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Non-Fragile Exponential Stability Assignment of
Discrete-Time Linear Systems With
Missing Data in Actuators

Zhan Shu, James Lam, and Junlin Xiong

Abstract—This technical note is concerned with the non-fragile exponen-
tial stabilization for a class of discrete-time linear systems with missing
data in actuators. The process of missing data is modeled by a discrete-time
Markov chain with two state components. When no uncertainty exists in the
controllers, a necessary and sufficient condition, which not only guarantees
the exponential stability but also gives a lower bound on the decay rate, is es-
tablished in terms of linear matrix inequalities (LMIs). Based on this condi-
tion, an LMI-based approach is provided to design a non-fragile state-feed-
back controller such that the closed-loop system is exponentially stable with
a prescribed lower bound on the decay rate for the known missing data
process and all admissible uncertainties in controllers. A numerical ex-
ample is provided to show the effectiveness of the theoretical results.

Index Terms—Exponential stability, linear matrix inequality (LMI),
Markov chain, missing data, non-fragile control.

I. INTRODUCTION

Stability and stabilization of dynamic systems have always been the
essential issues in control theory and engineering. Over decades, a lot of
effort has been devoted to this area, and a large number of synthesis ap-
proaches have been provided to design stabilizing controllers [1]—[4].
An implicit assumption inherent in these approaches is that the con-
trollers will be implemented exactly. However, in practice, controllers
may have a certain degree of errors owing to finite word length in dig-
ital systems, the imprecision inherent in analog systems and the need
for additional tuning of parameters in the final controller implementa-
tion. Hence, how to design a controller insensitive to the variations in
its gain, i.e., the controller is non-fragile, has received much attention.
The stabilization problem of discrete-time linear systems with guar-
anteed cost has been studied in [5], [6]. In [7], the design problem of
non-fragile guaranteed cost controllers for uncertain descriptor systems
with delays has been investigated thoroughly. Recently, some results on
the stabilization and H. control for uncertain stochastic time-delay
systems have been provided in [8].

In the literature mentioned above, it is assumed that the outputs of
actuators always contain signals. However, in practical applications,
there may be a nonzero probability that the outputs of actuators do not
consist of any signal, i.e., the signals contain missing data. The missing
data may be caused by a variety of reasons, e.g., the uncertain deadzone
nonlinearity in actuators, intermittent actuator failures, a certain failure
in the data transmission, or some of the data may be jammed or coming
from a high noisy environment. For example, if the controller signals
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are transmitted through the so-called Gilbert-Elliott channel [9], [10],
then the data may be lost in a process governed by a two-state Markov
chain. Some results on the estimation and filtering of linear systems
with missing data can be found in [11]-[14]. However, to the authors’
knowledge, little results are available for the exponential stability as-
signment problem of linear systems with missing data, especially for
the case with uncertain controllers.

In this technical note, we study the stabilization problem of dis-
crete-time linear systems with uncertainties in controllers and missing
data in actuators. A necessary and sufficient condition with the decay
rate constraint is established for the case without controller uncertain-
ties in terms of LMIs. Based on this condition, a state-feedback con-
troller is designed such that the closed-loop system is exponentially
stable with a prescribed lower bound on the decay rate for all admis-
sible controller uncertainties and the known missing data process. A
numerical example is provided to show the effectiveness of the pro-
posed approach.

Notation: Throughout this technical note, R", C", R™>" C™*"
represent the n-dimensional Euclidean space, the n-dimensional com-
plex vector space, the set of all m X n real matrices, and the set of
all m x n complex matrices, respectively; the superscript “7” and “x”
represent the transpose and the conjugate transpose, respectively; for
Hermitian matrices X = X* € C*"*" andY = Y* € C"*",
the notation X > Y (respectively, X > Y') means that the matrix
X — Y is positive semi-definite (respectively, positive definite); we
denote (C™)" = {L € C"*"; L = L* > 0}; I is the identity ma-
trix with appropriate dimension; E{-} denotes the expectation operator

with respect to some probability measure; || - || represents the Euclidean
norm for a vector, and the spectral norm for a matrix; | - | denotes the
module of a complex number =z, i.e., |r| = a*z; p(-) stands for

the spectral radius of a matrix; the symbol & denotes the Kronecker
Product; associated with a matrix H € C™*", the column operator
o(-) is defined as

I

associated with a set of matrices H; € C™*",i = 1,2,..., N, the
column operator ¢(+) is defined as
; s
H(Hy .. Hy) = [¢7(Hy) o7 () o))

associated with a set of matrices 4, € C"*",i = 1,2,...,N,
diag(A1, Az, ..., An) is defined as

A - 0

dld“g(A1944Z/aAN) = . :
0 --- Anx

the symbol # is used to denote a matrix which can be inferred by sym-
metry. Matrices, if their dimensions are not explicitly stated, are as-
sumed to have compatible dimensions for algebraic operations.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the following class of discrete-time linear systems with
missing data in actuators:

x(k+ 1) = Ax(k) + v(k)Bu(k) (1)

where (k) € R™ and u(k) € R™ are the system state and the control
input, respectively, and A and B are known constant matrices; the pa-
rameter (%) represents the possible missing data process in actuators,
and it is assumed to be a discrete-time homogeneous Markov chain
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taking values in a finite set S = {0, 1} with transition probability ma-
trix

11—« o
="l

where 0 < o« = Pr(y(k+1) = 1|v(k) =0) < 1land0 < g =
Pr(~v(k + 1) = 0]y(k) = 1) < 1 are called the recovery rate and
the failure rate. When « + 8§ = 1, v(k) reduces to the Bernoulli-
type missing data process, which is considered in [11], [15], with the
probability distribution

Pr(y(k)=1)=a. Priy(h)=0)=1-a. ()

In this technical note, we consider the following controller form:
uw(k) = (K + AK)x(k) 3)

where A K represents possible controller gain fluctuation. It is assumed
that A has the following structure:
Fii(61 +611)
ko1 (82 + S21)

k]n((s1 + (5'177)
kon (82 + 62,)

AK = “
k?n] ((3777 + (5777/1 ) kn)n,((swz + (5'777.71)
where 6; and §;; are real uncertain parameters satisfying
|6] < 010 <L [6i] < biy < 8y < L. ®)
Then, AK can be re-written in a compact form
AK =3K+Y Y 6,EKH, (6)
i=1 j=1
where
® = diag(61,62,...6m) @)

and E; € R™*"™, H; € R"™" are rank-one matrices with entry ‘1’
located at the ¢th and the j th position of the main diagonal, respectively.

Remark 1: The multiplicative gain variation model A of the form
in (6) was first introduced in [16]. When 6;; = 0, AK reduces to the
degradation model of actuators [17]. If 6; = 0, the model AK of (6)
represents more general multiplicative gain variations proposed in [18].
In practice, this model can be used to represent actuator degradation,
controller implementation errors, such as round-off error, quantization
errors, controller realization errors, and can also deal with the practical
issue of controller tuning, such as improper initialization of the con-
troller [16], [19].

When a controller in (3) is applied to (1), the resulting closed-loop
system becomes

2(k+1) = [A+ v(k)B(K + AK)] z(k). 8)

Throughout the technical note, we use the following definitions for the
closed-loop system in (8).
Definition 1:
1) Forascalar A > 1, the closed-loop system in (8) with AK = 0 is
said to be A-exponentially stable if there exist scalars ¢ > 0 and
o > 0 such that

E {ll(0)II"} < oA +2) " [laol®

where A+= is called the decay rate, namely, the system possessing
a decay rate larger than .
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2) The closed-loop system in (8) is said to be reliably A-exponen-
tially stable if it is A-exponentially for all possible uncertainties
in (5).

Our goal is to design a controller matrix /" such that the closed-loop
system is reliably A-exponentially stable for a prescribed constant A >
1. We end this section by giving several lemmas which will be useful
in the sequel.

Lemma 1 ([20], [21]): For any L € C"*", there exist matrices
Li,Ly, L3, Ly € (C*)" suchthat L = (Ly — Lo)4++/—1(Ls — L4).

Lemma 2: For any P € (C" )T, there exist matrices P, = z;a7,
i=1,2,...,n,withz; € C" suchthat P = )"  F;.

Lemma 3: Forany X,Y € (C")",if X > Y, then ||X|| > ||Y].

Lemma 4 ([22], [23]): Let G and () be real symmetric matrices and
M, N be real matrices with appropriate dimensions. Then, For 2 > 0,
we have MN + (MN)T < MQM™ + NTQ™'N.

Lemma 5 ([24]): For the column operator ¢(-), we have the fol-
lowing properties:

1) ¢(aG+bH) = ap(G) +bp(H),for G, H € C"*",a,b € C.
2) o(GXH) = (H" © G)p(X),for G, X, H € C"*".

Lemmas 2 and 3 can be proved readily by employing singular value

decomposition.

III. A-EXPONENTIAL STABILITY ANALYSIS

We provide a necessary and sufficient condition on A-exponential
stability of the closed-loop system without controller uncertainties in
the following theorem.

Theorem 1: For a prescribed scalar A > 1, the closed-loop system
in (8) with AK = 0 is A-exponentially stable if and only if there exist
real matrices Py > 0 and P; > 0 such that

\ATPA- P <O, ©)
MA+BE) Pi(A+ BK) - P, <0, (10)
where
P = (1—a)Py + aP
P =3P+ (1-3)P,.

Proof: (Sufficiency) It follows from (9) and (10) that there exists
a small enough scalar £ > 0 such that

A+2)A"PA- P, <O,
(A+2)(A+BK)' P(A+BK)- P, <0.

an
(12)

Choose a stochastic Lyapunov function candidate as follows:
V (a(k),v(k), k) = (A + o) FaT (k) P,y (k).

Then the difference of the function along the solution of the system,
for each ¢ € S, is evaluated as

AV (2(k).i, k)
—E{V(e(k+1),7(k+1) . k+1} =V (a(k),i, k)
= (A +2)"a" () [\ + )AL PA: = P (k)

where Ao = A, A1 = A+ BK,i € §.From (11) and (12), we obtain
that

AV (z(k),i,k) <0, foreachi € S.
Therefore, it is easy to show that

E{V (2(k),7(k), k)} <V (2(0),7(0),0)

< max {|| Poll, 121} lwoll*. (13)
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On the other hand

E {[|=(B)II’ |0, 70}
max {[[F . [P}

E {f(k)P.,(k)x(k)} > (14)

Combining (13) and (14) yields that
E {|lz(k)]I’} < o (A + ) "[lao|®

where o = max{|| P ||, |1 P71} x max{||Po||, || P1||}. This proves
the sufficiency.

(Necessity) If the closed-loop system with AKX = 0 is A-exponen-
tially stable for all initial conditions z(0) = x¢ € R" and v(0) =
v € &S, then it is also A-exponentially stable for all initial conditions
z(0) = xo € C" and v(0) = 40 € S. It can be shown easily that the
second moment X (k) = E{x(k)2"(k)} € (C™)™, for all initial con-
ditions £(0) = zo € C" and v(0) = 7o € S, is also A-exponentially
stable. That is

IX(F)[| = 1B {2 (k)2" (k) }]
<E {[Je(k)a” (k)|I}
<E {|J«(k)|I*}
<o\ +2) 7 ol
=a(A+2) " le (X(0)]

where we use the following z(0) =
[1(0), 22(0), ..., 2, (0)]" .

Z (XD ¢ (X0) = 35 (:(0)] (0]

=1 =1

relationship, for

2

= <Z |.7:1'(0)|2> .
=1
Define

Xi(k) = E{a(k)z"(k)} X Liy0-) € (CM)T,

(15)

i€S
where 1y.; stands for the Dirac measure. It is obvious that
X(k) = Xo(k) + X1(k).
With this and Lemma 3, we obtain that
X < oA+ )" e (X O,

i € 8. (16)

Thus, we have that
o (X ()| = ferace (X2(k)) < v [ X ()]

<Vioe(A+2) " lp (X(0)], i€s.

Hence

12 (Ko (k). Xa (kDI =/ lle (XoRDIP + [l (X2 (k)1

<V2neA+ ) Fle (X)), an

Through some algebraic manipulations, we have that

Xo(k+1)= (1 —a)AXo(k)A" + 3[A+ BK]X,(k)[A+ BK]".

(18)
Applying Lemma 5 to (18) yields that
P (Xo(k+1) = (1 a)(A® A)p (Xo(k))
+3((A4+ BK)® (A4 BK)) ¢ (X1(k)). (19)
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Likewise, we have that
e(Xi(k+1)) =a(4© A)p (Xo(k))
+(1- /) (A4 BE) @ (A+ BE)) ¢ (X1 (k). (20)

Therefore, from (19) and (20), $(Xo(k), X1 (k)) satisfies the fol-
lowing difference equation:

& (Xo(k+ 1), X1 (k +1)) = M(a, )@ (Xo(k). X1 (k)

where

M(a, B)=" @ I,2)diag (A A, (A+ BK)®(A + BK)).

If we set v(0) = 0, 2(0) = zg € C", then, for any X(0) satisfying
Xo(()) = .’L’U:L'S,

I (Xo (), X1 ()|
<V2noe(A+2) 7 o (X(0))]]
= V2no (A +2) 7 || (X0(0). X1(0) = 0)]].
Likewise, we have that, for any X7 (0) satisfying X1 (0) = @127 with

r € C",
16 (Xo(k), X1 (k)| € V2no(A +2) "

x || (Xo(0) =0, X1 (0))].
It follows from (21) and (22) that for any initial condition
$(X0(0), X1(0)) satisfying Xo(0) = woxg and X1(0) = xi2)
with x9 € C" and x; € C" being arbitrary,

@n

(22)

1 (Xo(k), X1 (k)| < 2VZna (A + )" [[3 (X0 (0). X2 (0))]].
(23)
Since

¢ (Xo(k), X1 (k) = M*(a, 3)¢ (X0(0),X1(0))
we obtain from (23) that, for any initial condition $(X(0), X1(0))

satisfying Xo(0) = woxp and X;:(0) = zia7 with 0 € C" and
x1 € C" being arbitrary,

M (0, 9 (Xo(0), X1(0))
<2V2no (A +2) 7" |2 (X0(0), X1 (0))]]. (24)

Next, we will show that p(M(a, 3)) < A™'. Assume that there ex-
ists an eigenvalue . of M(a, ) such that |p| > A1 and & =
(&, EDTZ]I , 01,802 € c” isa corresponding eigenvector, and con-
sider the following difference equation:

§(k+1) = M(a, B)E(R).

For the initial condition £(0) = &, there mustexist L"), L) ¢ cnx»
such that $(LY, L)) = &. For L) € C"*",» = 1,2, by Lemma
1, there exist L) € (C™)*, v = 1.2, = 1,2,3.4 such that

L¥ = (19 - L) + V=1 (2 - 197).

Furthermore, by Lemma 2, for any LEU) € (C”)Jr, v =12,i =
1,234, there exist L, L) ... L) such that L = Yo Lit,
where LE";) = ;nE";)(;L»Sj.))*. On one hand, for the initial condition
&(0) = &, we have

(k) = M"*(a, B) (L<1>,L(2>)
=M"(a, )
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Stability Region on the Recovery Rate and the Failure Rate

-

o
©

Stable Reglon (1 Exponentlally Stable)

o
©

o
9

o
)

Failure Rate B
o o
S o

o
w

o
S}

0.1

0 0.2 0.4 0.6 0.8 1
Recovery Rate o

Fig. 1. Stable region on o and 8.

(0

> ( <2>) [ (Lm)}

<(15)

) (1)
st (2 )] e ()
)L )
From (24) and (25), we obtain that (25)
€ < e+ 2) 7" 1ol (26)

where ¢ = 8v/2non. On the other hand, since & is an eigenvector
corresponding to the eigenvalue j, we have that

I = |nl* €]l

which implies that there must exist a large enough k > 0 such that

@] = e(x + &) *llgol]-

This contradicts with (26). Therefore, p(M (v, 3)) , which is
equivalent to p(AM(a, 3)) < 1. In the following part, we show that
there exist real matrices Qo > 0, Py > 0, Q1 > 0, P, > 0 such that

MITPBA-Py = —Qo <0, 27)
MA+BE) P/(A+BEK)-P, = -Q, <0. (28)

Using the operator $(-) and Lemma 5, (27) and (28) can be rewritten
as

[ 2MT (@3] (P, P) = $(Q0. Q). (29)
It follows from p(AM(a, 3)) < 1 that, for any real matrices Qo > 0,
Q1 > 0, there exist real matrices P, and P; such that (29) holds. To
show the positive definiteness of Py and P, let (o, (i € R™ be any
nonzero vectors, and x(0) = (o, for v(0) = 0, and «(0) = (3, for
~(0) = 1, namely, Xo(0) = ¢o¢& and X, (0) = ¢, ¢I . Then, by some
manipulations, Lemma 5, and (29), we obtain that

¢o
G

1

T
{ﬂ diag(Py, P1)
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&% (Po, P (Xo(0), X1(0))
T
=" (Qo. Q) [I —AM (ar,/i’)] 2 (Xo(0), X1 (0))

2 (@0.Q)' S (WM(a, ))* ¢ (Xa(0), X1(0))

> AT (Qo. Q)@ (Xo(k), Xa(k))

k=0

= > A" (Qule (Xo(R)+¢" Qo (Xi(kD]. (30)
k=0
It can be shown easily that
#" (Qo)p (Xo(k))
=" (Q)E {w(k) @ 2(k)} X 1y(0=0)
-E {:L'T(k)QO;z:(k)} X 1is(k)=0} > 0. G1)
Similarly, for v(k) = 1
¢ (Qu)g (X1 (k) > 0. (32)
In addition, when & = 0
¢ (Qo)p (X0 (0) + 2" (Q1)¢ (X1(0)) > 0. (33)
With (30)—(33), we obtain that for any nonzero (o, {1 € R"
¢
[Cj diag(Py, Py) g? >0
which implies I > 0 and P’ > 0. This completes the proof. |

Corollary 1: Assume that the missing data process (k) is Bernoulli
with the probability distribution (2), then, for a prescribed scalar A > 1,
the closed-loop system in (8) with AK = 0 is A-exponentially stable
if and only if there exist real matrices I > 0 and P; > 0 such that

MTPA-P <0
MA+ BEK) " P(A+ BK)— P, <0

where P = (1—a)Po + alr.

Remark 2: The presented results can also be extended to linear sys-
tems with uncertainties either in the system matrices or in the recovery
rate « and the failure rate 3. The reason why we only consider the nom-
inal case is just to make the theory more understandable and to avoid
unnecessarily complicated notations.

Remark 3: When choosing different « and 3, (9) and (10) will re-
duce to some conventional stability criteria. For « = 1, 5 = 0, which
corresponds the case without missing data, it can be shown easily that
(9) and (10) are equivalent to

AMA+ BK)TP(A +BK)-P<0, P>0
which is just the conventional A-exponential stability criterion of the
closed-loop system. Likewise, when o« = (), 5 = 1, which corresponds
the case without the control input, (9) and (10) are equivalent to
A"PA-P<0, P>0

which coincides with the conventional A-exponential stability criterion
of the open-loop system.

Remark 4: It should be emphasized that, generally speaking, the
controller designed for certain g and 3o cannot guarantee the A-ex-
ponential stability of the closed-loop system for any 1 > « > g and
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0 < 3 < fo, which means that the chance of missing data is reduced.
To see this, let us consider a discrete-time linear system with

1.1 3.0 1 4
‘4_{0 —1.0}’ B_{Q 3}
K 0.8794  2.6527

T | —0.4508 —1.4119|°

It can be shown easily that the closed-loop system with g = 0.55
and 3o = 0.58 is 1.05-exponentially stable. However, for « = 1 and
Bo = 0.58, the closed-loop system becomes unstable. Fig. 1 gives a
complete stability characterization on « and (3.

Remark 5: From the analysis in Remark 3, one may concern under
what conditions the controller can guarantee the A-exponential stability
of the closed-loop system for any a,, < o < apg and 5y, < 3 < B
Actually, it is not difficult to prove that the stable region is a convex
set. Therefore, a necessary and sufficient condition for the A-exponen-
tial stability of the closed-loop system for any o,y < a < apr and
B < B < Bas is that the closed-loop system is A-exponentially stable
at the vertex (., Bvr), (m, Bm ), (aear, Bar) and (s, B ). More-
over, one may ask how to design a controller matrix A independent
of the missing data process ~(k) such that the closed-loop system is
A-exponentially stable for any a,, < « < ay and 3, < 8 < Oumr
with specified a,.,, aar, B and Gas, and how to further minimize o, ,
(3., and to maximize S, cas . These may consist of some interesting
problems for further study.

IV. CONTROLLER SYNTHESIS

In this section, we turn to investigate the design problem of exponen-
tial stabilization with uncertain KX'. We provide a sufficient condition
for the existence of a desired K in the following theorem.

Theorem 2: For aprescribed scalar A > 1, if there exist real matrices
Xo>0,X1 >0,L,Q; >0(j =1.2,...,n) and scalars ¢ > 0,
b > 0 such that

X:+ X1 > (1401 (34)
-bI  H;X,
{X1 H; -Q; ] =0 4>
—Xo # #
AXo  —yaXo # <0 (36)
AX, 0 —=X;
and (37), shown at the bottom of the page, where

¥ = diag(611,612,...,01m) and A = [E1L EsL --- E,, L)7, then
the closed-loop system (8) with

K=LX' (38)
is reliably A-exponentially stable.

Proof: Since 0 S (I — 1Y1)(I — 1Y1) =71 — }(1 — X1 =+
X1X1, we obtain from (34) that X; X; > bI. It follows from (35)
that H; X, Q; ' X1 Hj < bI. Hence

H;X:Q7'X:1H; < X1 Xi. (39)
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According to Theorem 1, the closed-loop system (8) is A-exponentially
stable if and only if there exist Py > 0 and P > 0 such that

N"PA-Py <0
MA+B(K +AK))" P [A+ B(K +AK)]- P, <0

which, by Schur complement equivalence [25], are equivalent to (36)
and

—Xi # #
[A+B(K+AK)] X, —5X0 # <0 (40
[A+ B(K + AK)] X 0 — = X

where Xo = Po_l, Xo =P L Hence, we only need to prove (40).
With (38) and the uncertainty form in (6), (40) can be re-written as

G+BIL+(BIL)T + i Z 6 [T+ (KD <0 @)

=1 5=1
where ® is defined in (7), and

-X; # #
AX:+BL -4Xo #
AX, + BL 0 —xa=m X

) . T - 717
Ki; = [0 (BE;KH;X:)" (BEKH;X) ]

g =

B=[0 B" B,
I=[I 0 0.

L=[L 0 0]

By (5) and using Lemma 4, we obtain that (41) holds if the following
inequality holds for some e > 0,Q,; > 0(; =1,2,...,n):

G+eBUVBT + 7' LT+ m Z 62,77 Q,T
j=1

+D 0D 6K QKT < 0. (42)

=1 j=1

Simple manipulations together with (38) and (39) yield that

0 0o 1"
Ki;Q;'Kl; < | BE,K | X1X1 | BE/K
BE;K BEK
0 0o 1"
= | BE;L BE;L (43)
BE;L BE;L
It follows from (40)—(43), by Schur complement, that (40) holds if (37)
holds. This completes the proof. ]

Remark 6: When 61; and 8, ;j are known, (34)—(37) are LMIs with re-
spect to variables Xo, X1,L,Q; (j = 1,2,...,n),¢,and b, which can
be checked by efficient algorithms such as the interior-point method.
Then, a desired controller gain can be computed easily from the solu-
tions of the LMIs. The obtained controller does not only stabilize the
original system, but also makes the closed-loop system render a desir-
able decay rate.

—Xi+m Y, 82;Q; #
AX, + BL - X0+ eBY¥* B
AX, +BL eBU* BT
L 0

0 (z;;l 521) AB!

Y EET))

#

#

L_X, +eBU?BT  #
0 —el

(z’;:l 52]) AB! 0

<0 (37)

F* F* HH*

- (Z;L:l 521') I
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Response to Initial Conditions
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Fig. 2. Closed-loop response to initial condition.

V. AN ILLUSTRATIVE EXAMPLE

Consider a discrete-time linear system whose control signals are
transmitted through a fading channel with packet loss:

1.2 05 0.5 0 1.5
x(k+1)=|10 07 —=05]|z(k)+~(k)|0 1 [u(k).
01 0 -038 1 0

It is assumed that, for the packet loss process v(k), « = 0.7 and 5 =
0.15. Similar models have appeared in [12], [15], [26]. The uncertainty
bounds in the controller are given as

821 =0.02, 822 = 0.05, &3 = 0.06

b11 =612 = 0.1.
For a prescribed A = 1.6, it is easy to check, by using the MATLAB

LMI Toolbox, that (34)—(37) are feasible, and a non-fragile controller
gain is obtained as

—0.0303
—0.4240

0.4159
—0.0223 |

K= —0.2417
YT —0.4643
The resulting closed-loop system is not only stable, but also has a decay
rate larger than 1.6. To show the reliability of the designed controller,
we take 20 samples randomly on the uncertain controller ' + AK
with uncertainties described in (6), and compute the response for each
sample. Fig. 2 gives the response of the 20 sampled closed-loop sys-
tems to the initial condition 2(0) = [0.3 — 0.5 — 3.2]*.

VI. CONCLUSION

In this technical note, we have studied the exponential stabiliza-
tion problem for a class of discrete-time linear systems with uncer-
tainties in controllers and missing data in actuators. A necessary and
sufficient condition, which does not only guarantee the stability of the
closed-loop system but also gives a lower bound on the decay rate, is
established in terms of LMIs. Based on this condition, an LMI-based
approach is provided to design a state-feedback controller such that
the closed-loop system is exponentially stable with a prescribed lower
bound on the decay rate for all admissible uncertainties in the controller
and the known missing data process in the actuator. The obtained re-
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sults can also be extended to the case with uncertainties either in the
system matrices or in the recovery rate and the failure rate.
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