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Abstract

The purpose of this paper is to characterize all matroids M that satisfy the following minimax
relation: For any nonnegative integral weight function w defined on E(M),

Maximum {k : M has k circuits (repetition allowed) such that each element e of M
is used at most 2w(e) times by these circuits}

= Minimum {∑x∈X w(x) : X is a collection of elements (repetition allowed) of M
such that every circuit in M meets X at least twice}.

Our characterization contains a complete solution to a research problem on 2-edge-connected
subgraph polyhedra posed by Cornuéjols, Fonlupt, and Naddef in 1985, which was independently
solved by Vandenbussche and Nemhauser in [11].
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1 Introduction

For terminology on matroids, we follow Oxley [9]. Let M be a matroid with a nonnegative integral
weight w(e) on each element e ∈ E(M). For any positive integer k, let

νk,w(M) = Maximum {p : M has p circuits (repetition allowed) such that each element e of M
is used at most kw(e) times by these circuits}

τk,w(M) = Minimum {∑x∈X w(x) : X is a collection of elements (repetition allowed) of M
such that every circuit in M meets X at least k times}.

Clearly,
νk,w(M) ≤ τk,w(M). (1.1)

However, (1.1) does not have to hold with equality in general. It is not difficult to verify that
ν1,w(M) = τ1,w(M) holds for every nonnegative integral weight w if and only if M is the direct
sum of circuits and coloops. Let us call M good if the equality ν2,w(M) = τ2,w(M) holds for every
nonnegative integral weight w. The purpose of this paper is to characterize all good matroids.

As usual, let M(G) stand for the graphic matroid of a graph G. Let U2,4 be the uniform matroid
of rank two on four elements. Let F7 and F ∗

7 be the Fano matroid and its dual, respectively. Let
K−

n denote the graph obtained from Kn, the complete graph on n vertices, by deleting an edge,
and let K be the following graph.

Figure 1.1: Graph K.

Theorem 1.1 A matroid M is good if and only if none of its minors is isomorphic to U2,4, F7,
F ∗

7 , M(K3,3), M(K−
5 ), or M(K).

We can interpret good matroids using integer programs. Let A be the circuit-element incidence
matrix of a matroid M . From the linear programming (LP) duality theorem, we see that M is
good if and only if both of the following programs

max yT1 min wT x
s.t. yT A ≤ wT s.t. Ax ≥ 1

y ≥ 0 x ≥ 0
(1.2)

have 1
2 -integral optimal solutions for every nonnegative integral weight w, where 0 is the zero vector

and 1 is the all-one vector.

A rational linear system Cx ≥ d, x ≥ 0 is called totally dual integral (TDI) if the linear program
max{yT d | yT C ≤ wT , y ≥ 0} has an integral optimal solution for every integral vector w for which
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the maximum is finite. The polyhedron {x : Cx ≥ d, x ≥ 0} is call integral if all its vertices have
integral coordinates. Equivalently, min{wT x | Cx ≥ d, x ≥ 0} has an integral optimal solution for
every integral vector w for which the minimum is finite. As shown by Edmonds and Giles [3], if
the system Cx ≥ d, x ≥ 0 is TDI and d is integral, then the polyhedron {x : Cx ≥ d, x ≥ 0}
is integral. Therefore, M is good if and only if the linear system Bx ≥ 1, x ≥ 0 is TDI, where
B = A/2. In general, the converse statement of the theorem of Edmonds and Giles is not true.
However, we will prove the following, which is clearly a refinement of Theorem 1.1.

Theorem 1.2 Let M be a matroid, let A be the circuit-element incidence matrix of M , and let
B = A/2. Then the following statements are equivalent:

(i) none of U2,4, F7, F ∗
7 , M(K3,3), M(K−

5 ), and M(K) is a minor of M ;
(ii) the linear system Bx ≥ 1, x ≥ 0 is TDI;
(iii) the polyhedron {x : Bx ≥ 1, x ≥ 0} is integral.

Observe that if M is the cographic matroid of a graph G, then circuits of M are precisely
cuts of G and therefore A is the cut-edge incidence matrix of G. In this case our work is closely
related to the graphical traveling salesman problem, see, for instances, Cornuéjols, Fonlupt, and
Naddef [1] and Fonlupt and Naddef [4]. Given a graph G, let P1(G) be the convex hull of the
incidence vectors of 2-edge-connected subgraphs of G where edges can be used several times, and
let P2(G) = {x : Bx ≥ 1, x ≥ 0}. Clearly, P1(G) ⊆ P2(G) and equality need not hold in general.
Cornuéjols, Fonlupt, and Naddef [1] proposed the problem of characterizing all graphs G for which
P1(G) = P2(G) (equivalently P2(G) is integral). They also showed that all series-parallel graphs G
enjoy this property, where a graph is called series-parallel if it contains no K4 as a minor. We point
out that, when restricted to cographic matroids, the equivalence of (i) and (iii) in Theorem 1.21 gives
a complete solution to this research problem, which was independently solved by Vandenbussche
and Nemhauser in [11]. Furthermore, our approach is different from that in [11]. We determine
the complete structure of matroids that satisfy (i), and we prove (ii) using this structure. Then we
derive the equivalence of (i) and (iii) as a corollary. As is well known, (ii) is much stronger than
(iii).

Our theorems are not the first ones on 1
2 -integrality. In [8], Lovász proved that the first program

in (1.2) has a 1
2 -integral optimal solution, if A is the incidence matrix of T -cuts of a graph. A

similar result is obtained by Geelen and Guenin [5] for odd cycles in signed graphs that do not have
odd-K5 minors. In addition, Gerards and Laurent [6] described all binary clutters that are box
1
d -integral. (The clutters in our consideration are not binary, and box 1

d -integral is much stronger
than 1

d -integral.)

Let us call a graph G good if M∗(G), the cographic matroid of G, is good. Let P and K∗ be
the planar duals of K−

5 and K, respectively.

From Theorem 1.2 it can be seen that a graph G has an integral P2(G) if and only if it contains
neither P nor K∗ as a minor. With the same excluded minors, actually we can draw a much
stronger statement as elaborated in the following lemma, which establishes the implication (i) ⇒
(ii) of Theorem 1.2 when M is cographic.

Lemma 1.1 A graph G is good if it contains neither P nor K∗ as a minor.
1Our result was first presented at the SIAM conference on discrete mathematics, Nashville, Tennessee, June, 2004.
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P K*

Figure 1.2: P and K∗.

We finish this section by outlining the rest of the paper. In section 2, we prove Theorem 1.2 by
using Lemma 1.1. In section 3, we prove that graphs without P and K∗ minors can be expressed
as sums of some prime graphs, which provides a structural characterization of good matroids. In
section 4, we prove that being good is preserved under summing operations. In section 5, we
introduce a packing property which is sufficient for being good. In sections 6, 7, and 8, we prove
that each prime graph enjoys the packing property, which, together with the results established in
sections 3, 4 and 5, proves Lemma 1.1 and thus completes our proof of our main theorem.

We remark that, in the last section, in order to verify our packing property on a few small
graphs, we have to use computer to exhaust all the (about 2700) possibilities.

2 The easy implications

In this section, we prove Theorem 1.2, assuming Lemma 1.1. The implication (ii) ⇒ (iii) follows
instantly from the Edmonds-Giles theorem [3]. To show (iii) ⇒ (i), it is clear that we only need to
verify the following two lemmas, while the first is implied by (2.5) in [2].

Lemma 2.1 If M satisfies (iii), then so do all its minors.

Lemma 2.2 None of the matroids U2,4, F7, F ∗
7 , M(K3,3), M(K−

5 ), and M(K) satisfies (iii).

Proof. Clearly, we only need to find, for each of the given matroids, an integral vector w such
that the optimal value of (1.2) is not 1

2 -integral.

If M is U2,4, F7, F ∗
7 , or K3,3, we define w = 1. Let m = |E(M)| and let g be the girth of

M . Then M has exactly m circuits of length g. Moreover, each element of M belongs to exactly
g of these circuits. Let x(e) = 1/g, for all elements e of M . Then Ax ≥ 1. On the other hand,
let y(C) = 1/g if C is a shortest circuit, and y(C) = 0 otherwise. Then yT A = wT . Notice that
yT1 = wT x = m/g, which equals 4/3, 7/3, 7/4, and 9/4, respectively. Therefore, the optimal value
of (1.2) is not 1

2 -integral in all these cases.

If M = M(K), we define w = 1. The following is an optimal solution of (1.2), which has value
15
4 . Let v be the unique vertex of K of degree three. Let x(e) = 1/2 if e is not incident with v and
x(e) = 1/4 otherwise. Let y(C) = 3/4 if C is a 2-cycle; y(C) = 1/4 if C is a triangle using v; and
y(C) = 0 otherwise.

Finally, suppose M = M(K−
5 ). Let u, v be the two degree-three vertices. Let w(e) = 2, if e is

incident with u, and w(e) = 1, otherwise. The following is an optimal solution of (1.2), which has
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value 15
4 . Let x(e) = 1/4, if e is incident with u or v, and x(e) = 1/2 otherwise. Let y(C) = 3/4, if

C is one of the three triangles that use u, and y(C) = 1/4 if either C is one of the three triangles
that use v or C is one of the three 4-circuits that only use edges that are incident with u or v.

To complete our proof of Theorem 1.2, it remains to prove the implication (i)⇒ (ii). By Lemma
1.1, it is clear that we only need to show the following.

Lemma 2.3 If M satisfy (i), then M = M∗(G) for some graph G that contains neither P nor K∗

as a minor.

Proof. Since none of U2,4, F7, F ∗
7 , M(K3,3), and M(K5) is a minor of M , by two theorems of

Tutte, Theorem 13.1.1 and Theorem 13.3.2 of [9], M = M∗(G) for some graph G. Since neither
M(K−

5 ) nor M(K) is a minor of M∗(G), it follows that neither M∗(K−
5 ) nor M∗(K) is a minor of

M(G). Equivalently, neither P nor K∗ is a minor of G, which proves the lemma.

3 Decomposition

The goal of this section is to show (Theorem 3.1 and Theorem 3.2) that graphs with no P and K∗

minors can be constructed from some prime graphs by summing operations. By Lemma 2.3, this
constitutes a structural characterization of good matroids.

Let G1 and G2 be two graphs. As usual, the 0-sum of G1 and G2 is their disjoint union. The
1-sum of G1 and G2 is obtained from their disjoint union by identifying a vertex in G1 with a vertex
in G2. The 2-sum of G1 and G2 is obtained by first choosing a path aicibi (i = 1, 2) of length two
in Gi such that ci has degree two in Gi, then deleting ci from Gi, and finally identifying a1 with a2

and identifying b1 with b2.

Figure 3.1: The 2-sum of two graphs.

A graph is cyclically 3-connected if it is obtained from a 3-connected simple graph by subdividing
each edge at most once. The following result is well known; yet its proof is easy and hence omitted.

Lemma 3.1 Let H be a cyclically 3-connected graph and let G be a k-sum (k = 0, 1, 2) of two
graphs G1 and G2. Then H is a minor of G if and only if H is a minor of some Gi (i = 1, 2).

A 2-separation of a 2-connected graph G = (V, E) is a pair (G1, G2) of subgraphs of G, where
Gi = (Vi, Ei) (i = 1, 2), such that (E1, E2) is a partition of E, |V1 ∩ V2| = 2, V1 ∪ V2 = V , and
V1 − V2 6= ∅ 6= V2 − V1. The 2-separation is trivial if min{|E1|, |E2|} = 2.

For any X ⊆ V , let G−X be the graph obtained from G by deleting all vertices in X and all
edges that are incident with at least one vertex in X. As usual, G−{x} will be simplified as G−x.
In addition, let G[X] = G− (V −X).
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Let G0 = {K1,K2,K3,K
−
4 , C4, C5,K2,3}.

Lemma 3.2 Every simple graph can be constructed by repeatedly taking 0-, 1-, and 2-sums starting
from cyclically 3-connected graphs and graphs in G0.

Proof. Clearly, disconnected simple graphs can be constructed from connected simple graphs
by 0-sums; connected simple graphs (except for K1) can be constructed from K2 and 2-connected
simple graphs by 1-sums; 2-connected simple graphs can be constructed from those 2-connected
simple graphs that have no nontrivial 2-separations by 2-sums. Therefore, to prove the lemma, we
only need to prove the following.

(*) If G is a 2-connected simple graph with no nontrivial 2-separations, then either G ∈ G0 or
G is cyclically 3-connected.

Let us assume that G 6∈ G0. We prove that G is cyclically 3-connected. Suppose x ∈ V (G) has
degree two. Let y, z ∈ V (G) be the two neighbors of x. We first make a few observations.

(1) yz 6∈ E(G).

If e = yz ∈ E(G), let G1 = G[{x, y, z}] and let G2 = (G − x)\e. If V (G2) − V (G1) = ∅, then
G = K3 ∈ G0, a contradiction. If V (G2) − V (G1) 6= ∅, then (G1, G2) is a 2-separation of G, and
thus it is trivial. It follows that G = K−

4 ∈ G0, a contradiction again.

(2) G has no other vertex with neighborhood {y, z}.
If x′ 6= x has neighborhood {y, z}, let G1 = G[{x, x′, y, z}] and let G2 = G − {x, x′}. If

V (G2)− V (G1) = ∅, then G = C4 ∈ G0, a contradiction. If V (G2)− V (G1) 6= ∅, then (G1, G2) is a
2-separation of G, and thus it is trivial. It follows that G = K2,3 ∈ G0, a contradiction again.

(3) Both y and z have degree at least three.

If, say, y has degree two, let the neighborhood of y be {x, z′}. By (1), z 6= z′. Let G1 be the path
with edges zx, xy, yz′ and let G2 = G − {x, y}. If V (G2) − V (G1) = ∅, then, as G is 2-connected,
G = C4 ∈ G0, a contradiction. If V (G2) − V (G1) 6= ∅, then (G1, G2) is a 2-separation of G, and
thus it is trivial. It follows that G = C5 ∈ G0, a contradiction again.

With the above three observations, we prove that G is cyclically 3-connected. Let Q be the set
of paths Q of G such that |V (Q)| = 3 and the middle vertex of Q has degree two in G. From (3) we
know that paths in Q are edge disjoint. Let G̃ be obtained from G by replacing each path in Q by
an edge with the same ends. Clearly, G can be obtained from G̃ by subdividing each edge at most
once, which means it is enough for us to show that G̃ is simple and 3-connected. Since G is simple,
by (1) and (2), G̃ is simple. By (3), each vertex of G̃ has degree at least three, which implies that
G̃ has at least four vertices and has no trivial 2-separations. Notice that each 2-separation of G̃ can
be extended into a 2-separation of G. Therefore, as every 2-separation of G is trivial, we conclude
that G̃ has no 2-separations and thus G̃ is 3-connected.

Let G1 be the class of cyclically 3-connected graphs with no minors P and K∗.

Theorem 3.1 A simple graph has no minors P and K∗ if and only if the graph can be obtained
by repeatedly taking 0-, 1-, and 2-sums starting from graphs in G0 ∪ G1.

Proof. Since both P and K∗ are cyclically 3-connected, the result follows immediately from
the last two lemmas.
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For each integer n ≥ 3, let Wn be the wheel with n spokes. The following is a well known result,
see (10.4) in [7].

Lemma 3.3 If a 3-connected simple graph G does not have minor P , then either |V (G)| ≤ 5, or
G = Wn (n ≥ 5), or some three vertices meet all edges of G.

Lemma 3.4 If xu, xv, xw are three distinct edges in a 3-connected simple graph G, then G has a
subgraph H such that H is a subdivision of K4 and H contains all these three edges.

Proof. Since G−x is 2-connected, it has a cycle C that contains both u and v. If C also contains
w, then adding the three special edges to C results in a graph H that satisfies the requirement. If
C does not contain w, then G − x has two paths from w to C such that w is the only common
vertex of these two paths. There are two subcases in this case. If at least one of these two paths,
say Q, is ended on C at a vertex other than u and v, then the three special edges and Q and C
form a graph H that satisfies the requirement. If the ends of these two paths on C are precisely u
and v, then G− x has a cycle that contains all u, v, and w, which implies, by our first case, that G
has a required subgraph.

Theorem 3.2 Every graph in G1 is a minor of one of the graphs depicted in Figure 3.2.

G1 G2

G4 G5 G6G3

W (n>4)n K3,n (n>3) (7−12) (7−12)

(8−12) (8−12) (8−12) (9−12)

. . . .

Figure 3.2: Maximal graphs in G1.

Proof. Let G ∈ G1 be the subdivision of a 3-connected simple graph G̃ = (Ṽ , Ẽ). If |Ṽ | ≤ 5,
then G̃ can only be K4, W4, K−

5 , or K5. If |Ṽ | ≥ 6, by Lemma 3.3, G̃ = Wn (n ≥ 5) or K+
3,n

(n ≥ 3), which is obtained from K3,n by adding k edges (0 ≤ k ≤ 3) whose ends belong to a same
color class of size three. Let F ⊆ Ẽ be the set of edges that are subdivided to get G. Since K∗ is
not a minor of G, by Lemma 3.4, we may assume that no three distinct edges in F share a common
vertex.

Suppose G̃ = K4. Then edges in F are either all contained in a 3-cycle or all contained in a
4-cycle of G̃. In the first case, G is a minor of W6. In the second case, G is a minor of G5.
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Suppose G̃ = W4. Notice that, since K∗ is not a minor of G, no spoke edge in F is incident
with a rim edge in F . If all edges in F are rim edges, then F is a minor of W8. If F has two spoke
edges that are contained in a triangle in G̃, then G is a minor of G5. Finally, if F has either one
spoke edge or two such edges that are not contained in a triangle, then G is a minor of G3.

Suppose G̃ = K−
5 . Let us call the three edges between the three degree-four vertices rim edges

and the others spoke edges. If edges in F is a matching, then G is a minor of G1. Hence we may
assume that F contains two distinct incident edges, say xy and xz. Notice that, since K∗ is not
a minor of G, x must have degree four and the two edges are either both spoke edges or both rim
edges. Therefore, G is a minor of G3 or G4, respectively.

Suppose G̃ = K5. Since K∗ is not a minor of G, edges in F must be a matching, which implies
that G is a minor of G1.

Suppose G̃ = Wn (n ≥ 5). Since K∗ is not a minor of G, no spoke edge is in F , which implies
that G is a minor of W2n.

Finally, suppose G̃ = K+
3,n (n ≥ 3). Let us call edges of K3,n spoke edges and the others rim

edges. Since K∗ is not a minor of G, spoke edges in F cannot be incident with any other edge in
F , and every rim edge of G̃ must be incident with every spoke edge in F . If F has no spoke edges,
then G is a minor of K3,n+3. Thus we may assume that F has at least one spoke edge. It follows
that n = 3 and F contains no rim edges. Therefore, |F | = 1, 2, or 3, and G is a minor of G2, G5,
or G6, respectively.

4 The Validity of Summing Operations

The purpose of this section is to show that being good is preserved under summing operations.

Let G be a graph and let Z ⊆ V (G). We denote by EG(Z) (or simply E(Z) when the dependency
on G is clear) the set of edges of G that have one end in Z and one end in V (G)− Z. Let H be a
connected component of G and let (X, Y ) be a partition of V (H) such that X 6= ∅ 6= Y . If both
H[X] and H[Y ] are connected, then the set E(X) = E(Y ) is called a cut of G. It is well known [9]
that cuts of G are precisely circuits of M∗(G).

When M = M∗(G), matrix A in (1.2) is the cut-edge incidence matrix of G. In this situation,
the maximization problem in (1.2) will be denoted by P (G,w). It follows from the theorem of
Edmonds and Giles [3] that G is good if and only if P (G,w) has a 1

2 -integral optimal solution for
all nonnegative integral functions w defined on E(G).

Theorem 4.1 For k = 0, 1, the k-sum of any two good graphs is good.

Proof. If G is the 0- or 1-sum of two graphs G1 and G2, it is not difficult to see that

A =
[
A1 0
0 A2

]
,

where Ai (i = 1, 2) is the cut-edge incidence matrix of Gi. Therefore, the result holds obviously.

Theorem 4.2 The 2-sum of any two good graphs is good.
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The remainder of this section consists of a proof of Theorem 4.2. Let G be a graph. We denote
by CG the set of all cuts of G. For any C ⊆ CG and e ∈ E(G), let C(e) = {C ∈ C : C 3 e}. As usual,
if z is a function defined on a finite set S and S0 ⊆ S, we denote z(S0) =

∑
s∈S0

z(s).

Lemma 4.1 Suppose y is an optimal solution of P (G,w). If C = {e, f} is a cut of G such that
y(C) < min{w(e), w(f)}, then y(CG(e)) = w(e) and y(CG(f)) = w(f).

Proof. Suppose the lemma is false. By symmetry, we may assume y(CG(e)) 6= w(e), which
implies y(CG(e)) < w(e). If y(CG(f)) 6= w(f), then y(CG(f)) < w(f), and thus increasing the value
of y(C) by a sufficiently small ε > 0 would result in a new feasible solution y′ of P (G, w), for which
(y′)T1 > yT1. This contradicts the optimality of y, so y(CG(f)) = w(f). Since w(f) > y(C), CG(f)
has a cut D 6= C with y(D) > 0. Notice that D′ = (D− {f}) ∪ {e} is a cut of G. Then decreasing
the value of y(D) by a sufficiently small ε > 0, while increasing the values of y(C) and y(D′) both
by the same ε would result in a new feasible solution y′ of P (G,w), for which (y′)T1 > yT1. Again,
this contradicts the optimality of y, which proves the lemma.

In the rest of this section, let G be a 2-sum of G1 and G2. Let ai, bi, ci (i = 1, 2) be defined as
in the definition of 2-sum. In addition, let ei = aici and fi = bici (i = 1, 2). Let w be a nonnegative
integral function define on E(G). We aim to show that P (G, w) has a 1

2 -integral optimal solution.

Let C0 be the set of cuts of G that separate a1 (= a2) from b1 (= b2). For i = 1, 2, let Ci be
the set of cuts of G that are contained in E(Gi − ci). Clearly, (C0, C1, C2) is a partition of CG. For
i = 1, 2, let Di = {ei, fi}, Ci

0 = {C ∩ E(Gi) : C ∈ C0}, and C0
i = {{x} ∪X : x ∈ {ei, fi}, X ∈ Ci

0}.
Then it is not difficult to see that (Ci, {Di}, C0

i ) is a partition of CGi .

In our following proof, we will extend the domain of w to the entire E(G1)∪E(G2) by defining
w(e1) = w(e2) = α and w(f1) = w(f2) = β, for various values of α and β. To simplify our notation,
we will write P (Gi, w), instead of P (Gi, w|E(Gi)), where w|E(Gi) is the restriction of w to E(Gi).

Lemma 4.2 Suppose α ≥ β. If y is a feasible solution of P (G,w), then there exist feasible solutions
y1 and y2 of P (G1, w) and P (G2, w), respectively, such that, for i = 1, 2, yi(C0

i ) ≤ y(C0), and

yT
i 1 = y(Ci) +





y(C0) + β if y(C0) ≤ α− β

(y(C0) + α + β)/2 if α− β ≤ y(C0) ≤ α + β

α + β if α + β ≤ y(C0).

The two vectors y1 and y2 will be called restrictions of y (with respect to α and β).

Proof. For any i ∈ {1, 2} and X ∈ Ci
0, let y(X) be the sum of y(C), over all C ∈ C0 with

C ∩ E(Gi) = X. Suppose λ and µ are nonnegative numbers with λ + µ ≤ 1, λy(C0) ≤ α, and
µy(C0) ≤ β. For i = 1, 2, we define yi as follows: yi(C) = y(C), ∀C ∈ Ci; yi({ei} ∪ X) = λy(X)
and yi({fi} ∪X) = µy(X), ∀X ∈ Ci

0; and yi(Di) = min{α − λy(C0), β − µy(C0)}. It is routine to
verify that yi(C0

i ) = (λ + µ)y(C0) ≤ y(C0), yT
i 1 = y(Ci) + (λ + µ)y(C0) + yi(Di), and yi is a feasible

solution of P (Gi, w). Next, we specify (λ, µ) in different cases so that yT
i 1 equals the required

value. If y(C0) ≤ α− β, let (λ, µ) = (1, 0). Then λ and µ are nonnegative numbers with λ + µ ≤ 1,
λy(C0) ≤ α, and µy(C0) ≤ β. Moreover, yT

i 1 = y(Ci)+y(C0)+min{α−y(C0), β} = y(Ci)+y(C0)+β,
as required. In the other two case, if y(C0) = 0, we take (λ, µ) = (0, 0); if y(C0) > 0, we take

(λ, µ) = (
y(C0) + α− β

2y(C0)
,
y(C0) + β − α

2y(C0)
) and (

α

y(C0)
,

β

y(C0)
),
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respectively. It is straightforward to verify that these choices satisfy the requirements.

Lemma 4.3 For i = 1, 2, let yi be a 1
2 -integral feasible solution of P (Gi, w). Then there exists a

1
2 -integral feasible solution y of P (G,w) such that

yT1 = yT
1 1 + yT

2 1− y1(D1)− y2(D2)−max{y1(C0
1), y2(C0

2)}.

Vector y is called a concatenation of y1 and y2.

Proof. Suppose i ∈ {1, 2}. Let Yi be the multiset with multiplicity function 2yi. That is,
Yi consists of cuts of Gi such that each cut C of Gi appears in Yi exactly 2yi(C) times. Then
|Yi| = 2yT

i 1. Let Y ′i and Y ′′i consist of members of Yi that belong to Ci and C0
i , respectively, and

let Y ′′′i = Yi − Y ′i − Y ′′i . In addition, let Y ′′i = {Ci,1, Ci,2, ..., Ci,ki}. Clearly, ki = 2yi(C0
i ) and

|Y ′′′i | = 2yi(Di). Let k = min{k1, k2}. We define Y0 = {E(G) ∩ (C1,j ∪ C2,j) : j = 1, 2, ..., k}. It
follows that all members of Y0 are cuts of G. Let Y = Y ′1 ∪ Y ′2 ∪ Y0 and let y′ be the multiplicity
function of Y. Then it is easy to see that y = y′/2 is a 1

2 -integral feasible solution of P (G,w) with
2yT1 = |Y| = (2yT

1 1 − k1 − 2y1(D1)) + (2yT
2 1 − k2 − 2y1(D2)) + k = 2yT

1 1 + 2yT
2 1 − 2y1(D1) −

2y1(D2)−max{k1, k2}, which proves the lemma.

In the rest of this section, for any feasible solution y of P (G, w), we denote qi = y(Ci) (i = 0, 1, 2).
We also denote p = bq0c and s = q0 − p. For any real number r, we use [r] to denote the smallest
1
2 -integral that is greater than or equal to r.

Lemma 4.4 Suppose no optimal solution of P (G,w) is 1
2 -integral. Then for any optimal solution

y of P (G,w), [q1] + [q2] < q1 + q2 + s.

Proof. Suppose [q1]+ [q2] ≥ q1 + q2 + s. Set α = p and β = 0. Let y1 and y2 be the restrictions
of y. By Lemma 4.2, yT

i 1 = qi + p, for i = 1, 2. Let zi be a 1
2 -integral optimal solution of P (Gi, w),

for i = 1, 2. Then zT
i 1 ≥ [p + qi] = p + [qi]. Let z be the concatenation of z1 and z2. By Lemma

4.3, zT1 ≥ zT
1 1+ zT

2 1− p ≥ p+ [q1] + [q2] ≥ q0 + q1 + q2 = yT1, which implies that z is a 1
2 -integral

optimal solution of P (G,w), a contradiction.

The next lemma is a list of facts that obviously follow from Lemma 4.4.

Lemma 4.5 Suppose no optimal solution of P (G,w) is 1
2 -integral. Then for any optimal solution

y of P (G,w): (i) s > 0; (ii) [qi] < [qi + s], for i = 1 and 2; (iii) [qi] < [qi + s
2 ], for i = 1 or 2.

Lemma 4.6 G is good if G1 = K−
4 .

Proof. Let d be the vertex of G1 other than a1, b1, c1; let e′1 = a1d, f ′1 = b1d, and g = a1b1

be the three edges of G1 other than e1, f1. Clearly, the mapping d → c2, e′1 → e2, f ′1 → f2

can be extended into an isomorphism π from G\g to G2. Moreover, the natural correspondence
σ : C → π(C − {g}) is a one-to-one mapping from CG to CG2 . For any function z2 defined on CG2 ,
let ϕ : z2 → z, where z is defined on CG with z(C) = z2(σ(C)), for all C ∈ CG2 . It is clear that ϕ
is a one-to-one mapping from the set of functions defined on CG2 to the set of functions defined on
CG. In addition, the equality zT1 = zT

2 1 always holds.
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Suppose G is not good. Then there exists a vector w such that no optimal solution of P (G,w)
is 1

2 -integral. We choose such a w with w(E(G)) as small as possible.

(1) w(e′1) 6= 0 6= w(f ′1).

Suppose (1) is false. By symmetry, we may assume w(e′1) = 0. Let us define w2 on E(G2)
with w2(e2) = 0, w2(f2) = min{w(f ′1), w(g)}, and w2(e) = w(e), for all other edges e of G2. For
any feasible solution y of P (G, w), let y2 = ϕ−1(y). Then y2(C0

2) = y(C0), which, as w(e′1) = 0, is
at most min{w(f ′1), w(g)}. Therefore, it is easy to see that y2 is a feasible solution of P (G2, w2).
Since G2 is good, P (G2, w2) has a 1

2 -integral optimal solution z2. Let z = ϕ(z2). Since w2(e2) = 0,
z2(C0

2) ≤ w2(f2). It follows that z(C0) ≤ min{w(f ′1), w(g)}, and thus z is a 1
2 -integral feasible

solution of P (G,w). Consequently, for all feasible solutions y of P (G, w), zT1 = zT
2 1 ≥ yT

2 1 = yT1,
which implies that z is a 1

2 -integral optimal solution of P (G,w). This contradiction proves (1).

In the rest of this proof, let y be an optimal solution of P (G,w). Let D = {e′1, f ′1}. Then D is
the only cut in C1. Therefore, q1 = y(D).

(2) q1 < 1.

Suppose q1 ≥ 1. Then min{w(e′1), w(f ′1)} ≥ q1 ≥ 1. Let w′ be obtained from w by decreasing
the values of w(e′1) and w(f ′1) by 1. Let y′ be obtained from y by decreasing the values of y(D)
by 1. Then y′ is a feasible solution of P (G,w′). By the minimality of w, P (G,w′) has a 1

2 -integral
optimal solution z′. Let z be obtained from z′ by increasing the value of z′(D) by 1. Then z is
a 1

2 -integral feasible solution of P (G,w). Moreover zT1 = 1 + (z′)T1 ≥ 1 + (y′)T1 = yT1, which
means that z is a 1

2 -integral optimal solution of P (G,w). This contradiction proves (2).

(3) q0 = w(e′1) + w(f ′1)− 2q1.

It follows from (1) and (2) that y(D) < 1 ≤ min{w(e′1), w(f ′1)}. Then we deduce from Lemma
4.1 that y(C0(e′1)) = w(e′1)−q1 and y(C0(f ′1)) = w(f ′1)−q1, which implies q0 = y(C0(e′1))+y(C0(f ′1)) =
w(e′1) + w(f ′1)− 2q1. Thus (3) is proved.

(4) q1 6= 1/2.

By Lemma 4.5 (i), q0 is not integral. Thus (4) follows from (3) immediately.

(5) w(g) = w(e′1) + w(f ′1)− 1.

Since y is feasible in P (G, w), w(g) ≥ dy(C0)e, which, by (3), means w(g) ≥ w(e′1)+w(f ′1)−b2q1c,
and thus, by (2), w(g) ≥ w(e′1) + w(f ′1) − 1. If (5) is false, then w(g) ≥ w(e′1) + w(f ′1). Let
y2 = ϕ−1(y). It follows that y2 is a feasible solution of P (G2, w2), where w2(e) = w(π−1(e)), for
all edges e of G2. Since G2 is good, P (G2, w2) has a 1

2 -integral optimal solution z2. Let z = ϕ(z2).
Since w(g) ≥ w(e′1)+w(f ′1), z is feasible in P (G, w). On the other hand, zT1 = zT

2 1 ≥ yT
2 1 = yT1,

so z is a 1
2 -integral optimal solution of P (G,w), a contradiction, which proves (5).

Again, let w2, y2, z2, and z be defined as in the last paragraph. Then the same argument shows
that zT1 ≥ yT1. It follows that z is not a feasible solution of P (G,w), which implies z(C0) > w(g).
Consequently, w2(e2) + w2(f2) − 2z2(D) ≥ z2(C0

2) = z(C0) > w(g) = w(e′1) + w(f ′1) − 1, and so
z2(D) < 1/2. On the other hand, since y is a feasible solution of P (G,w), we deduce from (3) that
w(g) ≥ y(C0) = w(e′1) + w(f ′1)− 2q1, which implies, by (4) and (5), that q1 > 1/2.

Let λ and µ be positive numbers such that λ+µ = 1 and λq1+µz2(D) = 1/2. Let y′ = λy+µz2.
Notice that y′(C0) = λy(C0)+µz2(C0) ≤ λ(w(e′1)+w(f ′1)−2q1)+µ(w2(e2)+w2(f2)−2z2(D)) = w(g),
which implies that y′ is a feasible solution of P (G,w). From zT

2 1 = zT1 ≥ yT1 we also know that

10



y′ is an optimal solution of P (G,w). Since (4) holds for an arbitrary optimal solution y of P (G,w),
it should also hold for y′. However, y′(D) = λy(D) + µz2(D) = 1/2, a contradiction, which proves
the lemma.

Proof of Theorem 4.2. Suppose the theorem is false. Then there exists w such that no
optimal solution of P (G,w) is 1

2 -integral. Let y be an optimal solution of P (G,w). We continue to
use the terminology we defined above. We proceed by proving some claims.

(1) [qi] = [qi + s]− 1
2 , for i = 1 and 2.

Let i ∈ {1, 2}. By Lemma 4.5 (ii), [qi] ≤ [qi + s]− 1
2 . On the other hand, from s ≤ 1 we deduce

that [qi +s] ≤ [qi]+1. Suppose (1) is false. Then we must have [qi +s] = [qi]+1 for some i ∈ {1, 2},
say, for i = 1. Set α = p + 1 and β = 0. Let y1, y2 be the restrictions of y. Let zi (i = 1, 2) be
a 1

2 -integral optimal solution of P (Gi, w), and let z be the concatenation of z1, z2. By Lemma 4.2
and Lemma 4.3, zT1 ≥ zT

1 1 + zT
2 1− p− 1 ≥ [yT

1 1] + [yT
2 1]− p− 1 ≥ [q1 + q0] + [q2 + q0]− p− 1 =

[q1 + s] + [q2 + q0] − 1 = [q1] + [q2 + q0] ≥ q1 + q2 + q0 = yT1, which means that z is a 1
2 -integral

optimal solution of P (G,w). This contradiction proves (1).

(2) Suppose α = p and β = 0. If zi (i ∈ {1, 2}) is a 1
2 -integral feasible solution of P (Gi, w), then

zT
i 1 < p + [qi + s].

Suppose zT
i 1 ≥ p + [qi + s] for some i ∈ {1, 2}, say, for i = 1. Let z be the concatenation of z1

and z2, and let y1 and y2 be the restrictions of y. Then we deduce from Lemma 4.3 and Lemma 4.2
that, zT1 ≥ zT

1 1+ zT
2 1− p ≥ [q1 + s]+ [yT

2 1] ≥ [q1 + s]+ [q2 + p] ≥ q1 + q2 + q0 = yT1, which means
that z is a 1

2 -integral optimal solution of P (G,w). This is a contradiction and so (2) is proved.

By Lemma 4.5 (iii), we may assume [q2] < [q2 + s
2 ]. Therefore, [q2] + 1

2 ≤ [q2 + s
2 ] ≤ [q2 + s],

which, by (1), means that

(3) [q2 + s
2 ] = [q2 + s].

Let G′
2 be obtained from G2 by adding a new edge g = a2b2. Then there is a natural one-to-one

correspondence between cuts of G′
2 and cuts of G2. As in the proof of Lemma 4.6, let ϕ : z → z′

be the natural one-to-one mapping from the set of functions defined on CG2 to the set of functions
defined on CG′2 . Clearly, the equality (z′)T1 = zT1 always holds.

Set α = p + 1 and β = 1. We also extend the domain of w to E(G1) ∪ E(G′
2) by setting

w(g) = p + 1. Notice that G′
2 is the 2-sum of K−

4 and G2. By Lemma 4.6, G′
2 is good. Let z′2 be a

1
2 -integral optimal solution of P (G′

2, w).

(4) (z′2)
T1 ≥ [q2 + s] + p + 1.

Let y2 be the restriction of y. By Lemma 4.2, y2 is feasible in P (G2, w) with y2(C0
2) ≤ q0 ≤ w(g).

Let y′2 = ϕ(y2). Then y′2(CG′2(g)) = y2(C0
2) ≤ w(g), which implies that y′2 is feasible in P (G′

2, w).
Therefore, (z′2)

T1 ≥ [(y′2)
T1] = [yT

2 1] ≥ [q2+p+1+ s
2 ] = [q2+s]+p+1, where the second inequality

follows from Lemma 4.2 and the last equality follows from (3), so (4) is proved.

(5) Let D = {e2, f2}. Then z′2(D) = 1/2.

Since z′2(D) is 1
2 -integral with 0 ≤ z′2(D) ≤ w(f2) = β = 1, we must have z′2(D) ∈ {0, 1

2 , 1}. If
z′2(D) = 1, let z2 = ϕ−1(z′′2 ), where z′′2 is obtained from z′2 by reducing the value of z′2(D) by 1.
Then it is easy to see that z2 is a feasible solution of P (G2, w2), where w2(e2) = p, w2(f2) = 0,
and w2(e) = w(e), for all other edges e of G2. By (2), we should have z21 < [q2 + s] + p. However,
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zT
2 1 = (z′′2 )T1 = (z′2)

T1 − 1, which, by (4), is at least [q2 + s] + p. This contradiction proves that
z′2(D) 6= 1. Therefore, by Lemma 4.1, z′2(CG′2(e2)) = p + 1 and z′2(CG′2(f2)) = 1. Consequently,
2z′2(D) = (α− z′2(CG′2(e2)) + (β − z′2(CG′2(f2)) = 1 + w(g)− z′2(CG′2(g)) ≥ 1, which proves (5).

Finally, set α = p + 1 and β = 0. For each X ∈ C2
0 , let z′2(X) be the sum of z′2(C), over

all C ∈ C0
2 with C ∩ E(G2) = X. This time, we define z2 on CG2 such that z2(C) = 0, for all

C ∈ CG2(f2); z2(C) = z′2(C), for all C ∈ C2; and z2(C) = z′2(C − {e2}), for all C ∈ C0
2(e2). It is

straightforward to verify that z2 is a 1
2 -integral feasible solution of P (G2, w). Moreover, by (4) and

(1), zT
2 1 ≥ [q2 + s] + p + 1

2 ≥ q2 + p + 1. Let z1 be a 1
2 -integral optimal solution of P (G1, w) and let

y1 be the restriction of y. By Lemma 4.2, zT
1 1 ≥ yT

1 1 ≥ q1 + q0. Let z be the concatenation of z1

and z2. Then zT1 ≥ zT
1 1 + zT

2 1− p− 1 ≥ q1 + q0 + q2 + p + 1− p− 1 = q1 + q2 + q0, and so z is a
1
2 -integral optimal solution of P (G, w). This contradiction completes the proof of Theorem 4.2.

5 Truncation

Usually it is very hard to prove directly that a graph is good. To accomplish Lemma 1.1, we
introduce a packing property associated with cuts. Let G = (V, E) be a connected graph. For each
cut C of G, we denote by (XC , YC) the unique partition of V such that E(XC) = E(YC) = C. A cut
C is called big if min{|XC |, |YC |} > 1 and small otherwise. Clearly, small cuts are precisely those
that can be expressed as E({v}), for some v ∈ V . To simplify our notation, E({v}) and E({u, v})
will be written as E(v) and E(uv), respectively. In the following, we use the word collection for
multiset, where an element may appear more than once. In contrast, in a set, each element may
appear at most once.

Let G = (V,E) be a connected graph and let C be a collection of cuts of G. The multiplicity
function of C will be denoted by mC . For each e ∈ E, set Ce = {C ∈ C : C 3 e} and dC(e) = |Ce|.
This notation is slightly different from that in the last section. We make this change since the
dependency on G is not emphasized anymore. We call C truncatable if G has a collection D of cuts,
called a certificate for the truncatability of C, such that

(1a) |D| ≥ |C|/2, and
(1b) dD(e) ≤ 2ddC(e)/4e, for all e ∈ E.

If, in addition, certificate D satisfies

(1c) each small cut that appears in C more than once also appears in D,

then C is called strongly truncatable. We say that G is truncatable or strongly truncatable if every
collection of its cuts is truncatable or strongly truncatable, respectively.

Lemma 5.1 Every truncatable graph is good.

Proof. Let G = (V, E) be a truncatable graph. Let A be the cut-edge incidence matrix of G,
and let B = A/2. Let Pw denote the optimization problem: max{yT1 | yT B ≤ wT , y ≥ 0, and
y is 1

2 -integral}. We aim to show that Bx ≥ 1, x ≥ 0 is TDI. This, as proved by Schrijver and
Seymour (see Theorem 22.13 of [10]), amounts to that Pw has an integral optimal solution, for all
nonnegative integral vectors w.

Let y be an optimal solution of Pw. Then we can regard 2y as the multiplicity function of a
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collection C of cuts of G. Since G is truncatable, C has a certificate D. Let z be the multiplicity
function of D. For each e ∈ E, let Ae and Be be the columns of A and B, respectively, that are
indexed by e. Then zT Be = zT Ae/2 = dD(e)/2 ≤ ddC(e)/4e = d(2y)T Ae/4e = dyT Bee ≤ w(e),
which implies that z is feasible in Pw. On the other hand, zT1 = |D| ≥ |C|/2 = (2y)T1/2 = yT1.
Therefore, z is an integral optimal solution of Pw, so the lemma is proved.

It is not difficult to show that all good graphs are truncatable. We omit its proof since we will
not use this claim in proving our theorems. But we do point out the natural consequence of this
claim that being good and being truncatable are equivalent. We choose to use the language of
truncatability because it simplifies the presentation of our proofs. On the other hand, as we will
see later, that there are truncatable graphs, which are not strongly truncatable. We introduce this
concept since it will help us to do induction in many cases.

In terms of linear programming, conditions (1a-c) can be strengthened as follows. Let Ĉ be the
set {C : C ∈ C}. Let AC be the cut-edge incidence matrix of Ĉ. That is, the |Ĉ| rows of AC are
precisely the characteristic vectors of cuts in Ĉ. Let wC be defined with wC (e) = 2ddC(e)/4e, for all
e ∈ E. Let `C ∈ {0, 1}Ĉ such that `C(C) = 1 if and only if C is a small cut with mC(C) > 1.

Lemma 5.2 Let C be a collection of cuts of a connected graph G. Then,
(i) C is truncatable if max{yT1 : yT AC ≤ wC , y ≥ 0} has an integral optimal solution;
(ii) C is strongly truncatable if max{yT1 : yT AC ≤ wC , y ≥ `C} has an integral optimal solution.

Proof. For each nonnegative integral vector y defined on Ĉ, let Dy be the collection of cuts in
Ĉ such that each C ∈ Ĉ appears in Dy exactly y(C) times. Clearly, |Dy| = yT1. Observe that if y
is feasible, in either problem, then Dy satisfy (1b), and also (1c) in the second case. Moreover, in
both problems, the vector y = 1

21 is a feasible solution, which has objective value |C|/2. Therefore,
if y is an integral optimal solution, in either case, then Dy is a certificate.

Remark. In both conclusions in Lemma 5.2, having an integral optimal solution is a sufficient
condition, but not a necessary condition. This is because, in general, members of a certificate D
do not have to be in C.

For any graph G, let G be the simplification of G; that is, G is the simple spanning subgraph of
G such that two vertices are adjacent in G if and only if they are adjacent in G. For each cut C of
G, it is clear that C = C ∩E(G) is a cut of G. If C is a collection of cuts of G, let C = {C : C ∈ C}.
Then the following lemma follows obviously from (1a-b).

Lemma 5.3 Let C be a collection of cuts of a graph G. If (G, C) is truncatable, then so is (G, C).

Let C be a collection of cuts of a connected graph G. Then an edge e = xy ∈ E(G) is called
contractable if either Ce = ∅, or Ce = {E(x), E(x), E(y), E(y)} and G− {x, y} is connected. Next,
we prove that, if e is contractable, then the truncatability of C can be reduced to the truncatability
of C/e, which is a collection of cuts of G/e defined as follows. If Ce = ∅, let C/e = C. If Ce 6= ∅, let
C′ = (C − Ce) ∪ {C,C}, where C = E(xy). One can see from our proof below that we could just
define C/e to be C′. However, to smooth the rest of our proof, we make the following adjustment.
If mC(C) ≤ 1, let C/e = C′; if mC(C) ≥ 2, let C/e = C′ − {C,C, C,C}. Let (G, C)/e = (G/e, C/e).
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Lemma 5.4 If (G, C) has a contractable edge e, then C/e is a collection of cuts of G/e. Moreover,
(i) if Ce = ∅ and (G, C)/e is truncatable, then (G, C) is also truncatable;
(ii) if (G, C)/e is strongly truncatable, then so is (G, C).

Proof. Since contracting edges keeps a connected graph connected, by definition, if a cut C of
G does not contain e, then C is a cut of G/e. Notice that all members of C/e are cuts of G that
do not contain e, thus C/e is a collection of cuts of G/e.

(i) Since Ce = ∅, by definition, C/e = C. Clearly, if D is a collection of cuts of G/e, then D is
also a collection of cuts of G. To prove (i), we only need to show that if (C,D) satisfies (1a) or
(1b) in G/e, then it also satisfies the corresponding condition in G. Since (1a) depends only on |C|
and |D|, so this part is clear. For each f ∈ E(G/e), we observe that f is also an edge of G, and
the values of dD(f) and dC(f) in G are the same as these values in G/e. The only other edge in
G is f = e, for which we have (dD(f), dC(f)) = (0, 0) in G. Therefore, (C,D) satisfies (1b) in G/e
implies (C,D) satisfies (1b) in G.

(ii) Suppose (G, C)/e is strongly truncatable. Then it has a certificate D′. Let e = xy and
C = E(xy). We consider three cases: Ce = ∅; Ce 6= ∅ and mC(C) ≥ 2; and Ce 6= ∅ and mC(C) ≤ 1.
In the first two cases, let D be D′ and D′∪{C, E(x), E(y)}, respectively. In the last case, notice that
C is a small cut of G/e with mC/e

(C) > 1, so C ∈ D′. In this case, let D = (D′−{C})∪{E(x), E(y)}.
In all cases, it is routine to verify that D satisfies (1a-c). Thus, (G, C) is strongly truncatable.

Let x and y be two vertices of a connected graph G. Let G + xy be obtained from G by adding
a new edge f = xy. For each cut C of G, let C + xy = C ∪ {f} if x and y are separated by C, and
C + xy = C if otherwise. Then C + xy = {C + xy : C ∈ C} is a collection of cuts of G + xy.

Lemma 5.5 Suppose x and y are vertices of a connected graph G.
(i) If C + xy is truncatable in G + xy, then C is truncatable in G.
(ii) if C + xy is strongly truncatable in G + xy, then C is strongly truncatable in G.

Proof. In both cases, let D be a certificate for C+xy. Notice that every cut D of G+xy has a
subset D′ such that D′ is a cut of G. Let D′ = {D′ : D ∈ D}. Then |D′| = |D| ≥ |C+xy|/2 = |C|/2.
For each e ∈ E(G), we also have dD′ (e) ≤ dD(e) and dC(e) = dC+xy(e), which imply that D′ is
a certificate for the truncatability of C. To prove (ii), we observe that if C ∈ C is small, then
C +xy ∈ C+xy is also small, as G is connected. Moreover, (C +xy)′ = C. Therefore, if (C+xy,D)
satisfies (1c), then so does (C,D′), hence D′ is a certificate for the strong truncatability of C.

6 Non-truncatability

6.1 A simple observation

Let C be a collection of cuts of a graph G. An edge e of G is critical if dC(e) ≡ 0 (mod 4).

Lemma 6.1 Suppose a collection C of cuts of a graph G = (V,E) is not strongly truncatable. Then
the following statements hold.

(i) mC(C) is odd for at least one cut C ∈ C;
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(ii) C has at least two different big cuts, provided that all critical edges form a connected spanning
subgraph of G, and mC(C) ≤ 3, for all C ∈ C.

Proof. (i) Suppose mC(C) is even for every cut C ∈ C. Let D be a subcollection of C such
that mD(C) = mC(C)/2, for all C ∈ C. It is straightforward to verify that D satisfies (1a-c), so C
is strongly truncatable, contradicting the hypothesis.

(ii) We claim that C has at least one big cut. Suppose the contrary: all cuts in C are small. Let
Vi = {v ∈ V : mC(E(v)) = i}, for i = 0, 1, 2, 3. Then (V0, V1, V2, V3) is a partition of V . In view of
(i), V1 ∪ V3 6= ∅. Next, observe that V0 = V2 = ∅, for otherwise, the hypothesis would guarantee
the existence of a path Q from V1 ∪ V3 to V0 ∪ V2, such that all edges on Q are critical. So Q must
contain an edge xy between V1 ∪ V3 and V0 ∪ V2. Hence dC(xy) = mC(E(x)) + mC(E(y)) 6≡ 0 (mod
4), a contradiction. Let D = {E(v) : v ∈ V } (the collection of all small cuts taken with multiplicity
one). Then both D and C − D satisfy (1b) and (1c), which implies that at least one of them is a
certificate for the strong truncatability of C, a contradiction. Thus the claim is proved.

Suppose (ii) is false. By the above claim, C has a big cut C such that all other big cuts in
C are copies of C. For i = 0, 1, 2, 3, let Xi = {x ∈ XC : mC(E(x)) = i} and Yi = {y ∈ YC :
mC(E(y)) = i}. For any two sets Z, Z ′ ⊆ V , let E(Z, Z ′) denote the set of edges with one end in Z
and one end in Z ′. Suppose mC(C) = 2. Then the critical edges are precisely those in E(X0, Y2),
E(X2, Y0), E(X1, Y1), E(X3, Y3), E(X1, X3), E(Y1, Y3), E(X0, X0), and E(Y0, Y0), E(X2, X2), and
E(Y2, Y2). Since critical edges form a connected spanning subgraph, using an argument similar to
the proof in the preceding paragraph, we can deduce from (i) that Xi = Yi = ∅, for i = 0, 2. Let
D1 = {C}∪{E(x) : x ∈ XC}∪{E(y), E(y) : y ∈ Y3} and D2 = C−D1. It is straightforward to verify
that both D1 and D2 satisfy (1b) and (1c). Since |C| = |D1|+ |D2|, some Di must also satisfy (1a),
which means C is strongly truncatable, a contradiction. Therefore, we must have mC(C) ∈ {1, 3}.
Again, by analyzing critical edges, we may assume X0 = X2 = Y1 = Y3 = ∅. We distinguish among
the following four cases.

If mC(C) = 1 and Y0 = ∅, let D1 = {E(x) : x ∈ V } and D2 = C − D1;
If mC(C) = 1 and Y0 6= ∅, let D1 = {D} ∪ {E(x) : x ∈ XC ∪ Y2} and D2 = C − D1 − {C};
If mC(C) = 3 and Y0 = ∅, let D1 = {C,C} ∪ {E(x) : x ∈ V } and D2 = C − D1;
If mC(C) = 3 and Y0 6= ∅, let D1 = {C}∪{E(x) : x ∈ XC ∪Y2} and D2 = {D}∪ (C−D1−{C});

where D is a cut of G with D ⊆ E(Y0). In all the four cases, it is straightforward to verify that
|C| = |D1|+ |D2|, and both D1 and D2 satisfy (1b) and (1c). Therefore, some Di is a certificate for
the strong truncatability of C, a contradiction, which proves (ii).

6.2 Basic properties

Suppose a connected graph H is not truncatable. Then a non-truncatable pair (G, C) contained in
H consists of a non-truncatable graph G = (V, E) and a non-truncatable collection C of cuts of
G, where G is obtained from H by contracting a (possibly empty) set of edges. Throughout this
subsection, we assume that (G, C) is chosen such that

(2a) |E| is minimized;
(2b) subject to (2a), f(C) =

∑
e∈EddC(e)/4e is minimized;

(2c) subject to (2a-b), |C| is maximized;
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(2d) subject to (2a-c), s(C), the number of small cuts in C, is maximized;
(2e) subject to (2a-d), g(C) =

∑
C∈C(|XC |2 + |YC |2) is maximized; and

(2f) subject to (2a-e), |Ĉ|, the number of distinct cuts in C, is minimized.

In the following, we establish some basic properties for (G, C). We say that two cuts C1, C2 cross
if XC1 ∩XC2 , XC1 ∩ YC2 , YC1 ∩XC2 , and YC1 ∩ YC2 are all nonempty. If C is a big cut, for which
there is no other big cut D ∈ C with XD ⊆ XC , then XC is called an end.

Lemma 6.2 The non-truncatable pair (G, C) enjoys the following properties:
(i) Every edge belongs to a cut in C;
(ii) mC(C) ≤ 3, for every cut C of G;
(iii) Suppose C′ is a collection of cuts of G with ddC′ (e)/4e ≤ ddC(e)/4e, for all e ∈ E. Then

(|C′|, s(C′), g(C′),−|Ĉ′|) is lexicographically less than or equal to (|C|, s(C), g(C),−|Ĉ|);
(iv) C is cross-free. That is, no two cuts in C cross;
(v) The set of critical edges form a connected spanning subgraph;
(vi) Let C ∈ C be a big cut. Then every v ∈ V is incident with a critical edge not in C;
(vii) If v belongs to an end XC , then E(v) ∈ C.

Proof. (i) The conclusion follows obviously from Lemma 5.4(i) and (2a).

(ii) If mC(C) ≥ 4, for some C, then we define C′ = C − {C,C, C, C}. It is easy to see that
f(C′) < f(C). By (2b), C′ is truncatable, and so, has a certificate, say, D′. Then it is straightforward
to verify that D = D′ ∪ {C,C} is a certificate for the truncatability of C, a contradiction.

(iii) Suppose the conclusion is false. Since f(C′) ≤ f(C), we deduce from the choice of C that
C′ is truncatable. Let D be a certificate for the truncatability of C′. Then |D| ≥ |C′|/2 ≥ |C|/2 and
dD(e) ≤ 2ddC′ (e)/4e ≤ 2ddC(e)/4e, for all e ∈ E, which means that D is also a certificate for the
truncatability of C, a contradiction.

(iv) If two cuts C1, C2 ∈ C cross, then they both are big cuts. Let C′ = (C−{C1, C2})∪{C ′
1, C

′
2},

where C ′
1, C

′
2 are cuts with C ′

1 ⊆ E(XC1 ∩XC2) and C ′
2 ⊆ E(XC1 ∪XC2). Clearly, |C′| = |C| and

s(C′) ≥ s(C). In addition, it is routine to verify that g(C′) > g(C) and dC′ (e) ≤ dC(e), for all e ∈ E,
which contradicts (iii).

(v) If this graph is disconnected or not spanning, then G has a cut C that does not contain any
critical edge. Let C′ = C ∪ {C}. It follows that |C′| > |C| and ddC′ (e)/4e = ddC(e)/4e, for all e ∈ E,
which contradicts (iii) again.

(vi) Suppose the conclusion fails for some v ∈ V . By (v), G − v is connected. It follows that
E(v) is a cut of G, and thus C′ = (C − {C}) ∪ {E(v)} contradicts (iii).

(vii) By (vi), v is incident with a critical edge e = uv 6∈ C. Then, by (i) and (ii), e belongs
to at least two different cuts in C. Since XC is an end, we deduce from (iv) that all these cuts
are small. Notice that there are at most two different small cuts that contain e, namely, E(u) and
E(v). Therefore, E(v) must belong to C.

Lemma 6.3 Suppose C ∈ C such that G[XC ] is a tree. If Z ⊆ XC and G[Z] is connected, then
E(Z) is a cut of G.

Proof. We first claim that every vertex of G has at least two neighboring vertices. Suppose,
on the contrary, that a vertex v of G has at most one neighboring vertex. Since G is obtained from
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a connected graph by contracting edges, G is connected. Moreover, since G is non-truncatable,
G has more than one vertex. Therefore, v has precisely one neighboring vertex, say u. Notice
that the only cut D of G that contains e = uv is D = E(v). By Lemma 6.2(i-ii), it follows that
1 ≤ dC(e) = mC(D) ≤ 3. This contradicts Lemma 6.2(v), and thus the claim is proved.

Since G[XC ] is a tree and G[Z] is connected, for every vertex x ∈ XC −Z, there exists a leaf y
of G[XC ] such that G[XC ] − Z has a (unique) path between x and y. By our claim above, y has
at least two neighboring vertices. Since y is a leaf in G[XC ], there is an edge between y and YC in
G. Consequently, every vertex in XC − Z is connected through a path in G− Z to YC . Therefore,
G− Z is connected, as G[YC ] is, which implies that E(Z) is a cut of G.

For each nonnegative integer n, the graph K1,n is called a star.

Lemma 6.4 If C ∈ C is a big cut and G[XC ] is a star, then |XC | = 2.

Proof. Let x0 ∈ XC have degree t = |XC | − 1 in G[XC ] and let x1, x2, ..., xt be the remaining
vertices in XC . Let us consider a big cut D ∈ C such that XD is minimal with XD ⊆ XC . Then
XD is an end. Since G[XC ] is a star and G[XD] is connected, x0 must be contained in XD. Thus,
by Lemma 6.2(vii), E(x0) ∈ C. Suppose |XC | > 2. Then t = |XC | − 1 ≥ 2. By Lemma 6.3, every
E(xi) (1 ≤ i ≤ t) is a cut of G. Let C′ = (C − {E(x0), C}) ∪ {E(x1), E(x2)}. It is routine to verify
that |C′| = |C|, s(C′) > s(C) and dC′ (e) ≤ dC(e), for all e ∈ E, which contradicts Lemma 6.2 (iii).

Lemma 6.5 If C ∈ C is a big cut and G[XC ] is a path, then |XC | = 2.

Proof. Suppose there is a counterexample C. We choose such a C with XC minimal. Let the
vertices of XC be x1, x2, ..., xt, ordered as in the path.

Case 1. Suppose E(xi) ∈ C, for all 1 < i < t. We first consider the subcase when either t
is odd or |YC | > 2. Let Z0 = {xi : i is even and i < t} and Z1 = {xi : i is odd and i < t − 1}.
Let D = E(xt), if t is odd, and D = E({xt−1, xt}), if t is even. By Lemma 6.3, D and E(xi)
(1 ≤ i ≤ t) are cuts of G. Let C′ = (C − {C} − {E(x) : x ∈ Z0}) ∪ {E(x) : x ∈ Z1} ∪ {D}. It is
routine to verify that |C′| = |C|, and dC′ (e) ≤ dC(e), for all e ∈ E. Since |Z0| = |Z1|, we also have
s(C′) ≥ s(C). Notice that, if t is odd, then D is a small cut and thus s(C′) > s(C), contradicting
Lemma 6.2(iii). On the other hand, if |YC | > 2, then min{|XC |, |YC |} > 2 ≥ min{|XD|, |YD|},
which implies g(C′) > g(C), contradicting Lemma 6.2(iii) again.

Next, we consider the subcase when t is even and |YC | = 2. By Lemma 6.2(ii,v) and Lemma
6.1(ii), C has another big cut, say D. By Lemma 6.2(iv), we may assume XD ⊆ XC . Then we
deduce from the minimality of XC that |XD| = 2. So we may further assume XD = {xk, xk+1}, for
some k with 1 ≤ k < t. Let Z0 = {xi : 1 < i < k and i is even, or k + 1 < i < t and i is odd} and
Z1 = {xi : 1 ≤ i < k and i is odd, or k + 1 < i ≤ t and i is even}. Let C0 = {E(x) : x ∈ Z0} and
C1 = {E(x) : x ∈ Z1}. If k is even, let C′ = (C − {C, D} − C0) ∪ C1. Then |C′| = |C|, s(C′) > s(C),
and dC′ (e) ≤ dC(e), for all e ∈ E, which contradicts Lemma 6.2(iii). It follows that k has to be odd.
Since D was chosen arbitrarily, we deduce that every big cut in C that is different from C can be
expressed as E(xixi+1), for some odd i. It follows that e = x1x2 does not belong to any big cut of
C. By Lemma 6.2(vi), e is critical, and thus, by Lemma 6.2(i-ii), e belongs to at least two different
cuts in C, which implies E(x1) ∈ C. Similarly, E(xt) ∈ C. Let m = min{mC(C

′) : C ′ ∈ {C} ∪ C0}
and let C′ be obtained from C by deleting m copies of each member of {C} ∪ C0 and adding m
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copies of each member of {D}∪C1. Then |C′| = |C|, s(C′) = s(C), g(C′) = g(C), and dC′ (e) ≤ dC(e),
for all e ∈ E. However, since {D} ∪ C1 ⊆ C, we deduce from the choice of m that |Ĉ′| < |Ĉ|, which
contradicts Lemma 6.2(iii), and thus Case 1 is settled.

Case 2. Suppose E(xi) 6∈ C, for some i with 1 < i < t. The idea of our proof is similar. Let us
consider the set of indices i such that 1 < i < t and E(xi) 6∈ C. Without loss of generality, we assume
that this set consists of i1, i2, ..., ir, where i1 < i2 < ... < ir and r > 0. Let i0 = 1 and ir+1 = t.
We partition the path G[XC ] into r + 1 parts, Q0, Q1, ..., Qr, where Qj = G[{xk : ij ≤ k ≤ ij+1}].
According to our definition, E(x) ∈ C, for all the interior vertices x of each Qj .

Before we proceed, we make two observations. First, every Qj has at least two edges. Suppose
some Qj has only one edge e = xijxij+1 . Since r > 0, we may assume, by symmetry, that j ≥ 1.
Therefore, E(xij ) 6∈ C. Let us consider Ce, the collection {D ∈ C : D 3 e}. By Lemma 6.2(iv), we
may assume XD ⊂ XC , for all D ∈ Ce. It follows from Lemma 6.2(vii) and the minimality of XC

that xij+1 ∈ XD, for all D ∈ Ce. Moreover, by Lemma 6.2(vii) again, we must have E(xij+1) ∈ C,
which implies ij+1 = t. Therefore, all cuts in Ce are copies of E(xij+1), and thus, by Lemma 6.2(i-ii),
0 < |Ce| ≤ 3. However, since e is the only edge in G[XC ] that is incident with xt, we deduce from
Lemma 6.2(vi) that |Ce| ≡ 0 (mod 4), a contradiction.

Our second observation is the following. Suppose x ∈ XC with E(x) 6∈ C. If xy ∈ E(G[XC ]) is
a critical edge, then y has another neighbor z in XC such that E(yz) ∈ C. Since xy is critical, this
edge must belong to at least two different cuts in C. It follows that at least one of these cuts, say
D, is big, as E(x) 6∈ C. By Lemma 6.2(iv) and the minimality of XC , we must have XD ⊆ XC and
|XD| = 2. Moreover, by Lemma 6.2(vii), x 6∈ XD. Therefore, XD consists of two adjacent vertices
including y, which proves the second observation.

Let j ∈ {0, 1, ..., r}. In the following, we define a set Cj of cuts in C and a set Dj of small cuts
of G. If |V (Qj)| is odd, let Cj = {E(xi) : i− ij is odd and ij < i < ij+1} and Dj = {E(xi) : i− ij
is even and ij ≤ i ≤ ij+1}. If |V (Qj)| is even, we chose a vertex xk ∈ V (Qj) such that it has
degree one in Qj but has degree two in G[XC ]. Such a vertex xk must exist since r > 0. Without
loss of generality, let us assume that k = ij . Let Dj = {E(xij )} ∪ {E(xi) : i − ij is odd and
ij + 3 ≤ i ≤ ij+1}. To define Cj , we need to consider two cases, depending on if ej = xijxij+1 is
critical. If ej is critical, by our second observation, Cj = E(xij+1xij+2) is in C. In this case, let
Cj = {Cj}∪{E(xi) : i− ij is even and ij +3 < i < ij+1}. If ej is not critical, let Cj = {E(xi) : i− ij
is even and ij < i < ij+1}. By Lemma 6.3, every member in each Dj is a cut of G. Moreover, from
these definitions it is straightforward to verify the following:

• Cj ⊆ C, for all j;
• every cut in every Dj is small;
• Cj ∩ Cj′ = ∅, if j 6= j′;
• Dj ∩ Dj′ = ∅, if |j − j′| > 1;
• Dj−1 ∩ Dj = {E(xij )}, for j = 1, 2, ..., r;
• |Dj | = |Cj |+ 1, for all j.

Let C∗ = ∪r
j=0Cj and D∗ = ∪r

j=0Dj , where the union is considered as union of sets, not multisets. In
other words, common cuts in Dj and Dj±1 are counted only once in D∗. Let C′ = (C−{C}−C∗)∪D∗.
Then it is routine to verify that |C′| = |C|, s(C′) > s(C), and, by our first observation, dC′ (e) ≤ dC(e),
for all e ∈ E, which contradicts Lemma 6.2(iii).
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6.3 Compactness and more reductions

A graph G is called ps-connected if it is connected and, for every cut C of G, at at least one
component of G\C is either a path or a star.

Lemma 6.6 If G is ps-connected, then so are all its connected minors.

Proof. Let G′ be a connected minor of G with G′ = G\F1/F2 and let C be a cut of G′. Then F1

can be partitioned into F ′
1, F ′′

1 such that C∪F ′
1 is a cut of G. Therefore, G′\C = G\(C∪F ′

1)\F ′′
1 /F2

and thus components of G′\C are minors of components of G\(C ∪ F ′
1). Since G\(C ∪ F ′

1) has a
path- or a star-component, we deduce that G′\C has a path- or a star-component.

Let C be a collection of cuts of a connected graph G. Then (G, C) is compact if it satisfies:

(3a) mC(C) ≤ 3, for every C ∈ C;
(3b) the set of critical edges form a connected spanning subgraph of G;
(3c) every big cut in C has the form E(xy), for some adjacent vertices x and y;
(3d) the set M = {xy ∈ E(G) : E(xy) ∈ C is a big cut} of edges is a matching; and
(3e) if E(xy) ∈ C is a big cut, then E(x), E(y) ∈ C with mC(E(x)) + mC(E(y)) = 4.

The matching M defined in (3d) will be referred to as the matching of C.

Lemma 6.7 Let H be a connected and not truncatable graph. If H is ps-connected and (G, C) is
chosen subject to (2a-f), then (G, C) is compact.

Proof. Clearly, (3a) and (3b) follow from (ii) and (v) of Lemma 6.2, respectively. By Lemma
6.6, G is ps-connected and thus (3c) follows from Lemma 6.4 and Lemma 6.5. Consequently, (3d)
follows from Lemma 6.2(iv), and (3e) from Lemma 6.2(vi-vii).

Lemma 6.8 Suppose (G, C) has a contractable edge e. If (G, C) is compact, then so is (G, C)/e.

Proof. From its construction we deduce that C/e satisfies (3a). Since big cuts of C/e are also
big cuts of C, it follows that C/e satisfies (3c), (3d), and (3e) automatically. To verify (3b), notice
that dC(f) − dC/e

(f) = 0, or 4, for all f ∈ E(G/e). Therefore, if J is the graph formed by the
C-critical edges in G, then the graph formed by the (C/e)-critical edges in G/e is exactly J/e, which
is connected and spanning, as J is.

Lemma 6.9 Suppose (G, C) is compact but not strongly truncatable. Then the following hold:
(i) C has a big cut C with mC(C) odd;
(ii) C has at least three different big cuts.

Proof. Let G = (V, E). Suppose (i) is false. Then mC(C) = 2, for all big cuts C ∈ C. By
(3b-e) and Lemma 6.1(i), mC(E(x)) is odd, for all x ∈ V . Let M = {xiyi : 1 ≤ i ≤ k} be the
matching of C. By (3e), we may assume that mC(E(xi)) = 1 and mC(E(yi)) = 3, for all i. Let
Z = V −{xi, yi : 1 ≤ i ≤ k}. Let D = {E(xiyi), E(yi), E(yi) : 1 ≤ i ≤ k} ∪ {E(z) : z ∈ Z}. Then it
is routine to verify that both D and C −D satisfy (1b) and (1c), which implies that at least one of
them is a certificate for the strong truncatability of C and this contradiction proves (i).
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Next, suppose (ii) is false. By Lemma 6.1(ii), C has two different big cuts C1 and C2 such that
all big cuts in C are copies of one of these two. By (3d), we may assume that V is partitioned
into (X1, X2, X3) such that C1 = E(X1) and C2 = E(X2). For i = 1, 2, 3 and j = 0, 1, 2, 3, let
Xij = {x ∈ Xi : mC(E(x)) = j}. By (3e), X10 = X20 = ∅. Let m1 = mC(C1) and m2 = mC(C2).

We claim that X12 = X22 = ∅. Suppose, say, X12 6= ∅. By (3e), X12 = X1. Hence the only edge
e of G[X1] is contractable, which implies, by Lemmas 6.8 and 5.4(ii), that (G, C)/e is compact but
not strongly truncatable. Consequently, by Lemma 6.1(ii), C/e should have at least two different
big cuts. However, C2 is the only big cut in C/e, a contradiction, and so the claim is proved.

By (i), at least one of m1 and m2 is odd. Then, by (3b) and the above claim, that the other is
also odd, and X31 = X33 = ∅. By symmetry, we only need to consider the following three cases:
If (m1, m2) = (1, 1), let

D1 = {E(X1 ∪X32)} ∪ {E(x) : x ∈ X1 ∪X32} ∪ {E(x), E(x) : x ∈ X23} and
D2 = {E(X2 ∪X32)} ∪ {E(x) : x ∈ X2 ∪X32} ∪ {E(x), E(x) : x ∈ X13}.

If (m1, m2) = (1, 3), let
D1 = {C2, E(X1 ∪X30)} ∪ {E(x) : x ∈ X32} ∪ {E(x), E(x) : x ∈ X13 ∪X23} and
D2 = {C2, E(X1 ∪X32)} ∪ {E(x) : x ∈ X1 ∪X2 ∪X32}.

If (m1, m2) = (3, 3), let
D1 = {C1, C2, E(X1 ∪X30)} ∪ {E(x) : x ∈ X1 ∪X32} ∪ {E(x), E(x) : x ∈ X23} and
D2 = {C1, C2, E(X2 ∪X30)} ∪ {E(x) : x ∈ X2 ∪X32} ∪ {E(x), E(x) : x ∈ X13};

where each E(Xi∪Xjk) should be interpreted as a cut contained in E(Xi∪Xjk). In each case, it is
straightforward to verify that |D1|+|D2| = |C| and both D1 and D2 satisfy (1b) and (1c). Therefore,
at least one of D1 and D2 is a certificate for the strong truncatability of C, a contradiction.

Lemma 6.10 Suppose (G, C) is compact, not strongly truncatable, and free of contractable edges.
Let M = {xiyi : 1 ≤ i ≤ k} be the matching of C, and let Z = V (G)− {xi, yi : 1 ≤ i ≤ k}. Then

(i) {mC(E(xi)), mC(E(yi))} = {1, 3}, for i = 1, 2, ..., k;
(ii) mC(E({xi, yi})) ∈ {1, 3}, for i = 1, 2, ..., k;
(iii) mC(E(z)) ∈ {0, 2}, for each z ∈ Z; and
(iv) mC(E(z1)) 6= mC(E(z2)), if z1, z2 ∈ Z and E({z1, z2}) is a cut of G.

Proof. Conclusion (i) follows from (3e) and the hypothesis that there are no contractable edges.
Conclusions (ii) and (iii) follow from (i), Lemma 6.9(i), and (3b). Conclusion (iv) follows from (iii)
and the hypothesis that there are no contractable edges.

7 The two infinite families

In this section, we prove that connected minors of K3,n and Wn are truncatable.

Lemma 7.1 Let n ≥ 3 be an integer. Then every connected minor of K3,n is truncatable.

Proof. Suppose a connected minor H of K3,n is not truncatable. We choose a non-truncatable
pair (G, C) of H that satisfies (2a-f). Since K3,n is ps-connected, by Lemma 6.6, H is ps-connected.
Thus, by Lemma 6.7, (G, C) is compact. As a minor of K3,n, G has a set U of vertices such that
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|U | ≤ 3 and G− U is edge-less. On the other hand, since (G, C) is not strongly truncatable either,
we deduce from Lemma 6.9(ii) that the matching M of C has at least three edges. Consequently,
M consists of exactly three edges, say u1v1, u2v2, u3v3, where U = {u1, u2, u3}. By (3e), every
E(ui) and E(vi) belongs to C. Let m = min{mC(E(ui)) : i = 1, 2, 3} and let C′ be obtained from
C by deleting m copies of E(ui) (i = 1, 2, 3) and also adding m copies of E(vi) (i = 1, 2, 3). Then
|C′| = |C|, s(C′) = s(C), g(C′) = g(C), and dC′ (e) ≤ dC(e), for all e ∈ E(G). However, |Ĉ′| < |Ĉ|,
contradicting Lemma 6.2(iii).

Lemma 7.2 Let n ≥ 4 be an integer. Then every connected minor of Wn is truncatable.

Proof. We apply induction on n. By Lemma 7.1, the assertion holds for n = 4. Thus we
proceed to the induction step. By Lemma 5.5(i), we only need to consider graphs H obtained from
Wn by contracting edges. If at least one edge of Wn is contracted, then H is a connected minor
of Wn−1, so the assertion follows instantly from the induction hypothesis and Lemma 5.3. Hence
we only need to justify the case when H = Wn. Suppose a non-truncatable pair (G, C) of Wn is
chosen, subject to (2a-f). By Lemma 5.3 and the induction hypothesis again, we deduce G = Wn.

Let Wn = (V, E). By Lemma 6.7, (Wn, C) is compact. Moreover, all conclusions made in
Subsection 6.2 can be applied to (Wn, C). In particular, by Lemma 6.5, the matching M of C
consists of only rim edges. Let Z be the set of vertices that are not incident with any edge in M .
For each x ∈ V , we define its rank r(x) to be mC(E(x)) if x ∈ Z, and to be mC(E(x))+mC(E(xy))
if xy ∈ M . By (3b), ranks of vertices of G have the same parity, which we call the parity of C.

(1) The parity of C is even.

Suppose the parity is odd. Since C is not truncatable, it is not strongly truncatable either. Let
(G′, C′) be obtained from (Wn, C) by repeatedly contracting contractable edges, until no more edge
is contractable. By Lemma 5.4(ii), (G′, C′) is not strongly truncatable. Moreover, by Lemma 6.8,
(G′, C′) is compact. Notice that contracting contractable edges preserves the parity of a collection.
Therefore, the parity of C′ is odd, contradicting Lemma 6.10(i-iii), which proves (1).

(2) mC(E(x)) is odd, for all x ∈ V − Z.

Suppose mC(E(x)) is even for some x ∈ V −Z. Let e = xy be the matching edge that is incident
with x. It follows from (3e) that mC(E(x)) = mC(E(y)) = 2. Moreover, by (1), mC(E(xy)) ≥ 2.
Let G′ = Wn/e and C′ = C − {E(x), E(x), E(y), E(y), E(xy), E(xy)}. Clearly, G′ = Wn−1. By
our induction hypothesis, (G′, C′) is truncatable. Let D′ be a certificate for the truncatability of
C′. Let D = D′ ∪ {E(x), E(y), E(xy)}. Then |D| = |D′| + 3 ≥ 1

2 |C′| + 3 = 1
2 |C|. Notice that

dD(f) = dD′ (f) + 2 ≤ 2ddC′ (f)/4e + 2 = 2d(dC′ (f) + 4)/4e = 2ddC(f)/4e, for all f ∈ E(x) ∪ E(y);
and dD(f) = dD′ (f) ≤ 2ddC′ (f)/4e = 2ddC(f)/4e, for all f ∈ E − E(x) − E(y). Therefore, D is a
certificate for the truncatability for C, a contradiction, which proves (2).

It follows from (1) that xy ∈ E −M is critical if and only if r(x) ≡ r(y) (mod 4). Let u be the
hub of Wn and let v0, v1, ..., vn−1 be the other vertices of Wn, ordered along the cycle Wn − u. In
the following, subscripts will be taken modulo n.

(3) Every rim edge is critical.

Suppose a rim edge, say v0v1, is not critical. By (3e), v0v1 6∈ M , which implies r(v0) 6≡ r(v1)
(mod 4). Consequently, either r(u) 6≡ r(v0) or r(u) 6≡ r(v1) (mod 4). By symmetry, we may
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assume r(u) 6≡ r(v1) (mod 4). Since all edges in M are rim edges, uv1 6∈ M and thus uv1 is not
critical either. By (3b), v1v2 has to be critical. Since v0v1, uv1 are not critical, by (3e), they
are not contained in M , which implies that either v1v2 does not belong to any big cut in C, or
v2 6∈ Z. In each cases, we deduce from Lemma 6.2(i-ii) or (3e), respectively, that E(v2) ∈ C. Let
C′ = (C−{E(v2)})∪{E(v1), E(v1v2)}. Then it is easy to see that dC′ (e) = dC(e)+2 = 4ddC(e)/4e,
for e = uv1 or v0v1, and dC′ (e) = dC(e), for all other edge e of Wn. However, |C′| > |C|, contradicting
Lemma 6.2(iii), which proves (3).

(4) If vi ∈ Z, then r(vi) = mC(E(vi)) = 2.

It follows from the definitions of Z and r that r(vi) = mC(E(vi)). Suppose there exists vi ∈ Z
with r(vi) 6= 2. Then we deduce from (1) and (3a) that r(vi) = 0. Without loss of generality,
let i = 2. By (3), r(v1) ≡ r(v3) ≡ 0 (mod 4), which implies, by Lemma 6.2(i-ii), that v0v1,
v3v4 ∈ M . Consequently, by (3e), E(v1), E(v3) ∈ C. Since u ∈ Z and uv2 ∈ E, it is easy to see
from Lemma 6.2(i) that E(u) ∈ C, and thus, by (1), mC(E(u)) = 2, which implies dC(uv2) = 2.
Let C′ = (C − {E(v1), E(v3), E(v0v1), E(v3v4)}) ∪ {E(v0), E(v4), E(v2), E(v2)}. Then it is routine
to check that |C′| = |C|, dC′ (uv2) = 4 = 2ddC(uv2)/4e, and dC′ (e) ≤ dC(e), for all e ∈ E − {uv2}.
However, s(C′) > s(C), contradicting Lemma 6.2(iii), which proves (4).

(5) If r(vi) ≡ 0 (mod 4), then there exists ε ∈ {1,−1} such that vi−εvi, vi+εvi+2ε ∈ M and
r(vi+ε) ≡ 0 (mod 4)

By (4), vi ∈ V − Z, which means vivi−ε ∈ M , for some ε ∈ {1,−1}. Then, by (3), r(vi+ε) ≡ 0
(mod 4), and by (4) again, vi+εvi+2ε ∈ M , which proves (5).

For k = 0, 1, let Vk = {vi : r(vi) ≡ 2k (mod 4)}. Components of Wn[Vk] are called 2k-paths.
Clearly, 0-paths and 2-paths appear on Wn−u alternately. By (3), edges that link a 0-path with a
2-path must belong to M . By (2), every internal vertex of a 2-path must belong to Z. Furthermore,
by (5), each 0-path has exactly one edge, which we call a 0-edge. In the following, we will use this
structure to find a certificate D for the truncatability of C.

Suppose E(u) ∈ C. We partition V into blocks such that each block consists of either a single
vertex in Z or vertices of a component of Wn−Z. Clearly, each of the second type of blocks can be
expressed as {vi, vi+1, vi+2, vi+3} such that vivi+1, vi+2vi+3 ∈ M and r(vi+1) ≡ r(vi+2) ≡ 0 (mod
4). Let B0 = {u} and let B1, B2, ..., B` be the remaining blocks. For each i ∈ {0, 1, ..., `}, if
Bi = {z}, let Ci = {E(z), E(z)}; if Bi = {vj , vj+1, vj+2, vj+3}, let Ci consist of all cuts in C of the
form E(x) (x ∈ Bi), E(vjvj+1), or E(vj+2vj+3). Then it is easy to see that (C0, C1, ..., C`) is a
partition of C. Now, for each i ∈ {0, 1, ..., `}, if Bi = {z}, let Di = {E(z)}; if |Bi| = 4, let Di be
define as in Figure 7.1, where the numbers indicate dCi

(e) or dDi
(e) for the corresponding edge, or

the multiplicities for the corresponding cut. Observe that |Di| = |Ci|/2. In addition, for each edge
e that belongs to a cut in Ci (i > 1), it is easy to check that dDi

(e) = dCi
(e)/2, if e is a rim edge,

and dDi∪D0
(e) ≤ 2ddCi∪C0 (e)/4e, if e is a spoke edge. Let D = D0 ∪ D1 ∪ ... ∪ D`. It follows that D

is a certificate for the truncatability of C, a contradiction.

Next, suppose E(u) 6∈ C. This time we partition V −{u} into blocks such that each block consists
of either a vertex in Z or the two ends of a matching edge. Let B1, B2, ..., B` be the blocks, ordered
as they appear on the cycle Wn − u. Let i ∈ {1, 2, ..., `}. Let Ci consist of all cuts in C of the form
E(x) (x ∈ Bi) or E(xy) (x, y ∈ Bi). It is clear that (C1, C2, ..., C`) is a partition of C. We also define
a partition (Ci,1, Ci,2) of each Ci (see Figure 7.2). If Bi = {z}, let Ci,1 = Ci. If Bi = {x, y}, let
us assume, without loss of generality, that r(x) ≡ 0 and r(y) ≡ 2 (mod 4). If mC(E(x)) = 3, let
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Figure 7.1: The definition of each Ci → Di.

Ci,1 = {E(x), E(y), E(xy)}; if mC(E(x)) = 1, let Ci,1 = {E(y), E(y), E(xy), E(xy)}. Since C has at
least one big cut, it follows that there is at least one 0-edge. Without loss of generality, we assume
that the edge between B1 and Bp is a 0-edge. Let D be the union of Ci,ji , where ji ∈ {1, 2} with
ji + i even, over all i ∈ {1, 2, ..., `}. We verify that D is a certificate for the truncatability of C.
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Figure 7.2: Ci is partitioned into (Ci,1, Ci,2).

We will partition D into groups and consider each group separately. Let Q be a component
of Wn\F0 − u, where F0 is the set of 0-edges. Clearly, Q is a path. Moreover, V (Q) can be
expressed as {vq, vq+1, ..., vq+p+1} such that p ≥ 2, vqvq+1, vq+pvq+p+1 ∈ M , r(vq) ≡ r(vq+p+1) ≡ 0
and r(vq+i) ≡ 2 (mod 4), for all i ∈ {1, 2, ..., p}. Let Bt+1, Bt+2, ..., Bt+p be the blocks that are
contained in V (Q). Let C(Q) = ∪p

i=1Ct+i and D(Q) = D ∩ C(Q). It follows from the choice of D
that |D(Q)| = |C(Q)|/2 (notice that we only need to check this for p = 2 or 3, which can be done
by inspection). Similarly, for any edge e that is incident with at least one vertex of V (Q), it is
routine to verify that dD(Q)

(e) = dC(Q)
(e)/2, if e is a rim edge, and dD(Q)

(e) ≤ 2ddC(Q)
(e)/4e, if e is

a spoke edge. Therefore, D is a certificate for the truncatability of C, a contradiction.

8 Small graphs – Completing the proof of Lemma 1.1

To complete our proof of Lemma 1.1, it remains to consider G1, G2, G3, G4, G5, G6, the six graphs
shown in Figure 3.2. Let G+

2 be obtained from G2 by adding an edge between the two neighbors
of the only degree-two vertex. Let G−

3 and G−
4 be the two graphs illustrated in Figure 8.1. Let J6a

and J6b be obtained from K6 by deleting three edges that form a triangle or a star, respectively.

The following statement is easy to verify and hence its proof is omitted.

Lemma 8.1 Let G = (V, E) be obtained from some Gi by contracting edges. Then
(i) if |V | = 9, then G = G6;
(ii) if |V | = 8, then G = G3, G = G4, or G is a subgraph of G5;
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Figure 8.1: G−
3 and G−

4 .

(iii) if |V | = 7, then G is a subgraph of G1, G+
2 , G−

3 , or G−
4 ;

(iv) if |V | = 6, then G is a subgraph of J6a or J6b.

In this section, we prove that every compact collection of cuts of a graph listed in Lemma 8.1
must be truncatable. In fact, we shall show that, with only one exception, all these collections
are strongly truncatable. Let M = {xiyi : 1 ≤ i ≤ k} be a matching of a graph G = (V, E). Let
Z = V − {xi, yi : 1 ≤ i ≤ k}. A collection C of cuts of G is M -generated if every big cut in C has
the form E(xiyi), every cut E(xiyi) is in C, and mC satisfies the four conclusions in Lemma 6.10.
For i = 1, 2, let Mi be a matching of a connected graph Hi. We define (H1,M1) ¹ (H2,M2) if H1

is isomorphic, under an isomorphism σ, to a spanning subgraph of H2 such that σ(M1) = M2 and
very edge in E(H2)− σ(E(H1)) is incident with at least one edge in M2. Let C1 be a collection of
cuts of H1. Let C2 be the collection {EH2(σ(XC), σ(YC)) : C ∈ C1} of cuts of H2.

Lemma 8.2 If C1 is M1-generated, then C2 is M2-generated.

Proof. Clearly, we only need to verify that C2 satisfies the four conclusion in Lemma 6.10.
The first three are obvious, since C1 satisfies them. The last one follows from σ(H1[Z1]) = H2[Z2],
where Zi (i = 1, 2) is the set of vertices of Hi that are not incident with any edge in Mi.

In what follows, let G = (V, E) ∈ {J6a, J6b, G1, G
+
2 , G−

3 , G−
4 , G3, G4, G5, G6}, which consists of

graphs listed in Lemma 8.2. We assume that M = {ei = xiyi : 1 ≤ i ≤ k} is a matching of G with
3 ≤ k ≤ 4. Let Z = V − {xi, yi : 1 ≤ i ≤ k}. We examine how M can be placed in G.

Notice that, up to isomorphism, there is only one way to choose a perfect matching in J6a and
J6b. Let us name the vertices of these two graphs by {xi, yi : 1 ≤ i ≤ 3} such that M is a perfect
matching. Then the next lemma follows from the definition of ¹.

Lemma 8.3 If |V | = 6, then (G,M) ¹ (Ji,M), for some i ∈ {6a, 6b}.

Lemma 8.4 Let J7a, J7b, and J7c be defined in Figure 8.2. If |V | = 7, then (G,M) ¹ (Ji, M), for
some i ∈ {7a, 7b, 7c}.

Proof. Since |V | = 7, Z has only one vertex, say z. Let us consider a vertex v0 of degree
two. Let v1 and v2 be its only two neighbors. If z 6∈ {v0, v1, v2}, then {v0, v1, v2} ⊆ {xi, yi, xj , yj},
for some distinct i, j ∈ {1, 2, 3}, which implies (G,M) ¹ (J7a,M). Therefore, we may assume
that z ∈ {v0, v1, v2}. Since v0 can be any vertex of degree two, we conclude that G 6= G1. If
G = G−

3 or G−
4 , then z must be the vertex adjacent to both degree-two vertices. In the first case,

(G,M) ¹ (J7c,M). The second case won’t happen since G−
4 − z has no perfect matching. Finally,

we consider G = G+
2 . There are three possible choices for z. It is straightforward to see that

(G,M) ¹ (J7c,M) if z has degree six, and (G,M) ¹ (J7b, M) in the other two cases.
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Figure 8.2: Maximal graphs on seven vertices.

Lemma 8.5 Let J8a, J8b, and J8c be defined in Figure 8.3. (Notice that J8c = G3.) If |V | = 8 and
k = 3, then (G,M) ¹ (J8a,M) or (J8b,M), unless (G,M) = (J8c,M).
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Figure 8.3: Maximal graphs on eight vertices.

Proof. Since |V | = 8, we have |Z| = 2. Let NZ be the set of vertices that are adjacent to at
least one vertex in Z. If Z ∪NZ 6= V , then it is clear that (G, M) ¹ (Ji,M), for some i ∈ {7a, 7b}.
Hence we may assume that Z ∪NZ = V . It is routine to verify that G 6= G5. In addition, G 6= G4,
because otherwise, Z would consist of two nonadjacent vertices, one with degree two and one with
degree four, which implies G−Z has no perfect matching, a contradiction. Therefore, G = G3 and
Z consists of two vertices of degree four, including the one that is adjacent to two vertices of degree
two. In this case, G− Z has a unique perfect matching, which implies (G,M) = (J7c, M).

Lemma 8.6 Let J84 be obtained from from the complete graph on {xi, yi : i = 1, 2, 3, 4} by deleting
four edges x1x2, x2x3, x3x4, and x4y1. If |V | = 8 and k = 4, then (G, M) ¹ (J84,M).

Proof. Since G4 has no perfect matching, as deleting the three vertices of degree four results
in five isolated vertices, we conclude that G = G3 or G5.

Suppose G = G3. Let x2 be the vertex of degree two, for which both of its neighbors have
degree four. By symmetry, we may name any of these two neighbors y2. Notice that, one of the
matching edges is between a degree three vertex, say x1, and a degree two vertex, say y1. Let x3 be
the other degree two vertex and let x4 be the other degree four vertex. Then (G,M) ¹ (J84,M).

Next, suppose G = G5. Observe that one of the matching edges is between a degree two vertex,
say x1, and a degree-three vertex, say y1. Let x4 be the other vertex of degree-two. Clearly, the
other neighbor of x1 is incident with another matching edge, so may name it x3. At this point, a
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simple case analysis shows that the degree-three vertex that is adjacent with y1 is incident with
the last matching edge, so we can name it x2. Again, we have (G,M) ¹ (J84,M).

Lemma 8.7 Let J9a, J9b, and J9c be obtained from the complete graph on {xi, yi, zi : i = 1, 2, 3}
by deleting three, two, or one edge within {z1, z2, z3}, respectively. If |V | = 9 and k = 3, then
(G,M) ¹ (Ji, M), for some i ∈ {9a, 9b, 9c}.

Proof. Since G has no triangle, G({z1, z2, z3}) has 0, 1, or 2 edges, which proves the result.

Lemma 8.8 Let J94 be defined in Figure 8.4. If |V | = 9 and k = 4, then (G,M) ¹ (J94, M).

x3

y3

x4

y
4

y2

x2

94J

z

x1

y1

Figure 8.4: Maximal graph J94.

Proof. Let z be the only vertex in Z. If z has degree two, then, up to isomorphism, there is
only one way to place the matching. Let x2, y4 be the two neighbors of z. Let y1 be other neighbor
of x2 and let x3 be other neighbor of y4. Then it is easy to see that (G,M) ¹ (J94,M). If z has
degree three, then there is again only one way to place the matching, up to isomorphic. Let y4 be
the degree-two vertex that is adjacent with z. Let x2, x3 be the other two vertices of degree two
such that y2x4 and y3z are edges of G. Let x1 be the other neighbor of z. Then it is easy to see
that (G,M) ¹ (J94,M).

Lemma 8.9 Let J ∈ {J6a, J6b, J7a, J7b, J7c, J8a, J8b, J84, J9a, J9b, J9c, J94} and let M be the
corresponding matching defined in Lemmas 8.3-8.8. If a collection C of cuts of J is M -generated,
then C is strongly truncatable.

Proof. This is the part that we have to use computer. Our program generates all multiplicity
functions mC , according to Lemma 6.10, and verifies that the LP in Lemma 5.2(ii) has an integral
optimal solution. Therefore, the result follows from Lemma 5.2(ii).

Lemma 8.10 Let M be the matching of J8c defined in Figure 8.3 and let C be an M -generated
collection of cuts of J8c. Then C is truncatable.

Proof. Again, we use computer to generates all multiplicity functions mC , according to Lemma
6.10, and verifies that the LP in Lemma 5.2(i) has an integral optimal solution. Therefore, the
result follows from Lemma 5.2(i).
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Remark. G3 = J8c is not strongly truncatable. To see this, we define an M -generated collection
C with mC(E(x1)) = mC(E(x2)) = mC(E(x3)) = 1, mC(E(y1)) = mC(E(y2)) = mC(E(y3)) = 3,
mC(E(x1y1)) = mC(E(x2y2)) = 1, mC(E(x3y3)) = 3, mC(E(z1)) = 0, and mC(E(z2)) = 2. Then
|C| = 19. However, for any collections D of cuts with E(z2) ∈ D, if dD(e) ≤ 2ddC(e)/4e, for all
e ∈ E(G3), we always have |D| < 10.

Proof of Lemma 1.1. Let H be a graph that contains neither P nor K∗ as a minor. We need
to show that H is good. It follows from the definition that H is good if and only if its simplification
H is good, so we may assume that H is simple. Then, by Theorems 3.1, 4.1, and 4.2, we may
further assume H ∈ G0 ∪ G1. Finally, since each graph in G0 is a connected minor of W4 ∈ G1, by
Theorem 3.2, we may assume that H is a connected minor of a graph listed in Figure 3.2.

By Lemma 5.1, we only need to show that H is truncatable. If H is a minor of K3,n or Wn,
then the result follows from Lemmas 7.1 and 7.2. So H is minor of some Gi (1 ≤ i ≤ 5). By
Lemma 5.5(i), we may assume that H is obtained from Gi by contracting edges. Suppose H is not
truncatable. Notice that Gi is ps-connected, by Lemma 6.6, H is also ps-connected. Therefore, by
By Lemma 6.7, H contains a non-truncatable pair (G, C) such that C is compact.

Clearly, (G, C) is not strongly truncatable. Let (G′, C′) be obtained from (G, C) by repeatedly
contracting contractable edges, until no more edge is contractable. By Lemmas 6.8(ii) and 5.4(ii),
(G′, C′) satisfies all hypotheses in Lemma 6.10. Let M ′ be the set of edge xy ∈ E(G′) such that
E(xy) is a big cut of G′. By (3d) and Lemma 6.9(ii), M ′ is a matching of size at least three. In
addition, by Lemma 6.10, C′ is M ′-generated. Since H is obtained from some Gi by contracting
edges, we deduce from Lemmas 8.1 and 8.3-8.8 that either (G′,M ′) = (J8c,M) or (G′, M ′) ¹ (J,M),
for some J ∈ {J6a, J6b, J7a, J7b, J7c, J8a, J8b, J84, J9a, J9b, J9c, J94}, where M is the corresponding
matching defined in Lemmas 8.3-8.8. In the first case, since J8c = G3, which is not a minor of
any other Gi, it follows that (G′, C′) = (G, C). Therefore, by Lemma 8.10, C = C′ is truncatable, a
contradiction. In the second case, to simplify our notation, let us assume that G′ is a subgraph of
J with M ′ = M . Let D = {EJ(XC , YC) : C ∈ C′}. By Lemma 8.2, D is an M -generated collection
of cuts of J . Then, by Lemma 8.9, D is strongly truncatable, which implies, by Lemma 5.5(ii) and
Lemma 5.3, C′ is strongly truncatable, a contradiction.
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