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The response of a quantum dot coupled with one normal lead and a superconductor lead driven by a step-like
pulse bias VL is studied using the nonequilibrium Green’s function method. In the linear pulse bias regime, the
responses of the upward and downward biases are symmetric. In this regime, the turn-on time and turn-off time
are much slower than those of the normal system due to the Andreev reflection. On the other hand, for the large
pulse bias VL, the instantaneous current exhibits oscillatory behaviors with the frequency ��=qVL. The
turn-on/off times are in �or shorter than� the scale of 1 /VL, so they are faster for the larger bias VL. In addition,
the responses for the upward and downward biases are asymmetric at large VL. The turn-on time is larger than
the turn-off time, but the relaxation time depends only on the coupling strength � and it is much smaller than
the turn-on/off times for the large bias VL. �The turn-on/off time describes how fast a device can turn on/off a
current, which is also named rise/fall time in M. Plihal et al., Phys. Rev. B 61, R13341 �2000�, while the
relaxation time was referred to how fast the device can go to a new steady state after a bias is abruptly switched
on. It is also named saturation time in A. Schiller and S. Hershfield, Phys. Rev. B 62, R16271 �2000�.�
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I. INTRODUCTION

In the past two decades, nanoscopic physics has devel-
oped significantly and has become an active field of
condensed-matter physics. The quantum transport property
also has become one of the most interesting phenomena in
nanoscopic physics because of the possibility of designing
and fabricating artificial setups in the nanometer scale. Based
on the transport physics in a nanoscopic system, a rich field
for basic and applied research is opened.1 Furthermore, the
time-dependent nanoscopic transport, in which the external
time-dependent fields drive the electrons to tunnel through a
nanoscopic system, has received increasing attention in re-
cent years. The main feature of the transport in the nanom-
eter scale is that the electron keeps the phase coherence when
traversing through the device, while the external time-
dependent field affects the phase factor of the incident elec-
tron differently in different parts of the system.2 If the exter-
nal time-dependent field is sinusoidal �e.g., microwave
radiation�, an electron can tunnel through the system by
emitting or absorbing photons, giving rise to the photon-
assisted tunneling �PAT�. Electron transport with PAT has
been extensively investigated for various systems, such as
single or two coupled quantum dot �QD�,3–5 Kondo regime,6

hybrid system,7 and so on. For transient transport, one of the
most interesting issues is how fast a device can turn on or
turn off a current. With the development of the molecular
devices, there is clearly a need to technologically provide a
particular viable switching device. Indeed, some recent ex-
perimental and theoretical works have already begun to
study the response of ac signals of the molecular devices.8

Consequently, step or pulsed ac signals are the simplest
choice since they can provide a less ambiguous measure of
time scales. For this reason, the pulsed field was studied in a
variety of systems, including Kondo regime,9,10 a single
QD,11 or nanostructure.12,13

So far, the study of the response of a pulsed bias is only
focused on normal nanostructures. Since the interplay be-
tween nanoscopic physics and the physics of superconduc-
tivity has made the hybrid structure a very fruitful research
field,14 it will be interesting to study the dynamic response of
a hybrid structure with a superconductor lead, where the An-
dreev reflection is present near the normal-superconductor
�N-S� interface. Indeed, there are many interesting phenom-
ena in the N-S hybrid systems. First of all, because there
exists an energy gap � in the superconductor, an incident
electron from the normal side with energy � inside the gap �
cannot tunnel into the superconductor. But the tunneling can
occur via a two-particle process, in which the incident elec-
tron is reflected as a hole with the energy −�. At the same
time, a Cooper pair is created in the superconductor region.
This is the Andreev reflection.15 Second, for the
superconductor–normal region–superconductor �S-N-S� sys-
tem, Andreev bound states form in the normal region due to
the Andreev reflections at N-S interfaces.16 These bound
states exist in pairs, and a Josephson supercurrent can flow
through the S-N-S system, which is carried by the Andreev
bound state.17 Third, when the S-N-S device is under an
external dc bias V, an ac with frequency �=2�e�V appears.
The time-average current versus bias V exhibits the subhar-
monic gap structure when eV	2�.18

In this paper, we explore the effect of Andreev reflection
on the ac response of a hybrid system. Specifically, we in-
vestigate the ac response of a QD with a single level �0
connected by a normal and a superconductor lead �N-QD-S�.
For simplicity, we consider a large QD so that the intradot
electron-electron �e-e� is weak and can be neglected.19 The
transient transport is driven by a pulsed bias potential W�t�.
For simplicity, the ac pulsed bias is only added in the left
lead, and we set WR�t�=0. We consider two different pulsed
biases: �i� upward pulse with WL�t�=0 for t	0 and WL�t�
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=VL otherwise; �ii� downward pulse with WL�t�=VL when t
	0 and WL�t�=0 otherwise. For normal structures, Wingreen
et al. presented a general formula for the current driven by
the time-dependent external fields by using the nonequilib-
rium Green’s function method.2,11 With this general formula,
the time-dependent current driven by the ac pulse can be
calculated. For hybrid structures, the system is in a steady
state at t	0 and the current is time independent. At t=0, the
bias is abruptly turned on for the upward pulse case or turned
off for the downward pulse case. After that, the system be-
gins to relax and the Andreev reflection plays an important
role in the relaxation process. Finally, the system enters into
a new steady state. We find that the relaxation time depends
on the coupling strength and is slower in the N-QD-S system
�named hybrid system hereafter� than in the N-QD-N system
�named normal system hereafter�. In the linear bias regime,
the rising and falling processes are symmetric so that the
turn-on time is the same as the turn-off time. In this regime,
the Andreev reflection is important. As a result, the instanta-
neous current shows a clear increase �decrease� before reach-
ing the new steady state for the downward �upward� pulse.
For the large bias case, the time-dependent current oscillates
with the frequency �=qVL. In this regime, the upward and
downward processes are asymmetric and the turn-on time is
much larger than the turn-off time. In this nonlinear regime,
the Andreev process is negligible and the current in the hy-
brid system is close to that of the normal system.

The rest of this paper is organized as follows: In Sec. II,
the theoretical formula for calculating the time-dependent
current in the N-QD-S system is presented. To understand
the numerical results, the current away from the current at
t=0 is expanded to first order in the external bias. In Sec. III,
we show the numerical results along with some discussions.
Finally, the brief summary is given in Sec. IV.

II. THEORETICAL FORMULA

Consider a hybrid system that consists of a QD coupled to
a normal metal lead and a superconductor lead with the ex-
ternal time-dependent bias potential WL�t� that is added only
on the left normal lead. The Hamiltonian of the system is
written as follows:

H = HL + HR + HD + HT, �1�

where HL and HR describe the left normal lead and the right
superconductor lead, respectively. HD is the Hamiltonian of
the isolated central QD, and HT couples the left and right
leads to the QD. They can be written in the following
forms20,21

HL = �
k


��L,k + WL�t��CL,k

† CL,k
,

HR = �
k


�R,kCR,k

† CR,k
 + �

k

��CR,k↓CR,−k↑ + �CR,−k↑
† CR,k↓

† � ,

HD = �



�0d

†d
,

HT = �

,k,�

tk,�C�,k

† d
 + H.c., �2�

where �=L ,R. The operators d
 and C�,k
 destroy an elec-
tron with spin 
 in the QD and in the left or right lead,
respectively. For simplicity, we only consider a single level
in the QD and neglect the intradot electron-electron Cou-
lomb interaction. Under the adiabatic approximation, the
time-dependent bias potential can be included in the single-
electron energy �L,k�t�. We separate �L,k�t� into two parts: �L,k

and WL�t�, where �L,k is the time-independent single-electron
energy and WL�t� is a time-dependent part from the external
time-dependent bias potential. In this paper, WL�t� is the
step-like pulse with two different forms: �i� upward pulse
with WL�t�=0 when t	0 and WL�t�=VL otherwise; �ii�
downward pulse with WL�t�=VL when t	0 and WL�t�=0
otherwise. These two types of pulse describe the system
abruptly turned on or turned off at time t=0. � in the Hamil-
tonian HR is the superconducting energy gap. We assume that
� is a real parameter by selecting a special phase of the
superconductor lead in our calculation.22 Due to the exis-
tence of the superconducting lead, it is convenient to intro-
duce the Nambu representation.23 In the Nambu representa-
tion, the Fermi energy of the left normal lead is set at the
superconducting condensate. For the spin-down electron, the
energy is negative and is viewed as the hole. So, the Hamil-
tonian in Eqs. �2� can be rewritten in the following matrix
forms:

HL = �
k

�L,k
† ��L,k + WL�t� 0

0 − �L,−k − WL�t�
��L,k,

HR = �
k

�R,k
† ��R,k �

� − �R,−k
��R,k,

HD = 
†��0 0

0 − �0
�
 ,

HT = �
k,�

�k,�
† �tk,�,↑ 0

0 − tk,�,↑
* �
 + H.c., �3�

where

��,k = � C�,k↑

C�,−k↓
† �, 
 = �d↑

d↓
† � . �4�

The current from the left lead to the QD can be calculated
from the evolution of the number operator of the electrons in
the left lead, NL,↑�↓�=�kC�,k↑�↓�

† C�,k↑�↓�.
2,11,21 Using the

Keldysh equation and the theorem of analytic continuation,
the current through the left normal metal lead is expressed
as2,21,24

JL�t� = − 2q Re 	
−�

t

dt�
�Gr�t,t���L
	�t�,t�

+ G	�t,t���L
a�t�,t��11 − �Gr�t,t���L

	�t�,t�

+ G	�t,t���L
a�t�,t��22� . �5�
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Here, the Green’s function Gr/	 and the self-energy �	/a are
all two-dimensional matrices in the Nambu representation.
Since the spin up and spin down are symmetric in the Hamil-
tonian, the current contributed by the electrons with spin up
is the same as the current by the spin down electrons. Con-
sequently, the current is given by

JL�t� = − 4q Re 	
−�

t

dt��Gr�t,t���L
	�t�,t�

+ G	�t,t���L
a�t�,t��11. �6�

Because of �L
a�t , t��= ��L

r �t , t���†= �i�L /2���t− t��I �see Ap-
pendix�, where I is the 2 unit matrix, only G	�t , t� instead of
G	�t , t�� is needed in Eq. �6�. By using the Keldysh equation
G	=Gr�	Ga with the self-energies obtained in the Appen-
dix, the Green’s function G	�t , t� can be solved by

G	�t,t� = �
�
	 dt1	 dt2Gr�t,t1���

	�t1,t2�Ga�t2,t�

= i	 d�

2�
f���Gr����̄R���Ga���

+ i�


	 d�

2�
f���AL,
��,t�s
�L���AL,


+ ��,t� ,

�7�

where 
= ±1 denotes the spin up ↑ and spin down ↓,

�̄R��� = ��� − ��
�R

��2 − �2���� �

� ���
� ,

and

s↑ = �1 0

0 0
�, s↓ = �0 0

0 1
� , �8�

AL,
��,t� = 	
−�

t

dt1Gr�t,t1�exp
i��t − t1�

+ i
	
t1

t

dt2 WL�t2�� . �9�

The Green’s functions Gr/a��� in Eq. �7� are the Fourier
transformation of Gr/a�t , t�� with Gr/a���=�d�t
− t��ei��t−t��Gr/a�t , t��. Notice that in the present system, the
retarded and advanced Green’s functions Gr/a�t , t�� are still
the function of the time difference t− t�, although there exists
the time-dependent bias WL�t�, since Gr��� can be obtained
from the Dyson equation

Gr��� = �� − Hdot − �L
r − �R

r �−1

=
1

Det
� B11 i��R��/2

i��R��/2 B22
� , �10�

where B11=�+�0+ i�L /2+ i��R� /2, B22=�−�0+ i�L /2
+ i��R� /2, �=� /��2−�2, ��=� /��2−�2, Det=B11B22
+ ��R���2 /4, and �=1 for ��−� and �=−1 otherwise. In
the above derivation, the wideband limit has been used and

�� are assumed independent of �.25 It is also worth mention-
ing that the Green’s function Gr/a��� is not affected by the
time-dependent bias potential WL�t�.

Substituting G	�t , t� �in Eq. �7�� and the self-energies
�	/a�t� , t� �in the Appendix� into Eq. �6�, the time-dependent
current JL�t� is obtained straightforwardly. Similar to the
work in the normal system by Jauho et al.,2 the current JL�t�
can also be split into two terms JL

in�t� and JL
out�t�:

JL
in�t� = 4q	 d�

2�
f���Im
�L�AL↑��,t��11� ,

JL
out�t� = − 2q	 d�

2�
f���Re��L
Gr����̄R���Ga���

+ �



AL
��,t�s
�LAL

+ ��,t��

11
� , �11�

and JL�t�=JL
in�t�−JL

out�t�. Here, the current JL
in�t� is contrib-

uted by the electrons tunneling from the left lead to the
empty QD, and the current JL

out�t� describes the electrons
tunneling from the QD to the empty left lead, so they have
opposite signs.2

The above formulations �Eqs. �9�–�11�� for calculating the
current are valid for any time-dependent bias WL�t�. In the
following, two special cases for upward and downward
pulses WL�t� are substituted into these formulations to obtain
AL
�� , t� �Eq. �9�� and then the currents JL

in�t� and JL
out�t� �Eqs.

�11��.
For the downward pulse with WL�t	0�=VL and WL�t

�0�=0, AL↑�� , t� is found to be

ALD,↑��,t 	 0� = Gr�� + VL� ,

ALD,↑��,t � 0� = Gr��� +	 dE

2�i
e−i�E−��tGr�E�

�
 1

E − � − VL − i0+ −
1

E − � − i0+� .

�12�

For the upward pulse with WL�t	0�=0 and WL�t�0�
=VL, AL↑�� , t� are

ALU,↑��,t 	 0� = Gr��� ,

ALU,↑��,t � 0� = Gr�� + VL� −	 dE

2�i
e−i�E−�−VL�tGr�E�

�
 1

E − � − VL − i0+ −
1

E − � − i0+� .�13�

Here, AL
�� , t� for the downward and upward pulse biases
have been labeled by ALD,
�� , t� and ALU,
�� , t�, respectively.
For t	0, the system is in the steady state, so ALD,
�� , t� and
ALU,
�� , t� are independent of time t. On the other hand, for
t�0, they are obviously dependent on time t. For the pur-
pose of numerical calculation, we rewrite ALD/U,
�� , t� for
t�0 in the following form by using the residue theorem:
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ALD,↑��,t � 0� = Gr��� + e−iVLt	
t

�

d� ei��+VL��Gr���

− 	
t

�

d� ei��Gr��� ,

ALU,↑��,t � 0� = Gr�� + VL� + eiVLt	
t

�

d� ei��Gr���

− 	
t

�

d� ei��+VL��Gr��� . �14�

The expressions of AL,↓�� , t� are similar to that of
AL↑�� , t� and can be obtained from Eq. �14� by changing VL

to −VL. After solving Gr��� and AL
�� , t�, the currents JL
in�t�

and JL
out�t� �Eq. �11�� can be calculated straightforwardly. In

the limits t�0 and t→�, the system is in the steady state.
ALD,
�� , t� and ALU,
�� , t� in Eq. �14� are then reduced to the
value of the steady state in these two limits, and so is the
current JL�t�. For example, for the downward pulse,
ALD,
�� , t�=Gr��+
VL� for t→0 and ALD,
�� , t�=Gr���
when t→�. Furthermore, the current JL�t� is reduced to that
of the steady-state case with dc bias VL when t�0 and is
zero when t→�. On the other hand, for the upward pulse,
the current JL�t� is zero when t�0 and is the same with the
steady-state current with the dc bias VL in t→� limit.

In the small pulse bias VL limits, we can expand
AL
�� , t�0� to the first order of VL as AL
�� , t�0�
=AL
�� , t=0�+AL


1 �� , t�0�VL. AL

1 �� , t�0� can be ex-

pressed as

ALD,

1 ��,t � 0� = − i
t	

t

�

d� ei��Gr��� − 
	
0

t

d� i�ei��Gr��� ,

ALU,

1 ��,t � 0� = i
t	

t

�

d� ei��Gr��� + 
	
0

t

d� i�ei��Gr��� .

�15�

From Eq. �15�, we can see that ALD,

1 �� , t�=−ALU,


1 �� , t�.
This means that the upward pulse and the downward pulse
induce the same relaxation process in the small pulse bias VL
limits, except that the currents deduced from them are re-
laxed in the opposite direction. Finally, the currents JL

in�t� and
JL

out�t� in small VL limits can also be expanded as JL
in/out�t�

=JL
in/out�0�+Xin/out�t�VL. Here, Xin/out�t� is the first-order ex-

pansion coefficient with respect to VL, and Xin/out�t� is ex-
pressed as

Xin�t� = 4q	 d�

2�
Im f����L
AL,↑

1 ��,t��11,

Xout�t� = − 2q	 d�

2�
Re f����L�





AL,

1 ��,t�s
�LGa���

+ Gr���s
�L�AL,

1 ��,t��†�11. �16�

III. NUMERICAL RESULTS AND DISCUSSIONS

In the numerical calculation, we set temperature to zero.
In fact, a finite temperature only makes the current curve
smoother and does not affect the main features. We focus on
the weak coupling case with �L/R�� and set �=�L+�R=1
as an energy unit. The energy gap of the superconductor is
�=15. The energy level �0 in the central region is assumed
to be zero, which is the same as the right Fermi level. Be-
cause the system is in the steady state and the current is time
independent at t�0, we only plot the current JL�t� and the
related quantities for t�0 in the following discussion.

First of all, we study the small pulse bias VL limit, in
which the instantaneous current JL�t� can be expanded as
JL�t�=JL�0�+X�t�VL, and we also take the symmetric barri-
ers, i.e., ��=�L−�R=0. The first-order expansion param-
eters XU/D,in/out�t� of the currents JL

in�t� and JL
out�t� versus time

t are plotted in Fig. 1. Here, the indices U and D denote the
upward and downward pulses, respectively. For comparison,
we also show the corresponding parameters XU/D,in/out�t� for
the normal system in Fig. 1�b�. In Fig. 1, we can see that the
expanding parameters X�t� for the upward and downward
pulses are symmetric, i.e., XU,in/out�t�=−XD,in/out�t�. It means
that in the small VL limit �i.e., the linear regime�, the current
was turned off or turned on by the downward or upward
pulses in exactly the same manner with the same time scale
for both normal system and hybrid system. In other words,
the case of the downward pulse is the reversal process of the
upward pulse. So, in the following, we use the upward pulse
as an example in the linear region.

At time t�0, the driving bias is zero for the upward case.
The system is in equilibrium state, so the current JL

U is zero,
and JL

U,in and JL
U,out cancel each other. At t=0, the bias is

abruptly switched on. At t�0, the bias WL�t� is kept at VL all
along. The electrons with the energy in the bias window
begin to traverse through QD. As time t increases, JL

U,in and
JL

U,out deviate from the initial value �t=0�. A net current
gradually increases and the device is gradually turned on. As

FIG. 1. �Color online� The first-order expansion coefficient X�t�
of the current JL�t�−JL�0� vs time t for the downward and upward
pulse bias cases in the hybrid N-QD-S system �a� and the normal
N-QD-N system �b�. The parameters are �=1, ��=0, �=15, and
�0=0.
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a result, for time t from 0 to about 0.5�2� /��, XU,in�t� and
XU,out�t� gradually increase �see Fig. 1�. This increasing pro-
cess is almost the same for the normal system and the hybrid
system. For the normal N-QD-N device, the relaxation pro-
cess completes near time t=0.5�2� /��, and XU,out�t� is half
of XU,in�t� at large time. On the other hand, for the hybrid
N-QD-S device, the behavior of XU,in�t� is approximatively
the same as that of N-QD-N at large time, but XU,out�t� begins
to decrease when t�0.5�2� /��, and it goes to zero at the
end of the relaxation process. So the current JL

U�t=�� for the
N-QD-S device is twice as large as that of the N-QD-N de-
vice. We interpret these properties as follows. For the normal
system, the fact that Xin�t=�� is twice of Xout�t=�� is be-
cause Xin�t=�� and Xout�t=�� are, respectively, contributed
by the electrons tunneling from the left lead into the empty
QD and from the QD into the empty left lead with the elec-
tronic energy � between 0 and VL. In this energy range the
distribution of the left lead is fL���=1, but the distribution in
the QD is �fL���+ fR���� /2=1/2 for t=�. While for the hy-
brid N-QD-S system, after the bias is turned on, the Andreev
reflection begins to play a role. For JL

U,in, there is not much
difference between the normal and hybrid systems since the
electrons always tunnel from the left lead into the QD in both
systems. But for JL

U,out, instead of reflecting electrons from
the QD into the left lead in the normal system, the Andreev
process reflects back the hole out of the QD, which decreases
JL

U,out. Note that TA can be expressed as21

TA =
�4

64�4 + ��2 + ��2�2 . �17�

In the small bias limit ���0� and ��=0, nearly all of the
incoming electrons participate in the Andreev reflection. Be-
cause of this, JL

U,out�t=�� goes back to the initial �t=0� value.
So, Xout�t� decreases to zero at t=�.

Next, we study the case of large pulse VL. Figures 2�c�
and 2�d� depict the currents JL

out and JL
in versus time t for the

large pulse strength VL=10. For comparison, JL
out and JL

in for
the small pulse strength VL=0.1 are also plotted in Figs. 2�a�
and 2�b�. The currents JL

out and JL
in in the large bias case have

the following characteristics: �i� In the small bias limit, the
relaxation processes of upward and downward are symmet-
ric. However, in the large pulsed bias VL case, they are asym-
metric �see Figs. 2�c� and 2�d��. For the larger pulse bias VL,
the asymmetry is stronger. �ii� For the large bias case, JL

U,in

for the upward pulse oscillates with the frequency ��=qVL,
which can be clearly seen in Figs. 2�c� and 2�d� for VL=10.
At VL=0.1 the oscillation disappears because ��=qVL is too
small to oscillate before the system is completely relaxed.
�iii� JL

U,out �JL
D,out� of the hybrid system increases �decreases�

at first and then decreases �increases�, and it reaches a maxi-
mum �minimum� before the current relaxed completely. This
is different from the normal system, in which the currents
JL

U,out and JL
D,out are monotonously relaxed into the steady

state. �iv� The decreasing �increasing� process of the current
JL

U,out �JL
D,out� in the large bias case is much weaker than that

of the small bias case �see Figs. 2�b� and 2�d��. Because for
the large pulse, the energy of the incident electrons � is

large, then TA�1 from Eq. �17� and the Andreev reflection is
weak. So, most of the incident electrons participate in the
normal reflection. Consequently, JL

out is humped up �or down�
slightly.

Since the currents JL
out and JL

in cannot be observed inde-
pendently, in the following we study the total current JL�t�
�JL=JL

in−JL
out� which can be measured in the experiment. Fig-

ure 3 shows the current JL
U,D driven by the upward and down-

ward pulses versus time t for the different pulse strengths VL.
Here, the current responses to the upward and downward
pulses are symmetric at small linear bias VL �see inset of Fig.
3�, but are asymmetric at the large bias VL �see the main part
of Fig. 3�. At the large VL, JL

U oscillates with the frequency
��=VL. On the other hand, JL

D always changes slowly re-
gardless of the large and small VL.

Now, we focus the turn-on/off time �or rise/fall time9� and
the relaxation time �or saturation time10�. The former de-
scribes how fast a device can turn on/off a current, which is
necessary to provide a particular viable switching device,
and the latter was referred to how fast the device can go to a
new steady state after a bias is abruptly switched on. For the
small bias VL, the turn-on time, the turn-off time, and the
relaxation time are almost the same regardless of the normal
and hybrid systems. However, these �turn on/off or relax-
ation� times for the normal N-QD-N device are much shorter
than that of the hybrid N-QD-S device. For the normal de-
vice, it has been well turned on or off at t=0.2�2� /��. But
for the hybrid device, the system is turned on or off until t
=1.0�2� /��. On the other hand, for the large bias, the cur-
rent JL�t� of the hybrid system has the same character as that
of the normal system, so do the turn-on/off time and the
relaxation time. Note that these three time scales are not
equal now. The turn-on time is the fastest, even faster than
the scale 1 /VL�2� /��. The turn-off time is in the scale
1 /VL�2� /��, which is longer than the turn-on time.9 The
relaxation is �0.5�2� /��, which is the longest and only de-

FIG. 2. �Color online� The currents JL
U/D,in and JL

U/D,out vs time t
for the small pulse bias VL=0.1 ��a� and �b�� and the large pulse bias
VL=10 ��c� and �d�� in upward and downward pulse cases. �a� and
�c� are for the N-QD-N system and �b� and �d� are for the N-QD-S
system. The other parameters are the same as those in Fig. 1.
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pends on the coupling strength �. Let us explain why the
character of JL�t� for the normal and hybrid systems are the
same at large VL but very different at small VL. Because at
the large bias VL, most of the incoming electrons have the
large energy �, TA�1 from Eq. �17� and the Andreev reflec-
tion is weak, so the N-QD-S device and the N-QD-N device
have the same turn-on/off time and relaxation time. But for
the small bias VL, the resonant Andreev reflection is domi-
nant in the transport process in the hybrid system, so that the
current JL�t=�� of the hybrid system is twice as that of the
normal system, and their character JL�t� are also very differ-
ent. So we will only discuss the small pulsed bias VL case
further in the following.

Finally, we consider the case of asymmetric barriers �i.e.,
��=�L−�R�0� and in the small pulsed bias VL. Because in
the small VL the time-dependent current JL�t� for the upward
and downward pulses are symmetric, we only study the up-
ward pulse case. Figure 4 plots the current JL

U�t� versus time
t for the different asymmetric coupling strengths ��, and
they have the following behaviors: �i� As �� �i.e., �L� in-
creases, the current JL

U�t� rises faster, i.e., the turn-on time is
shorter, because electrons with energy in the bias window
can tunnel through the left barrier more easily with the larger
�L. This rising process of JL

U are nearly the same for the
normal and hybrid systems. �ii� After the rise of JL

U �at t
�0.2�2� /���, Andreev reflection begins to dominate and
gives rise to different sequent relaxation processes for the
normal and hybrid systems. At ��	0, JL

U�t� of the hybrid

system humps slightly in the relaxation process, which is
obviously different from the normal system in which JL

U�t� is
monotonically relaxed into the steady state. When ��=0,
JL

U�t� of the hybrid system passes a step and increases again.
The relaxation time for the hybrid system is much longer
than that of the normal system when ���0. When ���0,
the relaxation processes of JL

U�t� are similar for the hybrid
system and the normal system. These behaviors can be inter-
preted by combining the density of state �DOS� of the QD
with the Andreev reflection possibility TA. In fact, at ��
�0, the DOS of the QD in the hybrid system is similar to
that of the normal system and TA�1, so that the two systems
have similar turn-on/off and relaxation characteristics. On
the other hand, when ��=0 or ��	0, the resonant or the
near resonant Andreev reflection occurs, Andreev bound
states appear in the QD, and the DOS of the QD is very
different from the normal system. This makes the relaxation
processes very different for the N-QD-S and N-QD-N sys-
tems. �iii� Although JL

U�t� for ��= +a and ��=−a �a is an
arbitrary real number� experience different rising and relax-
ation processes, they have the same steady-state value at t
=�. In fact, in the steady-state case and at the small bias VL
limit, the transmission possibility of the normal N-QD-N de-
vice is

T��� =
�2 − ��2

4�2 + �2 ,

and the Andreev reflection possibility of the hybrid N-QD-S
device is21

TA��� =
��2 − ��2�2

4�4�2 + ����2 + ��2 − ��2�2 ,

with the current expressions JL=−2q� d�
2� �f��−VL�

− f����T��� and JL=−2q� d�
2� �f��−VL�− f��+VL��TA���, re-

spectively. Here T and TA are the same for ±�� when �=0;
consequently, JL�t=�� are also the same for ±��.

FIG. 3. �Color online� The currents JL�t� vs time t for the
N-QD-S system �a� and the N-QD-N system �b� with the different
pulsed bias VL. The main figure is for the case of VL=1 and VL

=10. The case of VL=0.1 is plotted in the inset panel. The curves
are labeled as �1� JL

D�VL=0.1�, �2� JL
U�VL=0.1�, �3� JL

D�VL=1.0�, �4�
JL

U�VL=1.0�, �5� JL
D�VL=10�, and �6� JL

U�VL=10�. The other param-
eters are the same as in Fig. 1.

FIG. 4. �Color online� The current JL
U�t� vs the time t in the

small pulse bias VL=0.1 with the different asymmetric coupling
strength ��. �a� and �b� are for the N-QD-S system and the N-QD-N
system, respectively. The other parameters are the same as those in
Fig. 1.
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IV. CONCLUSIONS

In summary, we have studied the dynamic response of
current to the external upward or downward pulsed bias for
the hybrid N-QD-S system. In the small bias VL limit, the
turn-on/off time and the relaxation process for the upward
and the downward pulse biases are symmetric. Comparing
wtih the normal N-QD-N system, the Andreev reflection
dominates the transport process. This makes the turn-on/off
time much longer and the steady-state current almost
doubled. For the asymmetric barriers, the transport properties
of the hybrid N-QD-S system are nearly the same as those of
the normal N-QD-N system when �L��R. On the other
hand, while �L	�R the current humps in the relaxation pro-
cess which reflects the properties of the superconductor. Be-
yond the linear bias regime, the rising process for upward
bias and the falling process for the downward bias becomes
more and more asymmetric with the increasing bias VL. The
turn-on time is faster than the turn-off time, and the current
versus the time t oscillates with the frequency ��=VL.
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APPENDIX

In this Appendix, we give the self-energy �r,	 for cou-
pling to the left normal and right superconductor leads. To
consider the wideband limit, in which the hopping elements
tk,� is independent of the momentum k and the density of
state of the leads �L/R

N �E� is energy independent, the self-
energies �L,


r,	 from the coupling to the left normal lead with
the time-dependent bias potential WL�t� and in the Nambu
representation are

�L,

r �t�,t� = �

k,L
tk,L
* gk
,L

r �t�,t�tk,L = −
i

2
�L��t� − t� , �A1�

�L,↑
	 �t�,t� = �

k,L
tk,L
* gk↑,L

	 �t�,t�tk,L

= i	 d�

2�
f����L

�exp
− i��t� − t� − i	
t

t�
dt1 WL�t1�� ,

�A2�

�L,↓
	 �t�,t� = �

k,L
tk,L
* gk↓,L

	 �t�,t�tk,L

= i	 d�

2�
�1 − f�����L

�exp
i��t� − t� + i	
t

t�
dt1 WL�t1��

= i	 d�

2�
f����L

�exp
− i��t� − t� + i	
t

t�
dt1WL�t1�� .

�A3�

Here �L=2��tk,L�2�L
N, gk
,L

r,	 �t� , t� is the Green’s function of
the isolated left lead, and f��� is the Fermi distribution. No-
tice that the retarded self-energy �L,


r �t� , t� is not affected by
the time-dependent bias WL�t�, so it is still a function of the
time difference t�− t. Since the time-dependent bias W�t� is
applied only on the left normal lead and WR�t�=0, so the
self-energies for coupling to the right superconductor lead
are the same as those of the steady-state case and they can be
written as7,21

�R
r ��� = − i

�R

2

�

��2 − �2�� �

� �
� , �A4�

�R
	��� = i��� − ��fR���

�R

2

1
��2 − �2�� �

� �
� , �A5�

where �R=2��tk,R�2�R
N, � is the energy gap of the supercon-

ductor lead, and �=1 for ��−� and �=−1 otherwise.
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