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Supplier Asset Allocation 1n a Pool-Based
Electricity Market

Donghan Feng, Deqiang Gan, Jin Zhong, Member, IEEE, and Yixin Ni, Senior Member, IEEE

Abstract—A power supplier in a pool-based market needs to al-
locate his generation capacities to participate in contract and spot
markets. In this paper, the optimal portfolio selection theory is in-
troduced for this purpose. A model applying this theory is pro-
posed to solve the supplier asset allocation problem. Real market
data are used in a numerical study to test the proposed model.
The results show that different asset allocation solutions can yield
very different risk-return tradeoffs for a supplier, and the proposed
method can be potentially useful in suppliers’ decision making.

Index Terms—Assets allocation, electricity market, portfolio se-
lection, risk management.

I. INTRODUCTION

ITH the restructuring of the power industry, the formerly
Wintegrated electric power suppliers under regulation are
transforming into independent generation companies (GenCos).
Other results of the power system deregulation include the de-
velopment of various energy markets and the diversification of
bilateral exchanges. Nowadays, an electricity market is usu-
ally composed of a day-ahead energy market, a real-time en-
ergy market, and several contractual instruments, such as fixed
forward, flexible forward, optional forward, contract for differ-
ences, and the like [1]-[6]. The diversity of trading types pro-
vides GenCos more options to sell their generation products in
different markets. In these circumstances, GenCos are required
to devise their own strategies on how to allocate generation pro-
portions for different exchanges. This can be regarded as a port-
folio selection problem. With an optimized portfolio, a GenCo
can maximize its return while minimizing the corresponding
risk.

In a deregulated environment, power suppliers as participants
in highly volatile spot markets are required to consider market
risks in their decision-making. Different aspects of risk man-
agement for power suppliers have been studied in [7]-[26]. The
issues of problem modeling, contract pricing, and the effects of
the contracts are discussed in [11]-[15]. The potential risks in
generation investment and planning are discussed in [16] and
[17]. The works in [18]-[20] address day-ahead bidding strate-
gies and their associated risks. There are also a few publications
that discuss the problem of supplier asset allocation [21]-[24].
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Various tools have been applied for risk management. A
graphic methodology is used in [21] for risk analysis. A sim-
ulation technique is proposed for the same purpose in [24]. A
method based on the fuzzy set theory is described in [25]. In an
optimization framework, risk could be modeled in the objective
function or as one of the constraints. A popular approach is to
include risk factors in the objective functions, as shown in [7],
[18], [20], [23], and [26]. This approach will be applied by this
paper.

We will introduce portfolio selection theory and propose a
solution for the supplier asset allocation problem in this paper.
In Section II, the framework of portfolio selection theory is de-
scribed. In Section III, the background of supplier asset alloca-
tion is examined, and the special features of supplier asset al-
location are discussed. In Section IV, mathematical models are
established for asset allocation in the electricity market. After
which, a case study based on the statistics of a real market (PJM)
is performed in Section V. Finally, some conclusions are drawn
in Section VI.

II. METHODOLOGY FOR PORTFOLIO SELECTION

In this section, we will briefly describe the framework of port-
folio selection theory. The latest developments of this theory can
be found in [27] and [48].

Maximizing return and minimizing risk are the goals of in-
vestors. The reality is that it is usually difficult to achieve these
two goals simultaneously. Therefore, investors are searching for
trade-off solutions between return and risk. This process can be
considered as utility maximization. Equation (1) formulates one
of the utility functions that is commonly employed by financial
theorists; this formula is also employed by the Association of
Investment Management and Research (AIMR) [48]

U=FE—-05-A-R )

where E denotes the expected return of the investor’s portfolio,
R denotes the risk of the investor’s portfolio, and A denotes the
investor’s degree of risk aversion. Assume that the number of
asset types available for the investor is m, the portfolio selec-
tion problem is to decide the share of each asset s1, S2, ..., Sm,

so that the utility function U = f(sq, s9, .. ., $m ) can be maxi-

’ ’

mized. The optimization problem can be formulated as follows:

Mazx U:.f(517327"'75m)
51,82,.-.,8m
S.T. dosi=1
s; €[0,1],i=1,2,...,m. @)
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Fig. 1. Portfolio optimization state.
In general, the utility function f(s1, $2,...,$m) is difficult

to be formulated explicitly. To solve the problem, portfolio se-
lection theory has developed a sophisticated method, which can
be described in the five steps given below.

A. Estimate the Return Characteristics in the Holding Period

From an investor’s viewpoint, the criterion to determine the
share of a certain asset in his portfolio is based on the return
of the asset in a future holding-period. However, the problem
is that the holding-period return of some assets can be arbi-
trarily distributed because of some uncertainties, such as asset
price volatilities. In the financial field, asset return is usually
described as a random variable according to its statistic char-
acteristics. For example, if asset ¢ has a return rate of r;, the
characteristics of r; can be measured by its expectation F(r;)
and standard deviation o;, and the return characteristics between
assets can be measured by covariance cov(r;, ;) or correlation
coefficient p;;.

B. Find the Optimal Risky Portfolio

Within all the assets that are available for investment, as-
sume without loss of generality that there are n assets whose
return is not fixed. These assets are called risky assets. Vari-
ables w1, ws, ... w, are defined as the weights of risky assets
in a risky asset portfolio.

In the £ — o coordinates, the capital allocation line (CAL)
is defined as a series of line segments that connect the point of
risk-free asset and the points in the feasible risky asset combi-
nation set (risky portfolio opportunity set), as shown in Fig. 1.
The optimal risky asset portfolio is on a certain CAL that has a
maximum slope K, = [E(r,) — r¢]/o,, where 7 is the return
rate of risk-free asset and

B(r) = 3 wib(r)

o) = ZZwichov(ri7rj). 3)

i=1 j=1

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 3, AUGUST 2007

Thus, the task of finding the optimal risky asset portfolio can
be converted to an optimization problem of maximizing K.
This problem can be formulated as

Z sz(Tz) — Tt
i=1

max “)
W1, W2, Why n o n
(/2o 20 wiwjcov(ri, ;)
i=1j=1
S.T. 2)“-1 (5)
i=1
w; € 0,1],i=1,2...,n. (6)
The optimal risky asset portfolio wj,ws,...,w} can be

found by solving the optimization problem defined above.
Since objective function (4) is non-concave, model (4)—(6)
is not a convex optimization problem, even though it has a
nice polyhedral feasible region. In this paper, we will use a
lifting technique to transform (4)—(6) into a convex quadratic
programming problem that is equivalent to (4)—(6). Then the
equivalent problem will be solved directly by convex quadratic
programming techniques. The details of this solution procedure
are well described in [49].

C. Get the Return Characteristics of the Optimal Risky
Asset Portfolio

After we obtain the optimal risky asset portfolio
wi, w5, ..., w,, the return characteristics of the optimal risky
asset portfolio, E(r,)* and (ag)*, can be easily formulated
as in

n

B(r,)" = Y wlB(r)

n

n
(og)* = Z Z wiwjcov(ri, ;).

i=1 j=1

(N

D. Determine the Share Between Risky Portfolio
and Risk-Free Asset

The share of risk portfolio y* and the share of risk-free asset
(1 — y*) can be obtained by solving the following:

max U = E(r.) — 0.5A4072
y

®
&)

=1y +y[B(ry)* —rg] - 054y (o2)"
ST. 0<y<1

where . denotes the return rate of the overall portfolio.

When the inequality constraint (9) is inactive, the optimal so-
lution has an analytical form as shown in (10), which can be
deduced from the first-order optimality condition

x _ E(ry)” _:f_
A- (02)

p

Yy (10)
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Formula (10) indicates that the share of risky portfolio is
linear to the inverse of risk aversion degree. The return and the
risk of overall portfolio are 7 +y* - [E(rp)* —7¢] and y*2 (Ug)* ,
respectively.

E. Calculate the Share of Each Asset in the Portfolio

The share of each risky asset ¢ and the share of the risk-free
asset are given as follows:

¥ ok

wiy, 1=12...,n an
1—9*. (12)

S

S

kS

III. DISCUSSION OF THE SUPPLIER ASSET
ALLOCATION PROBLEM

The portfolio selection methodology described in Section II
is based on the applications in security markets. The asset allo-
cation problem in electricity energy markets may have consider-
able differences with the portfolio selection problem in security
markets. In security markets, an investor holds financial prod-
ucts, such as bonds, stocks, and currency, while in electricity
markets, the fundamental assets are different types of electrical
products like bilateral contracts, spot energy, and ancillary ser-
vices. A power supplier could also invest in security markets
using their money capital, but this is not our concern in this
work. The asset allocation problem concerning both electricity
markets and security markets is the topic of our current research.

The designs of existing electricity markets are rather dif-
ferent. However, a number of similarities can be observed.
First, energy is the main product of electric power suppliers
accounting for the majority in the trades [28]; therefore, we will
consider only energy in this work and leave ancillary services
for further development. Second, although a market can either
be pool based or contract based, to a certain extent, it always
supports contractual exchange.! Third, a day-ahead or real-time
market is essential for system operation [34]-[39].

There are many types of energy contracts in an electricity
market, including callable/puttable flexible electricity contacts,
one-way/two-way contracts for differences, fixed-price physical
forward, and the like. In general, a contract can either be risky
(such as a puttable flexible electricity contact) or risk-free (such
as a two-way contract for differences).

Based on the above observations, in this study, we will focus
on three types of assets: risk-free contracts, risky contracts, and
day-ahead energy. Despite the diversities of actual market de-
signs and contract forms, the portfolio selection methodology
described in Section II is rather general.

In the rest of this section, we will explain the motivation of
proposing a portfolio selection framework in this study, while
alternatives such as real option models [45] are available.

In the early stages of the electricity market in England and Wales, over
80% of electricity was traded through contract for difference market [29], and
under NETA (New Electricity Trading Arrangements), 95% of electricity was
traded through bilateral contracts as of year 2003 [30]. Bilateral contracts ac-
count for 80%—85% of electricity exchange, and the day-ahead market accounts
for 10%—15% in Poland electricity market [31]. In China, nearly 90% of elec-
tricity trade is through various contract markets [32]. In the USA, Commodity
Exchange of New York (COMEX) started the exchange of electricity futures
contracts in March 1996 [33].
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For an utterly risk-averse investor, a real option-based ap-
proach may result in a different portfolio decision. The idea can
be stated briefly as follows. When making decisions on a project
(or real option), an investor can construct a portfolio whose pay-
offs can exactly replicate the payoffs of the project. If the project
costs more than the portfolio, it is obviously unattractive. The
investor can obtain the same payoffs more cheaply by buying the
replicating portfolio. If the project costs less than this portfolio,
it is obviously attractive. The investor can invest the project and
sell the replicating portfolio and thereby lock-in in a certain
profit.

In principle, this method is an optimal solution for an utterly
risk-averse investor, while two assumptions are required for the
realization of the method. One assumption is that the investi-
gated market is a complete market, and the other assumption
is that the investors always have sufficient cash to support the
hedging operation. In most of the current electricity markets,
these two assumptions are difficult to fulfill. There are few elec-
tricity markets that have mature financial markets for electricity
products. Electricity futures do exist in some markets. How-
ever, the correlation between futures prices and spot prices is not
good enough [42]-[44]; thus, a perfect hedging is absent. The
second assumption is also too strong. Because of the large ex-
change quantities in the electricity market, some suppliers may
not always have enough money to fulfill or maintain a com-
plete hedging position. Moreover, for aggressive investors (in-
vestors with low risk-averse levels), they would like to invest
their money in some high-risk, high-return assets rather than use
the money for hedging. The reason is that the former operation
will generate a higher return, although at the cost of high risk,
but this is comparatively a minor factor, and the comprehensive
utility will increase.

Generally speaking, the incompleteness of electricity fi-
nancial markets and the practical constraints of electricity
exchanges and power suppliers result in the invalidation of
some “strong” methods. This gives way to Markowitz portfolio
analysis in application.

IV. MODELING THE SUPPLIER ASSET ALLOCATION PROBLEM

Based on the discussions in the previous section, we will de-
rive a mathematical model for power suppliers’ asset allocation
in this section.

A. Supplier Model

Assume that the cost function of a supplier during a trading
interval is composed of two components: fixed cost a and vari-
able cost (b- G+ c- G?), where G denotes the scheduled energy
generation in the trading interval

C(G)=a+b-G+c G (13)

The risk aversion degree A is the supplier’s private informa-
tion. Different suppliers choose different values of A according
to their capabilities of enduring risk and their attitudes toward
risk. If A < 0, the supplier is risk-loving; if A = 0, the supplier
is risk-neutral; and if A > 0, the supplier is risk-averse. Gen-
erally speaking, risk-averters are predominant in most markets
[47], [48].
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The risk aversion degree A can be estimated by means of a
questionnaire-investigation [40]. Some scholars estimate A to
be 2~4 in American investment markets (the readers are re-
ferred to a textbook on investment science). Since there is no
authoritative data yet describing the risk preference of electricity
suppliers, in order to find an appropriate A, the following prin-
ciples are followed in this work.

1) A should not cause an extremely low expected return.

2) A should not cause an extremely high expected risk.

3) Both return and risk should not be too sensitive to A (or a
tiny change of attitude toward risk will cause a significant
variation of return or risk, resulting in an unstable finance
for the company).

Indeed, 1) and 2) are the aims of the so-called Enterprise
Profit Management and Enterprise Risk Management, respec-
tively. Based on the above principles, we choose A to be a
number between 2.89 and 6.1. Within this range, the expected
return rate, the risk level, and the sensitivities of return and risk
are appropriate. (A return-A curve and a risk-A curve can be
referred to in Fig. 5.)

Another assumption in this work is that the day-ahead market
is a perfectly competitive market, so the suppliers in the market
are price-takers. Therefore, offering marginal cost is a reason-
able assumption for a supplier’s bidding strategy.

B. Return Model for Risk-Free Contracts

In financial markets, the investment costs associated with the
current profits depend on the prices in the last period. However,
this is not the case in electricity markets. The total cost of gener-
ation depends on the cost functions of individual generators and
the amount of their generation outputs. In this paper, the return
in a decision period is defined as (total revenue - total cost)/total
cost. Here, we call this definition as the decision period return
(DPR) to distinguish it from other return definitions.

Assume that the number of trading intervals in a decision pe-
riod is K. If pi}® and P;'° denotes the negotiated price and ne-
gotiated generation, respectively, in the kth trading interval; the
decision period return of risk-free contracts (DPRp¢) can be
formulated as follows:

K
> [ppe - Ppe — (a+b- PPe4c- PPe?)]
DPRpc="=2

- . (14)

> (a—l—b - Pe+c- P,?ez)
k=1
Since both pi® and P;*¢ are given, DP Rpc is a constant. In
a situation where more than one risk-free contract is available, a
supplier will take just the contract that has the highest D PR p¢.

C. Return Model of Day-Ahead Market

According to the previous definitions, the decision period re-
turn of a day-ahead market (DPRp4) can be formulated as
follows:

s

P4 Py — (a+b- Py +c- P

K
2 (atb Pite )

DPRpa =

15)

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 3, AUGUST 2007

where pP4 denotes the day-ahead market price at the kth
trading interval, ﬁkDA is a random variable whose expected
distribution depends on the price forecasting, and P denotes
the generation scheduled in the kth trading interval.

Then the expected return and variance of D]SRD 4 can be
formulated as follows:

> P B (54

E(DPRp4) = —— -1 (16
(DPEpa) zk:(a+b.Pk+c.P,3) (16
Y P ()
o*(DPRp4) = b 5. (17)
>(a+b-Prtc- P

k

In (16) and (17), the estimation of E(pP4) and o?(pP4)
is a spot-price forecasting problem, which is a research field
by itself. There are many methods for price forecasting. Since
providing a sophisticated method for price forecasting is not
the purpose of this paper, we will employ a simple historical
data-based method for price forecasting. The sample of the spot
price in the kth trading interval consists of historical data in sim-
ilar hours and months.2

It should be noted that there is a crucial presumption in using
the mean-variance model in asset allocation. This assumption
is each asset’s return follows a normal distribution, so that
asset returns can be portrayed only by their expected mean and
expected variance. Therefore, before applying (16) and (17) to
describe DPRp 4, we need to know whether or not DPRpa
follows a normal distribution. For this purpose, Jarque—Bera
distribution test [51] and Lilliefors distribution test [52] are per-
formed. The test results show that the distribution of DPRp 4
can be considered as a normal distribution, although not every
PP in the decision period follows a normal distribution. The
reason is that in a certain decision period (say, March 2008),
there are always some ﬁkp 4 whose sample distributions are
similar, for example, the sample distribution at 9 A.M., March
6, 2008 and that at 9 A.M., March 7, 2008. Equation (15) shows
that DPRp 4 is linear to each pP4 in the decision period.
The Central Limit Theorem states that the linear combination
of identically distributed independent random variables ap-
proaches normal distribution when the number of variables
increases. Based on these observations, we believe that the
similarly distributed p* (though their own distributions may
not be normal) contributes to the normality of DPRp 4.

Take the PJIM market data as an example. Assume that a
GenCo has the historical data from year 1999 to 2004, and the
decision period is April 2005. The trading interval of the PIM
day-ahead market is one hour, so there are 2430 = 720 trading
intervals in the decision period. For every trading interval, the
adjusted historical day-ahead prices in similar hours and months
form a sample pool. The test result is that Lilliefors test can

2<Similar hours” was chosen because of the daily fluctuation of electricity
price, while “similar months” was chosen because of the seasonal fluctuation of
electricity price. Besides, since the historical data used in this work are from year
1999 to 2004, the fluctuation between years should also be considered. There-
fore, the historical data are not directly used as the sample data but adjusted by
a ratio, which is calculated from the curve-fitting at year axis.
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TABLE I
DISTRIBUTION TESTS RESULTS
Lilliefors Lilliefors test statistic
J-B test
test (critical value is 0.0886)

Best 0 0 0.056291
Median 1 1 0.10186
Worst 1 1 0.17163
DPRpa 0 0 0.074215

reject 58.3% of the ﬁf 45 as normal distribution at 5% sig-
nificance. However, the same Szo significance in Lilliefors test
cannot reject this one-month DP R 4 as a normal distribution.

More detailed results are provided in Table I. In this table, the
Lilliefors test results are given. The number “1” indicates that
the test can reject the null hypothesis (random variable follows a
normal distribution), and “0” indicates that the test cannot reject
the null hypothesis. Jarque—Bera test has also been performed,
and the result is the same as that in Lilliefors test. These two
types of distribution tests are performed at the 5% significance
level. The last column of this table lists the values of the Lil-
liefors test statistic (LTS). This is a measure of the approxima-
tion error to a normal distribution, in which the lower the value,
the better the approximation of the sample to a normal distri-
bution. Since there are 720 pP4’s in this example, it is inap-
propriate to list all the test results in this paper. Therefore, in
Table I, we choose three representatives from the 720 random
variables to demonstrate a view of the samples. They are the
best, the median, and the worst (approximation to normal dis-
tribution) from all the 720 samples (every sample includes 100
sample points), which have the minimal, median, and maximal
LTS, respectively. It is found that DPRp 4 can be accepted by
both the Jarque—Bera test and Lilliefors test, Ayvhile the median
PP is rejected by both tests. The LTS of DPRp 4 is between
the best 574 and the median pP4.

To further demonstrate the normality improvement of
DPRp 4, the distribution of DPRp 4 and the median ﬁkDA
are depicted in Figs. 2 and 3. These two figures show that both
random variables seem normally distributed, while median
PP has a more severe “narrow peak-heavy tail” characteristic,
which is the main reason why it is rejected by distribution tests.
It should be pointed out that although accepted by both the
Jarque—Bera and Lilliefors tests, D PRp 4 also has the “narrow
peak—heavy tail” characteristic to a certain degree, which is
shown in Fig. 3. A Kurtosis improvement (from 3.4150 to
3.0282) also indicates an alleviation of the “narrow peak—heavy
tail” characteristic. (The kurtosis of normal distribution is 3.)

D. Return Model of Risky Contracts

A supplier could have more than one risky contract in a port-
folio. If there are m types of risky contracts in a market, we
should formulate m models for these m assets and combine
them with the day-ahead asset to form a risky portfolio oppor-
tunity set. There is no theoretical difficulty in dealing with mul-
tiple risky contracts as shown in Section II. For simplicity, how-
ever, this paper considers only one typical risky contract form,
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Fig. 3. Distribution of DﬁRDA, Kurtosis = 3.0282.

namely, the interruptible contract between a supplier and the
system operator.

As electric power cannot be efficiently stored, the system op-
erator should maintain a balance between supply and demand
at every instance of time. However, power demand varies from
time to time for various reasons. When a severe imbalance hap-
pens, there is a need for the system operator to interrupt load or
reduce generation if other favorable solutions are unavailable.
Interruptible contracts are subscribed by the system operator in
advance for this purpose. The interruptible contract that we con-
sider in this paper is specified as follows:

pPA > py

_ ) DPa
PrC = . .
{pc . PP <pr

(18)

Equation (18) indicates that when spot price 574 is higher
than interruptible price p;, the contract price prc is equal to
agreement price p,; when the spot price is lower than the in-
terruptible price, generation will be interrupted and a compen-
sation price p. will be paid. If p. = 0, this contract becomes a
non-compensated interruptible contract. The decision period re-
turn of this interruptible contract can be formulated as in (19) at

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 02:34 from IEEE Xplore. Restrictions apply.



1134

the bottom of the page, where Prob(e) is a probability function
that denotes the probability that a random event will happen.

Now, let us investigate the distribution of DPR rc. As the
discussion in the previous subsection (Section IV-C) has pointed
out, electricity prices have daily fluctuations and seasonal fluc-
tuations. In a decision period (say, March—September 2008),
some intervals are similar (such as 9 A.M., March 6, 2008 and
9 AM., March 7, 2008), and some are significantly different
(suchas 1 A.M., March 6, 2008 and 9 A.M., March 7, 2008) from
the aspect of price forecasting. Based on this standpoint, if we
pick up the similar intervals in the decision period to form a
group, then it is reasonable to assume that the pP’s in the same
group follow a similar distribution. Therefore, each interval in
a certain group can be considered as a single Bernoulli trial
(where the result is prc = p. with the probability pP 4 < Pr
and prc = p. with the probability 5”4 > p;). Then the
number of interruptions in the '™ group X, will follow a bi-
nomial distribution, as shown in the following:

N,

k’”) - Prob (524 < p)"

Prob (57" > pr)

Prob(X,, = k) = (

o=t (20)

k=0,1,...,Nn

where N,,, denotes the number of trading intervals in the mth
group.

Therefore, the decision period return of a risky contract can
be formulated as in (21) at the bottom of the page.

Equation (21) can be further expressed as a function of
random variables X 175(2, .. .,X M, as shown in (22) at the
bottom of the page.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 3, AUGUST 2007

The De Moivre-Laplace theorem states that a binomial dis-
tributed random variable will approach a normal distribution
when the times of the Bernoulli trial increase. Since N,,, is a
large number, we conjecture that X, will be close to a normal
distribution.

Then let us take a closer look at (22). The denominator of
(22) is approximately a constant because X,,, is a small number
compared with N,,. On the other hand, the numerator of (22) is a
linear combination of X 1 X 2y ,X - Hence, we conjecture
that D]SRRC is close to a normal distribution. The reason is
that when each X m follows a normal distribution, the DPR RC
will also follow a normal distribution since a linear combination
of normally distributed random variables still follows a normal
distribution.

The above conjectures about X,, and DPRpc are supported
by distribution tests. In our tests, each X sample pool consists
of IV, observations of comparison between p; and randomly
selected day-ahead prices in similar hours and months from the
adjusted PJM historical prices. A total of 1000 sample pools
are used in the tests. The 5%-significance Lilliefors tests accept
97.3% of these samples as normally distributed. In the test for
DPRpgc, the acceptation rate is 96.1% in a pool of 1000 sam-
ples randomly simulated from adjusted PJM historical data. The
median of the test data is 0.0673 of X,,, and 0.0715 of DPRgc,
which is significantly less than the critical value 0.0886 of the
test.

V. NUMERICAL STUDY

The numerical study reported in this section is based on the
PJM market data. We assume that a supplier is seeking for an

Ead
vl

[pa - Pi— (a+b-Py+c-PE)] - Prob (5P* > pr) + (pe - Pi — a) - Prob (5P < p1)

DPRpc = — 19)
kzl (a+b- Py +c-P?)-Prob (ﬁkDA Zpl) + a - Prob (ﬁkDA <p1)
M . -
i > [ o P — (a—i—b-Pm—f—c-Pgl)] (N — X)) + (pe - Py — a) - X
DPRpc = 2=2 — - - (1)
> (a+b-Pp+c-P2) (Np—Xm)+a- X,
m=1
DpRRC :g(Xl,XQ, e ,X}\,{)
M -
> (PaPm —a—bPy — cPL) - Ny + (pe P — pa P + bPr + cPL) - Xy,
m=1
= (22)

M

> (a+bP, +cP2)-N,, — (bP,, +cP2) - X,

m=1
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TABLE II
INFORMATION HOLD BY SUPPLIER
Private information Public information
a=1108; Day-ahead & | PJM Western Hub
Total cost ($) b=35.69; Real-time DALMP & RTLMP
¢=0.02081; market price 1999---2004
Risk-free
Risk aversion
5 contract 46.2
degree
($/MWh)
Scheduled Risky contract
187 46.9,0
generation (MW) ($/MWh)
TABLE III

RETURN CHARACTERISTICS OF ASSETS

Measure DPR standard
DPR expectation
Asset deviation
DA(day-ahead market) 2.09% 4.75%
RC(risky contract) 1.53% 0.41%
FC(risk-free contract) 1.5% 0

(The estimated correlation between the return-rates of DA and
RC is 0.66225.)

TABLE IV
PORTFOLIO: SHARE AND QUANTITY OF EACH ASSET

Asset Asset proportion Asset quantity (MW)
DA 51.88% 204.41
RC 6.01% 23.68
FC 42.11% 165.91

asset allocation solution for the period of April 2005, and the
supplier will base his decision on the historical PJM market data
from 1999 to 2004, which are available on the PJM website.
Assume that the supplier has two 197-MW fossil generators lo-
cated at PIM Western Hub. The parameters of these generators
are given in [41]. The cost information is listed in Table II. (The
investment recovery rate is also accounted in the fixed cost.)
Some other information required for the numerical study is also
included in Table II.

First, based on historical data and the return models in
Section IV, the statistical characteristics of the assets’ returns
in the decision period are estimated. The results are listed in
Table III. Then by performing the procedure in Section II, the
optimal asset allocation solutions are obtained and listed in
Table IV.

The above is a simple example of asset allocation based on
the optimal portfolio selection theory. A number of questions
may rise immediately. First, some parameters in this method
are obtained through statistical estimation; then although this
method could theoretically yield an optimal portfolio solution,
because of the deviation between reality and estimation, the

1135

Asset Ratio
o o o o
& & a5
T T T T

o
[N}
T

o
T

o

o

Risk Aversion Degree

Fig. 4. Portfolio versus risk aversion.

portfolio computed by the proposed method is in fact not op-
timal. What will happen then if the supplier implements the
portfolio? Second, how much better is the portfolio compared
with other portfolios, such as a portfolio decided by a passive
investment strategy? In other words, is the proposed optimal
asset allocation method meaningful in reality? Third, how will
this method perform in different situations, such as when a sup-
plier’s attitude toward risk changes?

In order to answer the above questions and test the proposed
method further, additional simulations have been performed.
First, we compute optimal portfolios when the supplier has dif-
ferent risk-aversion-degrees. The results are illustrated in Fig. 4.

Fig. 4 shows that the optimal portfolio performs piecewise
when the supplier’s risk-aversion-degree increases. When the
risk-aversion-degree ranges from 0O to 2.61, the optimal port-
folio consists of only the day-ahead (DA) asset. This phenom-
enon indicates that when a supplier is with an extremely low
risk aversion rate, he is more concerned about return than risk.
Therefore, the optimal strategy is simply to choose the asset
with the highest return, even though this asset may also have the
highest risk. When the risk-aversion-degree ranges from 2.61
to 2.89, the optimal portfolio consists of two assets, DA and
risky contract (RC). This indicates that when the aversion rate
is moderately low, the optimal strategy is to introduce the asset
with moderate risk and return (RC) to adjust the portfolio risk.
When the risk-aversion-degree is higher than 2.89, the optimal
portfolio consists of three assets: DA, RC, and risk-free con-
tract (FC). This indicates that when the aversion rate becomes
higher, increasing the ratio of RC alone cannot satisfy the need
of mitigating the portfolio risk, and the optimal strategy is to
further introduce risk-free asset FC (though its return is low).
In this range, the ratio of risk-free asset performs a monotonous
increase, while the ratios of the two risky assets perform a mo-
notonous decrease as the risk-aversion-degree increases.

In Fig. 5, it is shown that when the risk-aversion-degree is
lower than 2.61, the portfolio does not change (solely consists
of DA asset), so that the return and risk are kept constant. When
the risk-aversion-degree is higher than 2.61, both return and risk
perform a monotonous decrease as the risk-aversion-degree in-
creases. This tendency can be easily understood as follows: the
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Fig. 5. Return characteristics versus risk aversion degree.

TABLE V
ACCOUNTING COMPARISON BETWEEN DIFFERENT STRATEGIES

M Expected| Actual | Revenue | Expected
easure Actual
revenue | revenue [estimation| standard
. VaR (K$)
Portfolio M$) MS$) error | deviation
Invest all assets in
6.2591 | 6.3303 | 1.12% | 4.75% | 8.5154
day-ahead market
Invest all assets in
6.2251 | 6.2495 | 0.39% | 0.41% | 1.1081
risky contract
Invest all assets in
6.2231 | 6.2231 0 0 0
risk-free contract
Proposed portfolio
6.2419 | 6.2803 | 0.61% | 2.48% | 4.4305
(A=5)

portfolio with a higher risk-aversion-degree has a stronger mo-
tivation to bring down the risk. The portfolio mitigates its risk
by adjusting the ratio of each asset, as the former paragraph and
Fig. 4 show, by first introducing the asset with moderate risk and
return (RC), and if insufficient, further introducing the risk-free
asset (FC). We can also notice from Fig. 5 that the return also
performs a monotonous decrease as the risk decreases. This is
because the mitigating risk is not for free but is at the cost of
a lower return. Therefore, return performs decrease as risk de-
creases. Indeed, the proposed method is based on a compromise
between the portfolio risk and the portfolio return.

Table V provides a performance comparison between dif-
ferent portfolios. The results show that the proposed method is
seeking for an optimal balance between return and risk. The ac-
tual revenue column is calculated from the actual market data
(PIM DALMP 2005), indicating the total portfolio revenue in
the decision period if the proposed portfolio solution is applied.
The expected revenue column lists the estimation values based
on the historical data (PJM DALMP 1999-2004). The revenue
estimation error column gives the estimation errors between the
expected revenues and the actual ones. The errors estimated ac-
cording to year 2005 data are within 1.5%. The errors look ac-
ceptable based on this year’s data.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 3, AUGUST 2007

The expected standard deviation column measures the port-
folio risk; for comparison, we need a measure of the actual risk.
Because the actual decision period return is a fixed value, we
employ the value at risk (VaR) of cash flow at every trading in-
terval in the decision period to measure the actual risk experi-
ence.3 The last two columns show that the portfolio with a high
expected standard deviation also encounters high VaR in reality.
According to the comparison between estimation and reality, we
believe that if the proposed method is applied in an actual situ-
ation, the outcome will be close to what we had anticipated.

Diversification is a well-known strategy for reducing the non-
systematic risks in stock markets. Previous simulations and dis-
cussions in this section show that diversification is also an effi-
cient approach to reduce electricity suppliers’ risks. It is shown
in Fig. 4 that suppliers with moderate and high risk-aversion-de-
grees have the optimal positions of holding a portfolio with all
the three assets. However, we have to point out that diversifica-
tion is constrained by some unique attributes of electricity mar-
kets. First, the category of assets is very limited in electricity
markets compared with stock markets. Second, the correlations
between the assets’ returns are much closer in electricity mar-
kets than in stock markets. Asset returns are closely correlated
because the prices of different electric exchanges are closely
correlated. As generally recognized, the prices of day-ahead en-
ergy, real-time energy, and operational reserve are all high-cor-
related. Indeed, there is a lack of negative-correlated or even
low-correlated assets in the electricity market. Therefore, it is
very important for electricity suppliers to invest in other markets
(e.g., financial markets such as stock market, futures market,
and options market) to reduce the systematic risk in electricity
markets. The strategy of investing in both electricity assets and
financial assets is the topic of our current research.

VI. CONCLUSIONS

An asset allocation strategy has a significant impact on an
electricity supplier’s future profits and potential risks. An op-
timal asset allocation strategy based on the portfolio selection
theory is proposed in this paper. A numerical example based on
the PJM market data is provided to demonstrate the application
of the introduced theory. The results show that the portfolio se-
lection theory is an elegant and potentially useful tool for man-
aging the risks of electricity market suppliers. Further research
is underway to expand the modeling capability of the suggested
approach.
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