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A time-dependent density-functional tight-binding method in real time domain is developed to calculate the
absorption spectra of very large systems. The time-dependent first-order response of the density matrix due to
an external perturbation is solved using Chebyshev method with high efficiency and accuracy. Linear scaling
of CPU time and memory usage with the system size is achieved by exploring the sparsity of the involving
matrices as well as by introduction of a cutoff for the first-order density matrix. The compressed sparse row
scheme is used to store the matrices, and SPARSEKIT is employed for sparse matrix multiplication. The absorp-
tion spectra of three-dimensional water clusters (HyO)z16, (H20) 432, (Hy0)g45, and (H,O)ggy are calculated
using the present approach. The error due to the cutoff of density matrix is negligible. It is shown from these
calculations that the presented method is very efficient and capable of calculating the absorption spectra for

very large three-dimensional systems.
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I. INTRODUCTION

Time-dependent density-functional theory'~!" (TDDFT)
shows great promise in the calculation of excitation energies
at a relatively small computational effort. Within TDDFT,
the excitation energies are decided by an eigenvalue
equation.”3

QFI= w%Fl, (1)

where w; is the excitation energy. The dimension of matrix ()
is of O(N?), where N is the number of the basis functions.
The computational time to diagonalize this matrix scales as
O(N®). In most cases, only transitions with low excitation
energies are needed and iteration methods such as Lanczos
method or Davidson’s algorithm!? are thus adopted. In these
iteration methods, the multiplications between () matrix and
trial vectors are required and the excitation energies are de-
cided through a diagonalization of a small matrix whose di-
mension is a little larger than the number of excitations to be
decided. The multiplications are almost the same as the con-
struction of Fock matrices in canonical molecular orbital ba-
sis. Usually, these multiplications are done first in atomic
basis and then transformed to canonical molecular orbital
basis. The iteration methods are very efficient in the deter-
mination of the lowest several excitation energies especially
for small and medium sized systems. In addition, linear scal-
ing algorithms!'3 can be applied to reduce the computational
effort further in the calculation of the multiplications in the
localized atomic orbitals, which is usually the most time-
consuming step. However, for very large systems, the itera-
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tion methods are not as efficient. First, the canonical molecu-
lar orbitals are usually delocalized and the transformation of
a matrix from atomic basis to canonical molecular orbital
basis scales as O(N?). Second, for very large systems, the
number of excited states even in a small energy range could
be huge, which makes the matrix diagonalization in the it-
eration methods a time-consuming task.

To solve this problem, the linear response of the density
matrix due to an external field may be solved directly in real
time domain, and the absorption spectra and dynamic polar-
izability in the whole energy range can thus be obtained
through a Fourier transformation.'*!3 In this approach, any
type of basis functions can be adopted. The use of localized
basis functions leads to the linear scaling of the computa-
tional effort with respect to the system size, and facilitates its
application to large systems. In a previous work,"> we use
Chebyshev approach'®!” to calculate the linear response of
the density matrix to an external potential which is a time-
domain & function. This method has been shown to be able
to calculate accurately the excitation energies of small sys-
tems with high efficiency. In addition, the linear scaling of
computational efforts can be achieved through a cutoff of the
density matrix in localized bases for large systems. This
time-domain first-principles method has thus the potential to
be applied to the calculation of absorption spectra and dy-
namics polarizability of large systems.'* However, with the
current DFT implementation and computational power, it is
still much too expensive to use the time-domain first-
principles method to deal with large systems. This is because
the construction of Fock matrix is very expensive for large

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.76.045114

WANG et al.

systems, and the Fock matrix has to be constructed more
than 1000 times in a normal calculation using this time-
domain method. At the present moment, the time-domain
method is therefore more suitable to be applied to large sys-
tems by being implemented at the semiempirical levels.

Over the last few years, a density-functional
tight-binding,'®2! (DFTB) method has been developed for a
wide range of applications. It has been used to calculate the
low-lying singlet and triplet excitation energies based on Eq.
(1) (Ref. 22) with a computational effort that is several or-
ders of magnitude less than the traditional DFT methods.”
The time-dependent Kohn-Sham equations of DFTB have
also been integrated in real time using a variant of the Cayley
algorithm.?*23 This nonperturbative approach can be used to
study molecular dynamics in the excited state as well as
nonadiabatic effects but suffers from cubic scaling with sys-
tem size. In the present work, the time-dependent DFTB
method is developed to calculate the absorption spectra of
large systems. We show that with a cutoff of the density
matrix, the computational time scales linearly with the sys-
tem size.

II. THEORY
A. Time-domain TDDFT method

Within TDDFT formalism, the equation of motion for the
density matrix (in an orthogonal basis set) reads

L
i~ P(0) = [h(1).P(0)] (2)

where A(r) is the time-dependent Fock matrix, and P(z) is the
reduced single-electron density matrix. If the system is ini-
tially at its ground state and is perturbed by an external po-
tential, the first-order change of density matrix follows the
following equation:

iditp(l)(t) = [/’lo,P(l)([)] + [l’l(])([),PO] + [Vext(t)’Po]’

PY(t=0)=0, (3)

where Py and h, are the ground-state density matrix and
Fock matrix, respectively, P\ is the first-order change of
density matrix, hD is the first-order change of Fock matrix
due to PV, and V*(¢) is the matrix of the external perturba-
tion potential. When a time-dependent electric field is ap-
plied, the absorption spectra and dynamic polarizability can
be obtained via the Fourier transformation of the time-
dependent first-order change of the dipole moment.'* The
excitation energies can be determined from the absorption
spectra. If the external perturbed potential is a 6 function in
time, Eq. (3) for >0 becomes

iditP(”(t) ~ Lo, PO+ TRV (1), Py,

PWO(r=0,) =—i[ V<, Py]. (4)

Equation (4) is a set of linear differential equations since K
depends linearly on PV and can be written formally as
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d
ZEP“) =LPY, (5)

where L is a time-independent linear Liouville operator. The
formal solution for Eq. (5) is

PO(1) = 1PW (1= 0). ©)

The exponential operator e~%' can be calculated through the
Taylor expansion. However, the Taylor expansion is not ef-
ficient due to its power law convergence property. Alterna-
tively the Chebyshev expansion for ¢'*' can be employed,
and has been shown to be more efficient.!®!7 In the Cheby-

shev approach, P(r) reads

[

PO =e™PD(=0)= 2 (2= 8,0,(t0)P,,  (7)

n=0
-2 —i
Pn = TLPn—I + Pn—2’ Pl = XLPn—h
Py=PY (1=0), (8)

where J, (@) is Bessel function of the first kind and A is a
positive number larger than the largest eigenvalue of opera-
tor L, L. The expansion converges for any time step ¢ as
long as A is larger than L,.,,. In actual calculations, A is
estimated through the difference between the highest virtual
level and the lowest occupied level. The expansion in Eq. (7)
converges exponentially due to the exponential decay of the
Bessel function J,(«) when n is larger than «. The number of
terms needed in Eq. (7) should only be slightly larger than
tA. To achieve high efficiency, a large time step is preferred.
The first-order time-dependent properties at any intermediate
time can be determined through Eq. (7) with little additional
computational effort. This is done by saving the correspond-
ing properties due to the calculated P,. In a normal calcula-
tion, a propagation time of 35 fs results in an energy resolu-
tion of 0.1 eV for the absorption spectra, which is usually
accurate enough for large systems.

B. DFTB and time-dependent DFTB

In DFTB, the minimum Slater-type orbitals for valence
electrons, which are determined by solving the self-
consistent field equation based on local density
approximation®®?’ for free neutral atoms, are adopted as the
basis functions. The exchange-correlation energy is ex-
panded to the second order in the change of the electron
density (with respect to a reference density ng). This refer-
ence density is usually taken as the summation of the elec-
tronic densities of component atoms. The total energy is then
written as'$1?
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where 1:10 is the Hamiltonian of the system with the reference
electron density ngy, and on is the change of the electron
density. It can be seen from Eq. (9) that the last three terms
on the right hand side (rhs) of Eq. (9) do not depend on én or
the density matrix of the system. These terms are evaluated
as a sum of interaction of interatomic two-body potentials

within DFTB. The 1:10 matrix is calculated based on a two-
center approximation and the matrix elements are tabulated
together with the overlap matrix elements with respect to the
interatomic distance. The second term on the rhs of Eq. (9) is
further approximated by the interaction between the Mul-
liken charges Ag, on each atom as

1
E(z) = 52 ’YabAQaAqln (10)
a,b

where vy, are parameters. The Fock matrix in DFTB can be
obtained through the derivative of the total energy with re-
spect to the density matrix as

FMV=<X,LIIE1°|XV>+ S (Yas+ ¥p)Aqs, (1)

S

2K

where §,,, is the overlap matrix, and bases u and v are on
atoms « and S, respectively.

The time-dependent DFTB (Ref. 22) (TD-DFTB) has
been used to calculate the excitation energies. In Ref. 22,
TD-DFTB was formulated in terms of Eq. (1), and the exci-
tation energies of some small and medium sized systems
were calculated with an accuracy close to approximated
TDDFT.?3?82° TD-DFTB can also be formulated in terms of
Eq. (4), and can be integrated in real time, which is expected
to be applicable to very large systems. The first-order change
of Fock matrix due to the density matrix is expressed as

= ES,”E (Yas + 7580, (12)

S

1

where Ag_’ is the Mulliken charge on atom { due to the
first-order change of density matrix:
Mgl = 3 X PS (13)
MES V

In TD-DFTB, the calculation of KD is much faster than the
calculation of the commutators in Eq. (4) even for medium
sized systems. For large systems, the sparsity of the matrices
involved must be explored. It can be seen from Egs. (11) and
(12) that h, and hY are sparse matrices and the number of
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nonzero elements depends linearly on the system size. For
systems with a finite highest occupied molecular orbital-
lowest unoccupited molecular orbital gap, the ground state
density matrix P, is also a sparse matrix.>* The computa-
tional time for the commutator between h'") and P, scales
thus linearly with system size. The linear scaling of compu-
tation(a% time can be achieved by introducing further a cutoff
for PV,

III. COMPUTATIONAL DETAILS AND RESULTS

The time-domain Chebyshev expansion of TD-DFTB
based on Eq. (4) has been implemented in the LODESTAR
program package.'#3132 Equation (4) is formulated in an or-
thogonal basis and the Cholesky decomposition®® for the
overlap matrix is used to orthogonalize the basis functions.
The Cholesky decomposition has been shown to scale lin-
early with the system size due to the sparsity of the overlap
matrix.'# In addition, the orthogonalized basis functions ob-
tained in this way are still localized and the sparsity of the
related matrices can be kept. Before the time propagation,
the ground state Fock matrix and density matrix as well as
the dipole moment matrices are transformed from the atomic
orbital basis set to this orthogonal basis set. To perform the
action of L operator on P, four steps are taken: (1) to
transform P from the orthogonal orbital basis to the atomic
orbital basis, (2) to calculate A1) in the atomic orbital basis
using Egs. (12) and (13) based on P!V in the atomic orbitals,
(3) to transform A" from the atomic orbital basis set to the
orthogonal basis set, and (4) to calculate the commutators in
Eq. (4). Step 2 is actually the fastest step for large systems
and the bottleneck is step 4. Furthermore, step 3 is faster than
step 1 since hV) is sparse while P(V) is generally not. How-
ever, this may not always be true if a cutoff for P() is ap-
plied. In addition, the computational effort of step 1 can be
reduced using the fact that only those P elements in the
atomic orbitals with corresponding nonzero S, are needed
since only these density matrix elements contribute to the
Mulliken charge in Eq. (13). Among these steps, the compu-
tational efforts for steps 2 and 3 scale linearly with the sys-
tem size, while the computational times of the other two
steps scale as O(N?) if no cutoff is adopted for P(V).

The computational effort to calculate P()(z) via Eq. (7) is
determined by the number of expansion terms in Eq. (7),
which is in turn determined by rA. In most TD-DFTB calcu-
lations, a A of 80 fs™! is usually large enough to ensure the
convergence of the expansion in Eq. (7). As a result, the rhs
of Eq. (4) needs to be calculated ~3000 times for a 35 fs
propagation. An additional reduction in computational effort
can be achieved by using the fact that the Fock matrix in
DFTB is real and only depends on the real part of density
matrix. This is also true in DFT when a pure exchange-
correlation (XC) functional is used. It can be seen from Egs.
(4) and (8) that P, is purely imaginary when n is even and is
real when n is odd. When 7 is even, AV is zero and the
action of L operator on P, thus only involves step (4).

From the above analysis, to achieve linear scaling in both
CPU time and memory usage in the calculation of the ab-
sorption spectra and dynamics polarizability for very large
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TABLE 1. CPU time for each step in TD-DFTB calculation in real time domain (unit: s) with a 10 A
cutoff for first-order density matrix and without any cutoff.

10 A cutoff length

Without any cutoff

Step 1 Step 2 Step 3 Step 4 Step 1 Step 2 Step 3 Step 4
(H,0)516 0.359 0.004 0.284 1.95 0.678 0.004 0.292 2.863
(Hy0) 43, 1.148 0.011 1.052 6.882 3.528 0.012 1.086 13.958
(H>O)g43 2.066 0.021 2.131 12.453 7.885 0.021 2.070 32.692
(H>O)ges 3.131 0.031 4.135 19.491 15.125 0.031 4.144 60.961

systems, sparse matrix multiplication as well as a cutoff for
P must be adopted. In our implementation, the sparse ma-
trices are stored in a compressed sparse row format® to save
the nonzero elements only, and the SPARSEKIT (Ref. 35) is
employed for sparse matrix multiplication. A more efficient
sparse matrix multiplication scheme is possible by using
multiatom blocks as recommended in Ref. 36. As for the
cutoff for PV, P(alb) in the orthogonal basis is set to zero if the
distance between the centers of orbitals a and b is larger than
a cutoff length /. In the calculation of the multiplication
between hy and P! with SPARSEKIT, we find that if the total
nonzero number of P is larger than half of the total ele-
ments of P(l), it is even slower than treating PW as a dense
matrix. This means that higher efficiency can only be
achieved for a relatively small /; with the present implemen-
tation. It is worth noting that the only approximation in the
time-domain method presented here is the cutoff for P(
compared with the tradition method based on Eq. (1). The
error of the absorption spectra obtained with the present
time-domain method without any cutoff for P is only gov-
erned by the total propagation time. On the other hand, rea-
sonable estimates for absorption spectra were achieved in our
previous studies'* with a proper cutoff for P().

To test the efficiency and accuracy of our code, we calcu-
late three-dimensional water clusters: (H,0),16, (H20)430,
(Hy0)g45, and (H,0)gg4. The structures of these clusters are
generated with HYPERCHEM V7.5. The water molecules are
randomly distributed in a cubic box of lengths 18.7, 23.5,
27.0, and 29.6 A with an average distance of 2.3 A. All the
calculations are performed on a single P5 2.8 GHz processor
with 3 Gbyte memory. The percentages of nonzero ground
state density matrix elements for these systems are 35%,
22%, 16%, and 13%, respectively. The number of nonzero
ground state Fock matrix is even smaller. With a 10 A cutoff
for P(), the percentages of nonzero first-order density matrix
elements for these systems are 31%, 20%, 14%, and 11%.
The CPU times for each step in the calculation of water
clusters are listed in Table I. If no cutoff is adopted, the
construction of A is much faster than the matrix operations
and step (3) is faster than step (1). For the cutoff case, step
(1) can be even faster than step (3) for large systems. In
addition, the matrix transformation is also faster than the
calculation of the commutators. This is because the transfor-
mation matrix is a triangle matrix and very sparse. It can be
seen from Table I that high efficiency is retained for the
cutoff of the density matrix. The total CPU time for a propa-

gation of 1 fs is shown in Fig. 1 for the calculations on these
water clusters. It can also be seen that the total CPU time
scales as O(N?) with the system size if no cutoff is applied,
while it scales linearly with a 10 A cutoff for the first-order
density matrix. The calculated absorption spectra of (H,O)g¢4
due to an external field polarized along the x direction are
plotted in Fig. 2. It can be seen from Fig. 2 that the error
caused by the 10 A cutoff for P! is negligible. This is be-
cause the excitations of the system are mostly localized on a
single water molecule and are affected only by nearby water
molecules. A small cutoff length for P can thus result in
accurate absorption spectra. Based on this, we conclude that
the detailed coordinates of the water molecule in the cluster
affect marginally the absorption spectra. In addition, with the
present implementation, the total CPU time of a 35 fs propa-
gation for (H,0)gg, is about 16 h with the cutoff of 10 A and
55 h without any cutoff. This shows that with the present
implementation we are able to calculate the absorption spec-
tra and polarizabilty of very large three-dimensional (3D)
systems. Note that the absorption spectra shown in Fig. 2 are
only for the demonstration of the error due to the cutoff for
P, The absorption spectra of water cluster are poorly de-
scribed with TD-DFTB since Rydberg type excitations have
dominant contribution to the absorption spectra for water and
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FIG. 1. The total CPU time for water cluster systems using
TD-DFTB in real time domain with a propagation time of 1 fs
(empty square, with a 10 A cutoff for the first-order density matrix;
filled square, without cutoff for the first-order density matrix).
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FIG. 2. (Color online) The absorption spectra of (H,0)ges cal-
culated with TD-DFTB in real time domain. (black line, results
without cutoff; red line, results with a 10 A cutoff).

diffuse basis functions as well as XC potentials with correct
asymptotic behavior are required to obtain reasonable esti-
mates for Rydberg type excitations.’’

On the other hand, for delocalized excitations, which are
usually results of the periodic structure of the corresponding
systems, a larger cutoff length needs to be adopted to afford
accurate estimates for the absorption spectra. These systems
are preferably treated with a periodic boundary condition in
the calculation of the absorption spectra. For those systems
whose structures are not so regular, the excitations are much
more localized and the method proposed here with a rela-
tively short cutoff length for density matrix is expected to
result in accurately calculated absorption spectra.

IV. CONCLUSION

In the present work, we propagate the density matrix
within TD-DFTB in real time to calculate the absorption
spectra for very large systems. The time-dependent first-

PHYSICAL REVIEW B 76, 045114 (2007)

order change of the density matrix is calculated with high
efficiency and accuracy using Chebyshev’s expansion and
the absorption spectra can be obtained though the imaginary
part of the Fourier transformation for the time-dependent
first-order dipole moment. To achieve linear scaling, the
sparsity of the involving matrices is utilized and a cutoff for
the first-order change of density matrix is employed. The
prefactor for the scaling law of this method corresponds to
the number of terms needed to converge the expansion in Eq.
(7), which is decided by the total propagation time and the
largest excitation energy of the system. In usual calculations,
a total propagation time of 35 which leads to an energy reso-
Iution of 0.1 eV is accurate enough. In DFTB method, the
largest excitation energy is usually less than 50 eV, that is
around 75 fs~!. This means that in a norm calculation, the
prefactor for the scaling law of the present method is around
3000. In fact, a smaller propagation time is also possible for
small systems'> when spectra analysis method such as the
filter-diagonalization method®-%° is used, which could re-
duce this prefactor. In our implementation, a compressed
sparse row format is used to store the nonzero elements of
the involving matrices and the SPARSEKIT package is em-
ployed for the multiplications between sparse matrices. With
this implementation, both the CPU time and the memory
usage are made to scale linearly with the system size. This
facilitates the application of the present implementation for
the calculation of absorption spectra of very large systems.
The absorption spectra of 3D water cluster (H,0)gq4 are
calculated with the present approach. The CPU time is dem-
onstrated to scale almost linearly with the system size for
water clusters if cutoff for first-order density matrix is em-
ployed. The calculated absorption spectra for (H,0)gq4 with
a 10 A cutoff length for first-order density matrix agree very
well with those of no cutoff case. The cutoff for first-order
density matrix results in reliable results for localized excita-
tions. From these calculations, it is shown that the method
presented here is very efficient and capable of describing the
absorption spectra for large 3D systems. Linear scaling both
in CPU time and memory usage can be achieved through a
cutoff for the first-order change of the density matrix.
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