cm(r))]r
dr '

(A14)
By substituting Egs. (A12)—(A14) into Eq. (A11), we obtain

mm+2) _(m+2)din(C,(r)] _2m  1d[In(Cu()] _ Pln(Cy(r)]

r dr

| 2mdn(C, ()] [d[ln(cm(rm]z
r dr dr

m—r*P(m,r) =D+202{ 5
,

Poor dr dr? r

D420 { (m=1) d[In(C,,(r)] _ d’[In(C,,(n)] {d[ln(Cm(r))]]z}

r dr dr?

dr

=D+ —
= dr

However,

R L L

and

(G, ()], d [d[ln(cm(r))]]

dr dr dr
_d [ d[ln(%(r))]]_ d {d[lnwm(r»]]
Tl ar “dlin(N]] dlln(r)]
_ d’[In(C,,(n)]
— d[ln(n)?
Therefore,
D+ 2{md[1n<cm(r))] _ dIn(C,(N)]
d[In(r] dlIn(r) P

) (d[ln(cm(r»])Z] o _ dlIn(C,()] @)

d[In(r)] ? dn(r)]

APPENDIX B: PROOF OF EQ. (9b)

For noisy data, from Eq. (A7),

dn(C, ()] _m 1 F'(2)
- .2

1
rdr P 207 F(z)°

d[ln(Cm(r))]_m_ 7 F'(2)
diin(n] =~ 20 F()°

202{ (m—1)r d[In(C,,(r))] r2d2[ln(Cm(r))] B rz[ d[1n(C,(M)] ]2}

dr

[
Because F(z),F 1 (z) are bounded for z—0,

d[In C,,(r)] _

9b’
rlj:% d[ln r] ( )

APPENDIX C: PROOF OF EQ. (A4)

Kummer’s confluent hypergeometric function has the in-
tegral representation:

I'(b) !

M(a,b,s)=——— | & N(1=-0""dr. (Cl
(a.b.2) T@r-al, ¢ (1-1) (Ch
First, let
1
F(z) = f (1 - )b 1ds. (C2)
0
Then,

1
F’(Z):f (1 -0 dt,
0

(C3)
1
FH(Z) — f €Ztla+1(1 _ t)b_a_ldt.
0
We have
1 1 1
f (1 =) dr=— — f eEd[ (1 - 1)b].
0 b-al,
(C4)

By using integration by parts, Eq. (C4) is
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1 1 1
f (1 — ppa-lgr = —= f (1 = 1)t + 4 f 1711 = )bdr
0 b —d 0 b —dad 0

1 1
=bZ feZ’t“(l—t)(l—t)b“"'dt+ba feZ’t“‘l(l—t)(l_,)b—a_ld[

—aJy —alJy

1 1
Z
- j eztla(l _ t)b_a_ldt _ f eztta+1(l _ t)h_a_ldl‘
a

0 0

1 1
+ f (1 = )b Vdr — f (1 — 1) dr
b-al Jo 0

Z

= P Q- F@)+ - FQ) - F ()

b-a

We then have

aF(2) +(z=b)F'(2) -zF"(2) =0. (A4")
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