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NEGOTIATION OF ON-SITE BUFFER STOCKS: A NON-STRUCTURAL FUZZY 

DECISION SUPPORT SYSTEM APPROACH 

 

Abstract:  

Purpose – This paper examines the potential for applying non-structural fuzzy decision 

support theory to modelling the negotiation between various participants with conflicting 

objectives so as to establish the optimum buffer stocks for a construction project.   

Design/methodology/approach – In view of the divergence in objectives between various 

decision-makers when determining the amount of materials to be delivered to site, the 

concept of integrating the Non-Structural Fuzzy Decision Support System (NSFDSS) to 

multi-attribute decision making is reviewed.  With the help of a case example, the process 

involved in the NSFDSS and the methodology of evaluation is illustrated.  Finally, the paper 

proposes the use of the Nash criterion to measure the utility of various decision-makers so as 

to identify an equilibrium solution for the quantity of materials to be supplied. 

Findings – The results indicate that the requisite number of on-site stocks can be determined 

by referring to the utility of the parties involved in decision making. 

Research limitations/implications – The NFDSS systematically evaluates each scenario under 

different affected factors such as cost, schedule, quality, safety, etc.  Finally, a scenario utility 

is computed to establish the preferences of each party. 

Practical implications – NFDSS can systematically analyse human judgments to generate 

relative weightings for the decision factors and elements.  The NFDSS model can be applied 

to real-world cases to determine the frequency of delivery and the amount of buffer stocks 

that would meet the requirements of the various project participants.   

 

Keywords: Buffer stocks, fuzzy theory, two-party negotiation, utility. 
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INTRODUCTION 

 

It is well known that construction industry productivity levels consistently lag behind other 

sectors of the economy and there has been ample debate on how these may be raised.  

Increased buildability has been suggested as one way forward (Poh and Chen, 1998).  The 

use of off-site prefabrication has some potential (CIRC, 2001), although other factors, such as 

management methods and quality of subcontractor work, also have a significant effect on 

output.  It is also considered possible to raise productivity levels by enhancing logistics 

management on site (Bertelsen, 1995).  According to the Danish Building Research Institute, 

a saving of 5% of construction costs can be achieved through better planning in the purchase, 

delivery, storage and movement of construction materials (Caron et al, 1998).  Streamlining 

production with minimum holding inventories is a commonly used method in the 

manufacturing industry to reduce the time and cost of production (Low and Choong, 2001).  

 

Ideally, construction materials can be scheduled to arrive Just-In-Time (JIT) for assembly 

(Low and Mok, 1999), thereby eliminating the amount of equipment, materials and time 

required for production (Low and Tan, 1997a,b).  In the JIT philosophy, raw materials are not 

stocked (Hay, 1988).  Instead, they are delivered in the right amounts, in the right condition, 

to the right place, and at the right time for production (Harber, 1990).  JIT has been shown to 

work well in the manufacturing sector (Lim and Low, 1992; Low and Chan, 1997) and would 

seem to have some potential in the construction industry, especially for projects on confined 

sites where massive prefabricated components are specified (Oral et al, 2003; Fang et al, 

2004; Ng et al, 2004).  However, avoiding stockpiling on site is very difficult, if not 

impossible, to implement in construction practice, as miscalculations due to the uncertainties 

involved result in the excessive idling of plant and human resources (Ofori, 1994; Low and 
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Mok, 1999).  What is needed is the maintenance of just a sufficient stock of essential 

materials on site.  It is necessary, therefore, to have a means of identifying the optimal 

number of buffers required (cf: Jostes and Helms, 1995).   

 

As the construction programme and supply conditions are dynamic and vague in nature, 

continual negotiations have to take place between the various participants involved to 

establish the buffer stocks needed at different stages of the project.  In this paper we show 

how fuzzy theory can help in optimising this process.  Firstly, the background to non-

structural fuzzy decision support systems is introduced.  A case study is then provided to 

illustrate how the number of stocks relates to the level of utilisation.  Finally, the bargaining 

process involved in identifying the requisite number of on-site stocks is outlined and 

discussed. 

 

 

NON-STRUCTURAL FUZZY DECISION SUPPORT SYSTEMS 

 

Decision problems can be broadly classified into Multiple Attribute Decision Making 

(MADM) and Multiple Objective Decision Making (MODM) types (Hwang and Masud, 

1979).  MADM problems require various alternatives to be identified and a course of action 

selected from multiple and often conflicting attributes.  MODM problems, on the other hand, 

require decision-makers to determine the most promising alternative with respect to the 

limited resources available.  Having systematically categorised the methods pertinent to 

MADM and MODM, Hwang and Masud (1979) and Hwang and Yoon (1981) suggest how 

they can be applied for solving problems concerning a single decision-maker.  When more 

than one person is involved in the decision making process, the analysis must be extended to 
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cover possible conflicts in the decision-makers’ goals.  To do this, it has been suggested that 

incorporating the theory of fuzzy sets into MADM problems may yield more satisfactory 

results (Zimmermann et al, 1984) and Kickert (1978) has summarised some applications.  

 

Being first introduced by Zadeh (1965), the fuzzy set is defined as a class with a continuum 

of grades of membership (Goguen, 1967, 1969).  Instead of imposing precisely defined 

criteria to classes of objects, the boundary is not as clear as in the conventional ‘crisp set’ 

theory.  Fuzzy set theory is therefore suitable for solving problems in which the description of 

activities and observations is imprecise, vague, and uncertain (Chen, 1998).  According to 

Dubois and Prade (1980), a fuzzy MADM problem consists of (i) a fuzzy rating phase in 

which the fuzzy utility of each alternative is obtained; and (ii) a fuzzy ranking phase in which 

the fuzzy utilities are compared.  A Non-Structural Fuzzy Decision Support System 

(NSFDSS) was developed to rank all elements on the basis of agreed-upon criteria so as to 

facilitate the analysis of complicated MADM problems (Chen, 1998).  By incorporating the 

relative fuzzy set theory, NSFDSS allows the use of linguistic variables, such as “the same”, 

“marginally different”, “significantly different”, etc. rather than relying on quantitative 

variables to represent the imprecise concepts involved.   

 

The three steps of NSFDSS include (i) decomposition of the MADM problems; (ii) pairwise 

comparative judgment of alternatives under different attributes and attributes’ pairwise 

comparative judgements; and (iii) rank ordering of the alternatives according to the 

aggregated scores (Tam et al, 2002). 

 

(1) Although MADM problems are widely diverse, they all comprise alternatives and 

multiple attributes.  The alternatives concern the range of end results that may be 
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achieved.  A finite number of alternatives from several to thousands are screened, 

prioritised, selected and ranked.  The attributes refer to the goals or criteria.  A decision-

maker needs to generate several attributes for each problem setting.  The decomposition 

stage structures the problem into attributes of different levels, each independent of those 

in successive levels, working downward from the goal at the top level through criteria 

bearing on the goal at the second level, to sub-criteria at the third level, and so on, 

working from the general (and sometimes uncertain) to the more specific at the lower 

levels (Yoon and Hwang, 1985). 

 

(2) The alternatives are compared pairwise for relative importance with respect to the shared 

attributes at the level above, giving rise to a corresponding matrix.  The comparisons are 

made by the decision-maker from his own point of view.  Scores are given to the 

alternatives based on: if A is better than B, the score to A will be 1 and 0 for B; if A has 

equal effect with B, they will both receive a score of 0.5. 

 

(3) Utilities are calculated from the second level down by multiplying local priorities with 

the priority of their corresponding attributes at the level above and the weighting of each 

element at that level according to the attributes it affects (the second-level elements are 

multiplied by unity, which is the weight of the single top-level goal). 

 

Another commonly used decision approach for MADM problems is the Analytical Hierarchy 

Process (AHP) (Paulson and Zahir, 1995; Lipovetsky and Tishler, 1999; Zeshui and Cuiping, 

1999).  Using the AHP, a consistency ratio is generated after the evaluation process and its 

global acceptance criteria are limited (Tam et al, 2006).  Despite that, there is no guarantee 

that a consistent pairwise comparison between voluminous decisions exists (Belton and Gear, 
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1983; Zahir, 1991; Murphy, 1993).  Instead, the NSFDSS is able to overcome these 

disadvantages by changing the consistency checking scale and adding a fuzzy scale to the 

priority scores. 

 

 

THE STORAGE AND DISTRIBUTION PROBLEM 

 

The supply of building materials and components to site is fraught with difficulties, which 

can have a significant effect on productivity levels.  For most of the materials purchased, the 

planning of deliveries is undertaken on an ad hoc basis (Clausen, 1995).  This can lead to two 

types of problems.  First, some materials may be purchased just before they are required, 

resulting in delays, and interruptions to the working schedule.  Second, other materials may 

be procured in large quantities irrespective of the production needs on site.  This can result in 

a waste of resources when stocking, handling and transporting.  Building materials often 

require a large storage capacity, while most sites are of a limited size.  At the same time, 

storage facilities are usually temporary structures or compounds, and the conditions in which 

the materials are kept can lead to damage from bad weather or the movement by people, plant 

and equipment.   

 

Unless stringent quality control systems are adopted, sub-standard materials may arrive on 

site and have to be returned to the fabrication shop or manufacturing facility, thus halting 

production and, in the worst cases, leading to project delays (Agapiou et al, 1998).  Given the 

very different conditions pertaining to construction in contrast with manufacturing work, it is 

inevitable that contractors seek to maintain the availability of materials by keeping a 
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reasonable amount of stock on site.  To do this effectively, it is necessary to determine the 

number of delivery loads of materials to be made and the associated on-site buffer stocks.  

 

The key organisational entities involved in the material acquisition process are the planning 

and purchasing departments.  These two departments would have very different objectives 

under the criteria of time, cost, quality and safety.  These criteria, termed the affected factors, 

would therefore be weighted differently by these two departments.  The problem is 

aggravated when numerous combinations of storage and distribution solutions exist, as this 

could result in a dissimilar evaluation result between the two entities.  For instance, when 

considering the costs involved in purchasing, the unit material price is expected to decrease 

as the quantity of purchase increases due to bulk discounting.  Therefore, the purchasing 

department tends to order the materials in large quantities in return for a less frequent 

delivery schedule.  The concerns of the planning department are less related to delivery 

charges than issues associated with storage (such as multi-handling, damages, safety hazard, 

circulation space, etc).  This lends itself to a MADM problem with two parties involved in the 

negotiation process as shown in Figure 1. 

 

< Figure 1 > 

 

 

METHODOLOGY OF EVALUATION 

 

Based upon a project schedule with eight construction activities as shown in Table 1, the 

project will take 40 days to complete while requiring 400 units (i.e. 400R
0

d
=∑

=

4

1
) of material 

for construction.  As shown in Table 2, five possible scenarios may occur in this project. 
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These comprise delivering the resources in a quantity of: (i) 10 units per day; (ii) 20 units 

every 2 days; (iii) 40 units every 4 days; (iv) 80 units every 8 days; and (v) 200 units every 20 

days.  It is a requirement that when the on-site storage prior to the delivery falls below 10 

units, the next supply will be twice as much as that originally planned so as to eliminate the 

chance of shortage which would otherwise give rise to additional costs due to idling of labour 

and plant.  Therefore, the actual frequency of delivery may be less than that derived by 

simply dividing the total units of material by the number of units delivered each time.  

 

< Table 1 > 

 

If 10 units of material can be loaded by a truck each time, and the transportation cost is £50 

per load with an additional fee of £20 being added to cover the costs of planning, scheduling, 

safety checking, cleaning, etc., then the total delivery cost can be calculated as follows:  

 

delivery of times20£
each time) delivered (units units 10

needed) materials (total units 40050£costdelivery  Total ×+×=  

 

At a daily site storage cost of £20 per unit, the storage fee for each scenario as shown in 

Table 2 is: 

 

∑∑
==

×+×=
40

1i

40

1i
shortagedaily 10storagedaily 20£cost storage Total  

 

From Table 2, it is clear that storing too many resources will lead to a higher total storage 

cost despite the decrease in delivery cost.   
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< Table 2 > 

 

Pairwise Comparisons 

 

The problem firstly is considered from the planning department’s point of view.  The main 

responsibility of this department is to plan the project according to cost, schedule and other 

factors.  In the process of prioritisation, pairwise comparisons are conducted between any two 

scenarios.  This can be represented in a matrix form as shown in Table 3.  Taking the first 

column of Table 3 as an example, when comparing with other scenarios, the cost of the other 

scenarios has to be divided by the cost of Scenario 1.  To enable other comparisons to be 

made, one half of this result is taken as the outcome.  Therefore, 0.5 signifies that two 

scenarios have the same score for each department, while the scenario with the lowest cost 

will have the highest score. 

 

< Table 3 > 

 

For the pairwise comparisons in the schedule, focus is placed on the probability of delay in 

each scenario.  There are three scales – less, same and more – as follows (note that the 0, 0.5, 

and 1 refer to the comparison of x and y).  If Scenario X has a greater probability of leading to 

delay than Scenario Y, X is given 0 and Y is given 1.  If two scenarios have the same 

probability of leading to delay, both are given 0.5.  Scenarios 1 and 5 are assumed to have the 

same probability of leading to delay.  This is because the schedule will be affected by the 

unexpected factors if delivery is made frequently.  On the other hand, storing too much on 

site will make delivery very difficult – possibly leading to rework due to substandard quality 
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caused by store damage.  For other scenarios, storing more materials will be given higher 

scores because they have little probability of a shortage occurring. 

 

As with the comparisons in the schedule, the comparisons concerning quality and safety also 

involve the probability of damage and danger.  Three scores may be given to X: 0 if Scenario 

X has a greater probability of leading to damage/danger than Scenario Y; 0.5 if both have the 

same probability of leading to damage/danger; and 1 if Scenario X has less probability of 

leading to damage/danger than Scenario Y.  Delivering more resources is assumed to result in 

lower quality levels as less attention can be paid to each delivery.  The planning department 

will consider storing less resources to maintain better on-site safety.  But S1 and S5 are 

assumed to have the same probability because too many deliveries involve storing too many 

materials and cause danger to the workers. 

 

The important scales of comparison between affected factors are: important, the same, and 

less important.  0 indicates that Scenario X is less important than Scenario Y; 0.5 that two 

scenarios are the same; and 1 that Scenario X is more important than Scenario Y (Table 4). 

 

< Table 4 > 

 

 

Priority Ordering and Assignment of Utilities to Scenarios 

 

Having presented the priority matrices of the pairwise comparisons among the scenarios with 

respect to affected factors and by summing the values of the indicators on each row, the 

scenarios can then rearranged in descending order.  This enables decision-makers to ascertain 
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the importance of the scenarios for each factor.  In order to provide each department with the 

utilities associated with the scenarios, experts can assign a linguistic description to each 

scenario by comparing it with the one with the highest summed value.  For example, in Table 

5 the scenarios are arranged in the order of {S1 S2 S3 S4 S5}.  S5 has the lowest sum of 1.341 

and is first compared with S1 (5.790).  The expert then gives a linguistic description of 

“between the same and marginally different” to describe their relative importance.  Following 

Chen (1998), each semantic description (e.g. “marginally different”, “quite different”, etc.) is 

assigned a score (see Table 6).  These scores, aj, within the range of [0.5,1] (0.5=same; 

1=different) are converted to priority scores, rj, in the range of [0,1], by applying fuzzy set 

theory using the following equation: 

 

 
j

j

a
a−

=
1

rj ; 0.5<aj<1 [1] 

 

where aj=semantic score and rj=priority score. 

 

< Table 5 > 

< Table 6 > 

 

For the scenario under cost in Table 5, 5.790/1.341≈4, so scores of the first four steps are 

selected.  Then, using the insert point method, S1=1, S2=0.921, S3=0.828, S4=0.767, S5=0.739 

can be obtained.  Table 5 also shows the priority scores for each affected factor. 
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Normalising Priority Scores of Affected Factors into Weightings 

 

To enable comparison as a whole, the use of the affected factors as a means of weighting the 

utilities is needed.  The priority scores of AF are normalised.  The result is shown in Table 7. 

 

< Table 7 > 

 

Calculation of Scenarios Utilities 

 

Eqn. (2) is used to calculate the Hamming distance for p=1 and the Euclidean distance for 

p=2 (Chen, 1998): 

 

( )[ ]
( )
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m
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p
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m

i iji

j
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1
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1
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+
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=

=

                                                [2] 

 

where p=1,2 and u=(u1,…,uj,…,un), with u=utility; uj=average distance for p=1 and 2; 

wi=weight of AFn; rij=irj=priority score; and p=distance parameter. 

 

The utilities can then be obtained by taking the average of the two values (Table 8).  The 

scenarios can be rearranged by their utilities in Table 8. 

 

< Table 8 > 

< Table 9 > 
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From Table 8, it is apparent that the planning department would most prefer Scenario 2, i.e. 

each time delivery 20 units in 17 times. 

 

As the purchasing department mainly considers the purchasing and delivery process, the 

scenario comparisons under cost, schedule and safety for the purchasing department are 

different to the planning department.  The purchasing department will only consider the 

delivery cost (the discount for bulk purchasing is not considered in this paper).  The 

comparison under cost is made by examining the delivery cost of the five scenarios.  When 

considering the schedule, the purchasing department will give a higher score to the scenario 

where the materials are delivered more frequently in small quantities as excessive stockpiling 

may lead to delay.  Scenarios 1 and 5 both have the lowest scores because supplying daily has 

a greater chance of creating delays.  As for the safety, delivering in small quantities allows 

supervisory staff to pay more attention to the safety and hence Scenario 1 has the higher score.  

The comparison of affected factors is also different.  Cost and quality are considered firstly 

by the purchasing department.  The comparison is shown in Tables 10-11.  The priority score 

and weighting of AF is shown in Table 12, with the utilities of every scenario for the 

purchasing department shown in Table 13.  From the results although cost is considered first 

but the delivery costs are not very different for the five scenarios.  Delivery in small 

quantities has benefited the schedule, quality and safety from the purchasing department’s 

point of view. 

 

< Table 10 > 

< Table 11 > 

< Table 12 > 

< Table 13 > 
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TWO-PARTY NEGOTIATION PROCESS 

 

Negotiations involve either distributive or integrative bargaining (Wasfy, 1996).  Distributive 

bargaining occurs when one’s goals are in fundamental conflict with those of the other party.  

In distributive bargaining, one party’s gain is a loss to the other.  Integrative bargaining may 

occur when one’s goals are not in fundamental conflict with those of the other party and 

which therefore can be integrated to some degree.  Integrative potential exists when the type 

of issue allows solutions that are beneficial to both parties, or at least when one’s gains do not 

represent equal sacrifices by the other.  Cooperative communicative moves, such as 

information sharing, may be used in the case of multiple-issues to promote trading 

concessions in integrative negotiation. 

 

Clearly, one would prefer that the negotiations between the planning and purchasing 

departments involve integrative bargaining so that the negotiation process can provide a 

satisfactory result for both parties.  From the calculations above, the negotiation process of 

scenarios for the two departments is represented in Figure 2.  Using Nash’s (1953) criterion, 

by which the bargaining solution is deemed to have occurred when the two negotiators are set 

to receive the same total payoff, the termination of negotiation will be when the two parties 

find a scenario that provides each with the same total utilities.  In this example, according to 

the comparison of results in Table 14, this occurs where deliveries are in about 45 or 110 

units each time (Figure 2).  But delivering 45 units have a higher utility for both departments.  

This delivery pattern should be selected as it satisfies both the planning and purchasing 

departments.  According to the calculation, the delivery is made every 5 days in 7 times and 
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at 15th and 25th day the delivery units is twice (90 units) because at 14th, 23rd and 24th day the 

on site storage is less than 10 (short of 7, 3 and 20 units).  The delivery comes to an end at the 

30th day.  The storage and delivery costs are $23,700 and $2,240 respectively.  From an 

economic standpoint, this scenario does not lead to the cheapest total cost, as it costs slightly 

more than Scenario 2 (the cheapest option among the five scenarios).  But this is indeed the 

most optimal solution when considering the problem collectively. 

 

< Table 14 > 

< Figure 2 > 

 

 

CONCLUSIONS 

 

In view of the large storage capacities required for building materials and the limited storage 

space on most construction sites, this paper suggests an effective way to determine the 

number of delivery loads of materials to be made and associated on-site buffer stocks.  

Driven by the need to negotiate between the various parties within a dynamic and vague 

environment, the Non-Structural Fuzzy Decision Support Systems (NFDSS) approach is used 

as an analytical tool to model the two-party negotiations of Multi Attribute Decision Making 

problem concerning the amount of on-site buffer stocks required for a project.  The NFDSS 

systematically evaluates each scenario under different affected factors such as cost, schedule, 

quality, safety, etc.  Finally, a scenario utility is computed to establish the preference of each 

party.   
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The concept of the NFDSS in determining optimal buffer stocks on site is presented through 

a case example.  This case is very close to the real construction process.  The lowest supply 

point is used as a resource supply policy.  The results suggest that NFDSS has the potential to 

systematically analyse human judgments to generate relative weightings for the decision 

factors and elements.  It uses a simple comparative rating scale to evaluate the relative 

importance of different factors, providing a built-in consistency checking mechanism to 

maintain and correct discrepancies in the evaluation process.  The example demonstrates the 

use of the method to show how a Nash equilibrium decision can be obtained.  It is envisaged 

that the NFDSS model can be applied to real-world cases to determine the frequency of 

delivery and the amount of buffer stocks that would meet the needs of the various project 

participants.  Future research should incorporate more factors and involvement of the 

resource suppliers in the negotiation process.  Applying the model to a real construction 

project would also help valid the effect of the method.  

 

 

ACKNOWLEDGEMENT 

 

The authors would like to acknowledge the financial support of The University of Hong 

Kong under the Small Project Funding Programme (Grant No.: 10205125). 

 

 

 



 17

REFERENCES 

 

Agapiou, A., Clausen, L.E., Flanagan, R., Norman, G. and Notman, D. (1998) The role of 

logistics in the materials flow control process, Construction Management and Economics, 

16(2), 131-137. 

 

Bellman, R. and Zadeh, L.A. (1970) Decision making in a fuzzy environment, Management 

Science, 17B(4), 141-164. 

 

Belton, V. and Gear, T. (1983) On a shortcoming of Saaty’s method of analytical hierarchy, 

Omega, 11(3), 228-230. 

 

Bertelsen, S. (1995) Building Logistics: A Means for Improvement of Productivity in the 

Building Sector, Nellemann, Nielsen & Rauschenberger A/S Consulting Engineers and 

Planners, Denmark. 

 

Caron, F., Marchet, G. and Perego, A. (1998) Project logistics: integrating the procurement 

and construction processes, International Journal of Project Management, 16(5), 311-319. 

 

Chen, S.Y. (1998) Engineering Fuzzy Set Theory and Application, State Security Industry 

Press, Beijing. 

 

CIRC (2001) Construction for Excellence, Report of the Construction Industry Review 

Committee, HKSAR Government, Hong Kong. 

 



 18

Clausen, L. (1995) Building Logistics, Report No. 256, Danish Building Research Institute. 

 

Dubois, D. and Prade, H. (1980) Fuzzy Sets and Systems: Theory and Applications, Academic 

Press, New York. 

 

Fang, Y., Ng, S.T. and Skitmore, R.M. (2004) Modeling the logistics of construction 

materials through the Petri net techniques, Proceedings: ISOneWorld, April 14-16, 

Boardwalk Hotel, Las Vegas, Nevada, (eds. A. Wenn & K.K. Dhanda), 9 pages. 

 

Goguen, J.A. (1967) L-fuzzy set, JMAA, 18, 145-174. 

 

Goguen, J.A. (1969) The logic of inexact concepts, Synthese, 19, 325-373. 

 

Hay, E.J. (1998) The Just-in-time Breakthrough, Wiley, New York. 

 

Harber, D. (1990) Just-in-time: the issue of implementation, International Journal of 

Operations and Production Management, 10(1), 21-30. 

 

Hwang, C.L. and Masud, A.S.M. (1979) Multiple Objective Decision Making – Methods and 

Applications, Berlin, Heidelberg, New York. 

 

Hwang, C.L. and Yoon, K. (1981) Multiple Attribute Decision Making, Berlin, Heidelberg, 

New York. 

 



 19

Jostes, T. and Helms, M.M. (1995) Use of buffer inventory as an asset-management tool in a 

quick-response environment, Production and Inventory Management Journal, 36(3), 17-22. 

 

Kickert, W.J.M. (1978) Fuzzy Theory on Decision-Making – A Critical Review, Martinus 

Nijhoff Social Sciences Division, Leiden. 

 

Lim, L.Y. and Low, S.P. (1992) Just-in-time Productivity in Construction, SNP Publishers, 

Singapore. 

 

Lipovetsky, S. and Tishler, A. (1999) Interval estimation of priorities in the AHP, European 

Journal of Operational Research, 114, 153-164 

 

Low, S.P. and Choong, J.C. (2001) Just-in-time management in precast concrete construction: 

A survey of the readiness of main contractors in Singapore, Integrated Manufacturing 

Systems, 12(6), 416-429.  

 

Low, S.P. and Tan, K.L. (1997a) The measurement of “just-in-time” wastages for a public 

housing project in Singapore, Building Research and Information, 25(2), 67-81. 

 

Low, S.P. and Tan, K.L. (1997b) Quantifying just-in-time wastages for a design-and-build 

school project, Journal of Real Estate and Construction, 7(1), 70-91. 

 

Low, S.P. and Chan, Y.M. (1997) Managing Productivity in Construction: JIT Operations 

and Measurements, Ashgate, Aldershot, UK. 

 



 20

Low, S.P. and Mok S.H. (1999) The application of JIT philosophy to construction: a case 

study in site layout, Construction Management and Economics, 17(5), 657-668. 

 

Murphy, C.K. (1993) Limits on the analytic hierarchy process from its consistency index, 

European Journal of Operational Research, 65, 138-139. 

 

Nash, J.F. (1953) Two-person cooperative games, Econometrica, 21(1), 128-140. 

 

Ng, S.T., Lee, K.L.Y. and Fang, Y. (2007) A just-in-time principles for enhanced logistics of 

precast concrete components, Building and Environment, (under review). 

 

Oral, E.L., Mistikoglu, G. and Erdis, E. (2003) JIT in developing countries – a case study of 

the Turkish prefabrication sector, Building and Environment, 28(6), 853-860. 

 

Ofori, G. (1994) Formulating a long-term strategy for developing the construction industry of 

Singapore, Construction Management and Economics, 12(3), 219-231. 

 

Paulson, D. and Zahir, S. (1995) Consequences of uncertainty in the analytic hierarchy 

process: A simulation approach, European Journal of Operational Research, 87, 45-56. 

 

Poh, P.S.H. and Chen, J.D. (1998) Singapore buildable design appraisal system: a 

preliminary review of the relationship between buildability, site productivity and cost, 

Construction Management and Economics, 16(6), 681-692. 

 



 21

Tam, C.M., Tong, T.K.L. and Chiu, G.W.C. (2006) Comparing non-structural fuzzy decision 

support system and analytical hierarchy process in decision-making for construction 

problems, Journal of Operational Research, 174, 1317-1324. 

 

Tam, C.M., Tong, T.K.L., Leung, A.W.T. and Chiu, G.W.C. (2002) Site layout planning 

using non-structural fuzzy decision support system, Journal of Construction Engineering and 

Management, ASCE, 128(3), 220-231. 

 

Wasfy, A.M. and Hosni, Y.A. (1996) Object-oriented modelling of two-party negotiation, 

Computers and Industrial Engineering, 31(1/2), 405 – 408. 

 

Yoon, K. and Hwang, C. L. (1985) Manufacturing plant location analysis by multiple 

attribute decision making, International Journal of Production Research 23: 345-359. 

 

Zadeh, L.A. (1965) Fuzzy sets, Inform. Control, 8, 338-353. 

 

Zahir (1991) Incorporating the uncertainty of decision judgments in the analytic hierarchy 

process, European Journal of Operational Research, 53, 206-216. 

 

Zeshui, X. and Cuiping, W. (1999) A consistency improving method in the analytic hierarchy 

process, European Journal of Operational Research, 116, 443-449. 

 

Zimmermann, H.-J., Zadeh, L.A. and Gaines, B.R. (1984) Fuzzy sets and decision analysis, 

Amsterdam: North-Holland 



 22

LIST OF CAPTIONS 
 
 
Figure 1:  Decomposition of storage-distribution (MADM) Problem 
 
Figure 2:  Negotiation process between the planning and purchasing departments 
 
 
Table 1:  Working schedule 
 
Table 2:  Delivery and storage scenario 
 
Table 3:  Comparison of cost, schedule, quality and safety effects for planning department 
 
Table 4:  Affected factor comparison for planning department 
 
Table 5:  Priority and score 
 
Table 6:  Semantic operators, scores, and transformed priority scores 
 
Table 7:  Normalization priority score of affected factors into weighting 
 
Table 8:  Scenario utilities to planning department 
 
Table 9:  Rearranged scenario utilities and descriptions 
 
Table 10:  Comparison of cost, schedule, quality and safety effects for purchasing department 
 
Table 11:  Affected factor comparison for the purchasing department 
 
Table 12:  Priority, score and weighting 
 
Table 13:  Scenario utilities and description for the purchasing department 
 
Table 14:  Comparison of results 



 23

 
 
 

Scenario 2 Scenario 3 Scenario 4 Scenario 5Scenario 1

Cost Schedule Quality Safety

Negotiation 
Result

  
 
 

Figure 1: Decomposition of storage-distribution (MADM) problem 
 

 
 
 



 24

 
 
 

0 20 40 60 80 100 120 140 160 180 200
0.4

0.45

0.5

0.55

0.6

0.65
Negotiation Process

Delivery Units

U
til

ity

Purchasing Department

Planning Department
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Table 1:  Working schedule 
 
Work Duration Work Start 

Time (TiS) 
Resource Consumption 

Per Day (R/d) 
Total Resource 
Consumption 

A 8 0 5 40 
B 10 0 3 30 
C 10 8 4 40 
D 11 8 4 44 
E 17 8 4 68 
F 16 18 7 112 
G 6 19 6 36 
H 6 34 5 30 

Sum    400 
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Table 2:  Delivery and storage scenarios 
 

Delivery Storage Scenario 
 
 

Delivery Units 
(no.) 

Time of Delivery 
(no.)  

Delivery Cost 
(£) 

Storage Cost 
(£) 

Total Cost 
 

(£) 
S1 10 33 2660 13400 16,060 
S2 20 17 2340 18000 20,340 
S3 40 8 2160 28800 30,960 
S4 80 4 2080 47200 49,280 
S5 200 2 2040 67300 69,340 
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Table 3:  Comparison of cost, schedule, quality and safety effects 
 

 Cost Schedule Quality Safety 
 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

S1 0.5 0.395 0.259 0.163 0.116 0.5 1 1 1 0.5 0.5 0 0 0 0 0.5 1 1 1 0.5 
S2 0.633 0.5 0.328 0.206 0.147 0 0.5 1 1 0 1 0.5 0 0 0 0 0.5 1 0 0 
S3 0.964 0.761 0.5 0.314 0.223 0 0 0.5 1 0 1 1 0.5 0 0 0 1 0.5 0 0 
S4 1.534 1.211 0.796 0.5 0.355 0 0 0 0.5 0 1 1 1 0.5 0 0 1 0 0.5 0 
S5 2.159 1.705 1.120 0.704 0.5 0.5 1 1 1 0.5 1 1 1 1 0.5 0.5 1 1 1 0.5 

Sum 5.790 4.572 3.004 1.887 1.341 1 2.5 3.5 4.5 1 4.5 3.5 2.5 1.5 0.5 1 4.5 3.5 2.5 1 
Note: 0 = one has more probability than the other 

0.5 = both have the same probability 
1 = one has less probability than the other 
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Table 4:  Affected factor comparison for the planning department 
 
AF Cost Schedule Quality Safety 
Cost 0.5 1 0 0.5 
Schedule 0 0.5 0 0 
Quality  1 1 0.5 1 
Safety 0.5 1 0 0.5 
Sum 2 3.5 0.5 2 
Note:  0 = one is less important than the other 

0.5 = both are equally important 
1 = one is more important than the other 
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Table 5:  Priorities and scores 
 

Cost Schedule Quality Safety AF 
S Sum Score S Sum Score S Sum Score S Sum Score AF Sum Score 

S1 5.790 1.000 S4 4.5 1.000 S1 4.5 1.000 S2 4.5 1.000 Schedule 3.5 1.000 
S2 4.572 0.921 S3 3.5 0.905 S2 3.5 0.818 S3 3.5 0.905 Cost 2 0.739 
S3 3.004 0.828 S2 2.5 0.818 S3 2.5 0.667 S4 2.5 0.818 Safety 2 0.739 
S4 1.887 0.767 S1 1.0 0.703 S4 1.5 0.538 S1 1.0 0.703 Quality 0.5 0.538 
S5 1.341 0.739 S5 1.0 0.703 S5 0.5 0.429 S5 1.0 0.703    
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Table 6:  Semantic operators, scores, and transformed priority scores 
 
Semantic Operators Step aj rj 
Same  1 0.500 1.000 

In-between 2 0.525 0.905 
Marginally different 3 0.550 0.818 

In-between 4 0.575 0.739 
Slightly different 5 0.600 0.667 

In-between 6 0.625 0.600 
Quite different 7 0.650 0.538 

In-between  8 0.675 0.481 
Markedly different  9 0.700 0.429 

In-between  10 0.725 0.379 
Obviously different  11 0.750 0.333 

In-between  12 0.775 0.290 
Very different  13 0.800 0.250 

In-between  14 0.825 0.212 
Significantly different  15 0.850 0.176 

In-between  16 0.875 0.143 
Very significantly different  17 0.900 0.111 

In-between 18 0.925 0.081 
Extremely different  19 0.950 0.053 

In-between  20 0.975 0.026 
Absolutely incomparable 21 1.000 0.000 
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Table 7:  Normalization priority score of affected factors into weighting 
 
AFn  Priority Score Normalization Weighting 
Schedule 1.000 1.000 / 3.016 0.332 
Cost 0.739 0.739 / 3.016 0.245 
Safety 0.739 0.739 / 3.016 0.245 
Quality 0.538 0.538 / 3.016 0.178 
Sum 3.016 -- -- 
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Table 8:  Scenario utilities to the planning department 
 
Sn For p=1, uj For p=2, uj Average uj 
S1 0.525 0.521 0.523 
S2 0.572 0.576 0.574 
S3 0.542 0.560 0.551 
S4 0.524 0.560 0.542 
S5 0.394 0.415 0.404 
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Table 9:  Rearranged scenario utilities and descriptions 
 
Sn uj Delivery Unit Delivery times 
S2 0.574 20 17 
S3 0.551 40 8 
S4 0.542 80 4 
S1 0.523 10 33 
S5 0.404 200 2 
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Table 10:  Comparison of cost, schedule, quality and safety effects for the bpurchasing department 
 
 Cost Schedule Quality Safety 
 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 
S1 0.5 0.568 0.616 0.639 0.652 0.5 1 1 1 0.5 0.5 0 0 0 0 0.5 0 0 0 0 
S2 0.440 0.5 0.542 0.563 0.574 0 0.5 0 0 0 1 0.5 0 0 0 1 0.5 0 0 0 
S3 0.406 0.462 0.5 0.519 0.529 0 1 0.5 0 0 1 1 0.5 0 0 1 1 0.5 0 0 
S4 0.391 0.444 0.481 0.5 0.510 0 1 1 0.5 0 1 1 1 0.5 0 1 1 1 0.5 0 
S5 0.383 0.436 0.472 0.490 0.5 0.5 1 1 1 0.5 1 1 1 1 0.5 1 1 1 1 0.5 

Sum 2.120 2.410 2.611 2.712 2.765 1 4.5 3.5 2.5 1 4.5 3.5 2.5 1.5 0.5 4.5 3.5 2.5 1.5 0.5 
Note:  0 = one has more probability than the other 

0.5 = both have the same probability 
1 = one has less probability than the other 
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Table 11:  Affected factor comparison for the purchasing department 
 
AF Cost Schedule Quality Safety Sum 
Cost 0.5 1 1 1 3.5 
Schedule 0 0.5 0 1 1.5 
Quality  0 1 0.5 1 2.5 
Safety 0 0 0 0.5 0.5 
Note: 0 = one is less important than the other 
         0.5 = both are equally important 

1 = one is more important than the other 
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Table 12:  Priority, score and weighting 
 
AF Sum Score Normalization Weighting 
Cost  3.5 1.000 1.000 / 3.023 0.331 
Quality  2.5 0.818 0.818 / 3.023 0.271 
Schedule 1.5 0.667 0.667 / 3.023 0.221 
Safety 0.5 0.538 0.538 / 3.023 0.178 
Sum -- 3.023 -- -- 
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Table 13:  Scenario utilities and descriptions for the purchasing department 
 
Sn uj Delivery Units Delivery times 
S1 0.615 10 33 
S2 0.605 20 17 
S3 0.558 40 8 
S4 0.516 80 4 
S5 0.476 200 2 
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Table 14:  Comparison of results 
 
Sn Planning Department (uj ) Purchasing Department (uj ) Delivery Units Delivery times 
S1 0.551  0.615 10 33 
S2 0.574 0.605 20 17 
S3 0.542 0.558 40 8 
S4 0.523 0.516 80 4 
S5 0.404 0.476 200 2 

 
 




