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Abstract Although the radial basis function neural network (RBF
NN) offers a potential solution for fault section estimation (FSE) in
power networks, it has to be totally retrained for the case of power
network topology change or power network expansion and cannot
provide any explanations for its diagnosis results due to the black-
box nature of the neural network. In this paper, the functional
equivalence between RBF NN and fuzzy system (FS) is built up for
FSE problem throughout the neural network training process.
Furthermore, based on this point, a novel retraining strategy is
presented for RBF NN, which can extract the unchanged knowledge
from the original RBF NN and then insert the knowledge back to the
new RBF NN about the changing part of the power network in the
case of network topology change or expansion. The retraining
strategy has been implemented and tested in a 4-bus power system.
The simulation results show that the advanced FSE system with
hybrid FS and RBF NN works successfully and efficiently in power
networks.

Keywords fault section estimation, fuzzy system, radial basis
function neural network, retraining strategy, power networks

L INTRODUCTION

To reduce power supply interruption and enhance service
reliability, fault section estimation (FSE) should be
implemented quickly and accurately in order to isolate the
faulted elements from the rest of the system and to take
proper countermeasures to recover normal power supply.
However, FSE is difficult because of the large amount of
information to be dealt with and the FSE speed and accuracy
required, especially for the cases with malfunctions of relays
and circuit breakers, or multiple faults at the same time.

Radial basis function neural network (RBF NN) provides a
potential solution for FSE in power networks ! because of
its universal approximation capability [, automatically
determined structure in training process and faster training
convergence and better generalization capability as compared
with other approaches. However RBF NN has no adaptation
capability for the case of power network topology change or
power network expansion, i.e., the corresponding FSE system
has to be totally retrained, which is extremely time-
consuming. Power network topology change or power
network expansion is inevitable in power systems due to the
maintenance, restoration or power system development. Since
neural networks imply the knowledge in the network
architecture and all the numeral weights, it is very difficult to
extract the explicit rules from the structure and numerals,
which is the bottleneck of the adaptation capability of neural
networks.
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Considerable efforts " have been made on interpreting
the intrinsic knowledge of neural networks. [4] attempts to
train the BP NN from hints, which allows for general
information to be used instead of just input-output training
samples, while [5-7] aim at interpreting the RBF network. It
can be seen that the RBF network, a locally tuned neural
network, is much easier to be understood than the BP NN. In
[5], the normalized RBF NN is represented by probabilistic
rules, however probabilistic rules are not so easy to be
obtained in real applications due to the required large number
of the historical data. [6-7] put their emphasis on building up
the functional equivalence between the RBF NN and the
fuzzy system (FS), which in many cases is highly desirable
since FS is complementary with RBF NN and can be easily
understood and used by domain experts. Though the initial
results are given, there still exist some imperfections. The
conclusion part of the fuzzy rule is limited to be a constant
instead of general fuzzy proposition. The implication of the
fuzzy rule is ignored. The fuzzifier and the defuzzifier have
not been considered either.

In this paper, the functional equivalence between RBF NN
and FS in the feed-forward calculation is derived in a more
general form as compared with that mentioned in the
reference. Besides, it is pinpointed that for FSE problem this
functional equivalence holds throughout the training process
of the RBF NN. Furthermore, based on the functional
equivalence, in the case of power network topology change or
power network expansion a novel retraining strategy is
presented for RBF NN, which can extract the unchanged’
knowledge from the original RBF NN and then insert the
knowledge back to the new RBF NN about the changing part
of the power network and thus enhances its adaptability,
reduces its retraining time and improves its FSE capability.

The paper is organized as follows. Section 2 briefly
introduces the RBF NN and the FS used in FSE. The
functional equivalence between RBF NN and FS is analyzed
n Section 3. Section 4 proposes the novel retraining strategy
for the case of power network topology change or power
network expansion. Section 5 shows the computer simulation
results and in section 6 we present conclusions.

II. RBF NN & FS USED IN FSE

A. RBF NN for FSE
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The RBF NN ©! consists of feed-forward architecture with
an input layer, a hidden layer of RBF units and an output
layer of linear units (Fig. 1). The single output network is
used as the illustrative example. All
the obtained results can be extended
to the multi-output network with
ease.

The input layer simply transfers
the input vector to the hidden
neurons, which form a localized

Input Hidden Output

. layer

response to the input pattern. ,y layer  layer

. . . Fig. 1 The structure of
Typically the activation function of RBF network
the hidden neuron is chosen as a
Gaussian function:

2
x—c;
(pi(x)z exp(— ———" e “ ] (i=1..,n,) (1)

where @(x) is the output of the i * hidden neuron; ny, is the
number of the hidden neurons; x is the input vector; ¢; and o;
are the center (or weight) and the spread of the corresponding
Gaussian function respectively.

The output layer generates the desired output through
linear mapping of the outputs of the RBF layer. The output of
the RBF NN will accordingly be:

0o=3 v 0.(x) )

where w; is the connection weight from the i * hidden neuron
to the output neuron.

Several learning algorithms (8 10-111 have been proposed to
identify the parameters (c;, 0; and w;). Due to the localized
architecture of RBF NN, the leamning algorithms usually can
determine the structure automatically H0-11 i1 the training
process and have faster training convergence than the
learning algorithms of other neural networks.

For FSE in power networks, the relays and circuit breakers
states (0 or 1) are taken as the inputs to the RBF NN, while
the states (faulted or normal) of system elements, such as
transmission lines, transformers and buses, as the outputs.
Some typically fault scenarios are selected to make up the
training sample set.

It should be noted that the RBF NN for FSE has two
significant characteristics for interpreting the trained neural
networks, One is that the inputs of the network are binary
variables, which makes the centers of the RBF neurons are
binary variables too. The other is for FSE the spreads of all

RBF neurons are same M, i.e., o;=...=0;=...=0, =O.

B. FSfor FSE

The basic configuration of FS for FSE is shown in Fig. 2.

Fuzzy Rule Base !

Fig. 2 FS for FSE
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Fuzzy rule base is the basis of the inference. In general,
fuzzy rule can be expressed as:

IF x; is ¢;; and ...and x,, is ¢, THEN y is w; 3)
where x=[x;, x2, ..., x,,]T and y are the input and output
linguistic variables respectively, while c;j, ..., Cin and w; are
the corresponding linguistic value (fuzzy sets). Let M be the
total number of rules in the fuzzy rule base, then i=1, 2, .M.

For FSE in power networks, the input linguistic variable x
is composed of all the relays and circuit breakers, while ¢,
..., Cin are the fuzzy sets defined on the corresponding status
of these protective devices, i.c. operated or non-operated.
Likewise, y is the concerned system element, while w; is the
corresponding possibility that this element is in fault.

In a fuzzy inference engine, fuzzy logic principles are used
to combine the fuzzy rules in the fuzzy rule base into a
mapping from input fuzzy set A’ to output fuzzy set B’
Suppose u represents membership function, the output of the
inference engine will be:

. (y)=sup iy () s, (. 9)) @

where sup and ¢ represent support and t-norm operator
respectively. f—(x, ) is the membership function of the IF-
THEN rule, which can be interpreted by different methods
02 If the Mamdani implication 02 the most widely used
implications in FS, is selected, t(x, ) can be calculated
by:

au'x—)y (x’ y)= t‘l“lt” (‘xl )’ :“‘l“c‘2 (‘xZ)" A nLlc,-,, (xn )J nu'w,. (Y) (5)

However, both input 4’ and output B’ are fuzzy sets instead
of crisp values in real world. Fuzzifier and defuzzifier are
designed for realizing this conversion. The fuzzifer is defined
as a mapping from a real-valued point x* to a fuzzy set 4’,
while the defuzzifier converts fuzzy set B’ to crisp point y*.

1II. FUNCTIONAL EQUIVALENCE BETWEEN
RBF NN & FS

Under some assumptions in the fuzzy inference process,
the functional equivalence between RBF NN and FS can be
built up in the feed-forward calculation of the neural network.

Assume:

1) For the fuzzy rule depicted by (3), all the membership

functions in the premise are Gaussian functions with
the same variance, while the center and the height of

the fuzzy set u,, (y) are w; and 1 respectively.
2) t-norm operator is multiplication.

3) The fuzzifier uses singleton method, that is, if real
world crisp input is x*=[x 1*’ xz*, cees xn*], then:

1 = x*
uA.(x)={ X ®

0 x#x*
4) The defuzzifier is defined as:

y*= gheight(ﬂav (»))- center(u,. G O

Therefore the fuzzy inference process can be rewritten as:
(1) The membership function of the premise:
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(2) The membership function of the IF-THEN fuzzy rule
2
x—c;
Moy (v, y)= ulx)- A, (y)= ” "

- 2 : ‘u'w,- ()/)
o;
(3) Since the fuzzifier is singleton, the fuzzy set output B’
iq [12
is

)= supbli(ehs, )

=e

= uix*)-, (7)=exp —”x*a;f"uz o ()

(4) If the number of the rules is equal to the number of the
hidden neurons, the crisp output of the defuzzifier is:

*_Ze"l’ ||x*_c I W, =iwi o (x*
i i=1

It can be seen that the functional equivalence between RBF
NN and FS in the feed-forward calculation is established. As
compared with the derivation process in [6], some
improvements have been made in our study. The normal
fuzzy rule is used to express the knowledge base, while in [6]
the conclusion part of the fuzzy rule is limited to be a
constant, which is only a special case of the normal fuzzy
proposition. Moreover [6] only calculates the membership
function of the premise of the fuzzy rule as the weight of the
corresponding rule and gets the overall output of the FS by
weighted sum of each rule’s output. This inference process
ignores the implication of the fuzzy rule and thus is not so
strict. In this paper, the most widely used implication method
of the fuzzy rule is adopted. In addition, both inputs and
outputs of the RBF NN are crisp values in real world. The
functional equivalence implies that inputs and outputs of the
FS should be crisp values too. Therefore the fuzzifier and the
defuzzifier should be considered in the FS as we do in our
study. It is clear that the derivation process in this paper is
normal, strict and complete.

For FSE problem, the functional equivalence in feed-
forward calculation is of significant meanings. This enables
us to convert the RBF NN into explicit fuzzy rules and vice
versa, which makes the working process of RBF NN
transparent and understandable to the operators in the control
center. Besides we can check whether the neural network
includes all the typical fault scenarios through examining
whether the corresponding FS is complete. If there is any rare
fatal fault scenario omitted, the RBF NN can be mended with
priori domain knowledge. This is helpful for improving the
diagnosis capability of RBF NN.

It should be pointed out that the characteristics of the FSE
makes the functional equivalence hold not only in the feed-
forward calculation, but also throughout the training process
of RBF NN. As shown by Andersen, etc | although there
exists functional equivalence between RBF NN and FS, the
RBF NN cannot be converted back to the corresponding FS

l
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after it is retrained, unless the following two conditions are
satisfied.

(1) All the membership functions in the premises of
different fuzzy rules must have the same variance,
ie. o~07~...=0~...=0, ; S SO 6

(2) Rules which share a E(cu,cu) E(C“’C”)
membership function, or ; :
centers with a same ; :
element, must be aligned in i _3‘
thc. input—dimensi(?n on (cu,cu) Hew,ca)
which that function 1is Fig. 3 The illustration
defined throughout the of the alignment

training process of the RBF
network (Fig. 3).

These two conditions can be
easily satisfied by the characteristics of the FSE. As
pinpointed in section II.A, the spreads of all RBF neurons are
same for FSE ! and this is consistent with condition 1.
Likewise condition 2 is guaranteed since the centers of the
RBF neurons are binary variables, which keeps the alignment
of the centers naturally. Therefore, for FSE problem, no
matter whenever the knowledge is extracted from the RBF
NN, it can be inserted back to this RBF NN even though it is
retrained. Based on this point, a novel retraining strategy for
RBF NN is presented in the case of power network topology
change or power network expansion, which is described in
detail below.

€y TCp1yC3 = Cy

C1p =CpsCp =Cpp

IV. RETRAINING STRATEGY FOR RBF NN

The topology structure of the power network may change
due to restoration, maintenance and etc. At the same time,
power network expansion may occur with the power system
development. The trained RBF NN is expected to adapt these
two cases instead of being totally retrained.

In the case of the power network topology change, the
coordination relationship of the protective devices is affected,
and thus some training samples, which were correct for the
original power network structure, are not correct any more
and their effects on the trained RBF NN should be
eliminated. Besides some new training samples about the
changing part of the power network need to be learned by the
RBF NN. For power network expansion, since there are some
new elements in the power network, some new inputs and
outputs of the RBF NN have to be considered too.

Aiming at these two cases, the retraining strategy is
proposed based on the functional equivalence between RBF
NN and FS throughout the neural network training process. A
simple power network (Fig. 4) is used as the illustrative
example to explain the idea step by step. Suppose the
corresponding RBF NN has been trained by typical fault

scenarios.
B B
CB, CB,'CB; (B, |'CB; CB,
L | L, L :'-i

Fig. 4 The illustrative power network

Case 1: power network topology change. Assume L; is in
maintenance and stop running (Fig. 5).
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cs, cBBcn, o
L L,
Fig. 5 The illustrative power network
with topology change

Step 1: through knowledge extraction, acquire and store the
knowledge, which is not related with the topology change,
from the trained RBF NN.

Since one hidden neuron in the trained RBF NN is
equivalent with one explicit fuzzy rule, the knowledge stored
in the RBF NN can be extracted piece by piece according to
the need. If L; is stop running, the knowledge about B», L;
and L; is affected, while that of B, and L; is still correct. In
this case, we use the centers of the hidden neurons as the
inputs of the trained RBF NN and find the corresponding
hidden neurons, which make the outputs of B; and L; equal 1.
7 hidden neurons imply the knowledge about B; and L; and
can be stored as explicit fuzzy rules.

Step 2: learn the new knowledge about the changing part of
the power network.

Since L; is stop running, the new training samples of B,
and L, are constructed and used to train a new RBF NN.

Step 3: through knowledge insertion, mend the new RBF
NN with the priori knowledge obtained in step 1 to get the
complete RBF NN for the topology-changed power network.

The knowledge about B; and L; is inserted back to the new
RBF NN, i.., 7 hidden neurons are added and the
corresponding centers are obtained in step 1. With the
knowledge of B; and L, the advanced RBF NN is complete

for performing FSE of the power network in Fig. 5.
Case 2: power network expansion. Suppose 2a new
transmission line L, is added to the power network (Fig. 6).
B

B
'CB, CB,(CB,  CB;

Fig. 6 The illustrative power network
with network expansion

Once L, is added to the network, the coordination
relationships of L;, L; and L, are affected, while other

elements, B, B, and L, remain unchanged. The operations of
knowledge extraction and insertion are same with those of
network topology change, however in this case some new
inputs, CB7, CBs and the protective relays of L,, and the new
output, Ly, should be considered in the process. Consequently
the following step is added after step 1 and other steps, which
remain unchanged, are omitted here.

Added step: the new .inputs and outputs are added to the
extracted knowledge in step 1.

Since the extracted knowledge of B;, B; and L, are not
related with the new element Ly, the corresponding weights of
the new added inputs and outputs are all zero. With this
operation, the extracted knowledge is extended and ready for
insertion.

It can be seen that the suggested retraining strategy only
retrain the neural network for the elements whose training
samples are affected by the topology change or network
expansion. Because of the local nature of the FSE, this part of
the elements should be a small percentage of the whole power
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network and the larger the power network, the more obvious
this effect. Consequently the retraining strategy can improve
the adaptability and the efficiency of the RBF NN greatly.

V. COMPUTER SIMULATION RESULTS

A simple 4-bus power system is used as the test system
(Fig. 7), in which there are 9 protected components: 4 buses,
1 transformer and 4 transmission lines. The protection relay
system considered in the computer test is a simplified system,
which includes transmission lines main protection (MLP) and
backup protection (BLP), main protection for buses (MBP)
and the transformer (MTP).

B, T

B, CB,

Fig. 7 The test power system

For the power network shown in Fig. 7, forty typical fault
scenarios are worked out to constitute the training sample set.
For each fault scenario, the states of all relays and circuit
breakers are taken as the neural network inputs. The states of
the 9 system components (4 buses, 1 transformer and 4 lines)
are the outputs. If a certain output approaches to 1, then the
corresponding component is considered in fault. After
training, the trained RBF network has 33 input neurons, 37
hidden neurons and 9 output neurons, which can perform FSE
with generalization capability m,

Case 1: power network topology change,
in maintenance and stop running (Fig. 8).

Bl

i.e. consider L, is

4

B
2 CB, L

Fig. 8 The test power system with topology change

The training samples of L,, Ly, B2, Bs Ls and L, are
affected and have to be reconstructed, while B, By and T/’s
remain unchanged. Therefore the knowledge (10 fuzzy rules)
about B;, B, and T are extracted from the trained network.
After training the new RBF NN by the reconstructed training
samples, these 10 fuzzy rules are inserted and the complete
RBF NN is obtained. The comparison results between the
advanced and the general RBF NN are shown in Table 1.

Table 1 Comparison results between advanced and general RBF NN

Advanced RBE NN_|_General RBENN_ |
mse of 1.9788x10™ 8.0409x10°%
the training samples
Training time (5) 0.993 1.39
Number of
the hidden neurons 30 31
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Since the mean squared error (mse) between the calculated
outputs and the desired outputs of the training samples is
1.9788x10’4, the advanced RBF NN can realize accurate
diagnosis for the training samples. On the premise of the
accurate diagnosis, the training time of the advanced RBF
NN is only 71.4% of that of the general RBF network and the
larger the power network, the smaller the percentage. Table 1
demonstrates that the advanced RBF NN works successfully
and efficiently for the case of power network topology
change.

In order to examine the generalization capability of the
designed advanced RBF NN we select other fault scenarios
not existing in the training sample set for testing. Only 8
cases are listed in Table 2. All of them are severe cases with
up to 2 mal-functions of relays and circuit breakers. The
corresponding diagnosis results are listed in Table 3, in which
each row is the output vector for one fault scenario. In our
study, if a certain output in the output vector exceeds 0.5,
then the corresponding component is considered in fault.
From the output vectors, we can conclude that for all the test
cases the faulted elements are recognized correctly.

Table 2 Severe test fault scenarios for topology change
Operated relays and tripped CBs Fault element

1. MBP,, BLP;, CB, B;
2. MBP;, BLPs, BLP;y, CB3, CBs, CB1o B;
3. MBP;, MLPs, CBs, CBs B;
4. MBP,, BLP,, CBy, CByy B,
5. MTP;, BLP,,, CB,, CB;, CByy T;
6. MLP,, MLPs, BLP;, CB,, CB; L,
7. MLPs, MLPy, BLP;, CBs, CBy L;
8. MLP,, BLPs, CB;, CBs Ly

Case 2. power network expansion, i.e. consider a new
generator-transformer block (B,-T>) is added (Fig. 9).

Fig. 9 The test power system with network expansison

Likewise, the knowledge (28 rules) about B,, B, T, L, and
L, are extracted and six new inputs (MTP,, MBP;, BLP/,,
BLP;,, CB;;, CB;;) and two outputs (Bs, T) are added due to
the network expansion. After the new RBF NN is trained to
learn the knowledge about B,, Bs, T, L; and Ly, the extracted
knowledge is inserted back to complement the complete RBF
NN. Similar results are obtained (Table 4). It can be seen that
the advanced RBF NN cannot only diagnose the fault
elements accurately but also improve the calculation
efficiency greatly.

In order to test the generalization capability for this case,
15 severe fault scenarios with up to 2 mal-functions of relays
and circuit breakers or up to 2 simultaneous faults are listed
in Table 5. Table 6 gives the corresponding diagnosis results,
which demonstrates that the advanced RBF NN has the
generalization capability and is suitable for on-line FSE.

Table 4 Comparison results between advanced and general RBF NN

Advanced RBF NN General RBF NN
mse of 2.0725x10°% 2.9188x10°%
the training samples
Training time (s) 1.064 2.065
Number of
the hidden neurons 47 47
Table 5 Severe test fault scenarios for network expansion
Operated relays and tripped CBs Fault element
1. MBP,;, BLP;, CB; B;
2. MBP,, BLP;, BLP;y, CB3;, CBs, CBs, CByg B,
3. MBP;, MLPs, CBs, CB7, CBs B;
4. MBP,, BLP;, CBy, CB1g, CB1; By
5. MTP;, BLPy, CB;, CBs, CBy T;
6. MLP,, MLP;s, BLP;, CB,, CB; L;
7. MLP;, BLP,;, BLPs, BLP,s, CB,, CBs, CB;, CByy L,
8. MLP3, MLP,, BLP;;, CBs, CBy Ls
9. MLP;, MLP g, BLP,;, CB,, CByy Ly
10. MBPs, BLP;, CB;; B;s
11. MTP,, BLP;s, CB;1, CBi2 T;
12. MTP;, MLPs, MLPy, CB,, CB3, CBs, CBy T, L;
13. MBP,, MLP;, MLP,o, CB,, CBy, CB1y, CB1; B, L,
14, MLP,, MLP;, MLPs, MLP,, CB,, CBs, CBs3, Ly Ls
CBy

15. MTP;, MLPs, MLP;, CBs, CB7, CBi1, CB12 T, L,

Table 3 The diagnosis results of the severe test fault scenarios for topology change

Bl B2 B3 Bl Tl Ll Lz L3 L4
1 0.9071 -0.0007 -0.0011 0.0034 0.0849 0.0025 0 0.0105 -0.0067
2 0.0326 1.2638 -0.0280 0.0140 -0.0290 -0.1241 0 0.0867 -0.2161
3 0.0335 0.0254 0.7394 -0.1807 -0.0167 -0.0302 0 0.4163 0.0129
4 -0.0595 -0.2347 -0.1283 12218 0.0627 0.0361 0 0.2427 -0.1408
5 -0.3093 0.3791 -0.1520 0.0306 0.9097 0.1871 0 0.0694 -0.1147
6 0.1825 0.0120 -0.0842 -0.0546 -0.0651 1.0116 0 0.1033 -0.1055
7 -0.0580 -0.2385 -0.0735 0.2576 0.0627 0.0139 0 1.1603 -0.1245
8 0.0471 0.1144 0.0717 0.2975 -0.0484 0.0060 0 -0.0910 0.6029
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Table 6 The diagnosis results of the severe test fault scenarios for network expansion

Bl Bz Bj B4 B5 T] Tz LI L; L3 L4
1 0.8742 -0.0050 0.0106 0.0059 0.0245 0.0991 -0.0141 0.0019 0.0019 -0.0003 0.0015
2 0.1045 1.0616 0.0514 0.0340 -0.1227 -0.0453 0.0260 -0.1055 0.0702 0.0033 -0.0774
3 0.0754 0.0352 0.8365 -0.1557 -0.1783 -0.0258 0.0206 -0.0188 -0.0188 0.4229 0.0069
4 0.0627 0.0111 0.0150 1.0158 -0.1058 -0.0184 0.0481 -0.0051 -0.0051 -0.0097 -0.0088
5 -0.1172 0.2663 -0.1497 0.0711 -0.1244 0.8450 0.0321 0.1033 0.1033 0.0309 -0.0608
6 0.3719 -0.0244 -0.0090 0.0108 -0.2534 -0.1434 0.0482 0.9749 0.0023 0.0108 0.0112
7 -0.0755 0.3082 0.0811 -0.0078 0.0509 0.0570 0.0077 -0.0575 0.6547 0.0042 -0.0230
8 0.1464 -0.1899 0.0249 0.3134 -0.1356 -0.0154 -0.1035 -0.0002 -0.0002 1.0387 -0.0786
9 -0.0262 -0.0097 -0.0137 0.0016 0.1583 0.0091 -0.1138 -0.0004 -0.0004 0.0128 0.9826
10 0.0523 0.0051 0.0077 0.0002 0.8552 -0.0180 0.0963 -0.0007 -0.0007 0.0020 0.0007
11 0.1302 0.0155 -0.1899 0.3735 -0.1001 -0.0584 0.8795 -0.0152 -0.0152 -0.0893 0.0693
12 -0.2717 -0.0927 -0.0956 -0.0174 -0.0379 0.9719 0.1733 0.0322 0.0322 0.9536 0.0519
13 0.1094 -0.0465 0.0433 0.6438 -0.4742 -0.0244 -0.1531 -0.0006 -0.0006 -0.0305 0.9335
14 -0.2610 -0.0833 -0.1805 0.0039 -0.0483 0.0896 0.1630 0.8541 0.1031 0.9220 0.0373
15 -0.2716 -0.0665 -0.0932 -0.0231 -0.3296 0.0900 1.0599 0.0050 0.9251 0.0635 0.0505

VI. CONCLUSIONS

In this paper, in order to enhance the adaptation capability
of the RBF NN in the case of power network topology
change or power network expansion, the functional
equivalence between RBF NN and FS is established
throughout the neural network training process. This enables
us to construct the hybrid FSE system based on RBF NN and
FS, which takes the advantages of both intelligent systems
and provides a powerful tool for FSE problem. Furthermgre,
based on this equivalence, a novel retraining strategy is
presented for RBF NN, which can extract the unchanged
knowledge from the original RBF NN and then insert the
knowledge back to the new RBF NN about the changing part
of the power network in the case of network topology change
or expansion. The retraining strategy has been implemented
and tested in a 4-bus power system. The simulation results
show that the advanced RBF NN works successfully and
efficiently for FSE in power networks.

It should be pointed out that, based on our recent research,
this approach as working with network partitioning technique
can solve large-scale power network FSE problem fairly well.
Corresponding results are included in a companion paper @
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