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In this paper, we study the physical properties and the equilibrium thermal radiation emission

characteristics of matter forming thin accretion disks in stationary axially symmetric wormhole space-

times. The thin disk models are constructed by taking different values of the wormhole’s angular velocity,

and the time averaged energy flux, the disk temperature, and the emission spectra of the accretion disks are

obtained. Comparing the mass accretion in a rotating wormhole geometry with the one of a Kerr black

hole, we verify that the intensity of the flux emerging from the disk surface is greater for wormholes than

for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion

efficiency of the accreting mass into radiation, and show that the rotating wormholes provide a much more

efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes.

Therefore specific signatures appear in the electromagnetic spectrum of thin disks around rotating

wormholes, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical

observations of the emission spectra from accretion disks.
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I. INTRODUCTION

In a recent paper, the physical properties and character-
istics of matter forming thin accretion disks in static and
spherically symmetric wormhole spacetimes were exten-
sively analyzed [1]. In particular, the time averaged
energy flux, the disk temperature, and the emission spectra
of the accretion disks were obtained for these exotic ge-
ometries, and compared with the Schwarzschild solution. It
was shown that more energy is emitted from the disk in a
wormhole geometry than in the case of the Schwarzschild
potential. These effects in the disk radiation were con-
firmed in the radial profiles of temperature corresponding
to the flux distributions, and in the emission spectrum of
the accretion disks. Thus, specific signatures appear in the
electromagnetic spectrum, leading to the possibility of
distinguishing these static and spherically symmetric
wormhole geometries by using astrophysical observations
of the emission spectra from accretion disks. The results of
[1] further extended the analysis of the emissivity proper-
ties of accretion disks around general relativistic compact
objects [2–7].

In the context of stationary axisymmetric spacetimes,
the mass accretion around rotating black holes was studied

in general relativity for the first time in [8]. By using an
equatorial approximation to the stationary and axisymmet-
ric spacetime of rotating black holes, steady-state thin disk
models were constructed, extending the theory of nonrela-
tivistic accretion [9]. In these models hydrodynamical
equilibrium is maintained by efficient cooling mechanisms
via radiation transport, and the accreting matter has a
Keplerian rotation. The radiation emitted by the disk sur-
face was also studied under the assumption that black body
radiation would emerge from the disk in thermodynamical
equilibrium. The radiation properties of the thin accretion
disks were further analyzed in [10,11], where the effects of
the photon capture by the black hole on the spin evolution
were presented as well. In these works the efficiency with
which black holes convert rest mass into outgoing radiation
in the accretion process was also computed.
It is of interest to consider the properties of thin accre-

tion disks around wormhole geometries, as these exotic
spacetimes violate the null energy condition (NEC) [1].
Indeed, a wide variety of wormhole solutions have been
considered in the literature (we refer the reader to [12,13]
for a recent review). It will also prove interesting to further
extend the analysis carried out in [1] to stationary axisym-
metric wormhole geometries [14], which are physically
more realistic objects than their static and spherically
symmetric counterparts. It is also important to compare
the properties of the thin accretion disks around rotating
wormholes with the properties of thin disks around rotating
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black holes. From this comparison it follows that the
intensity of the flux emerging from the disk surface is
greater for wormholes than for the Kerr black holes with
the same geometrical mass and accretion rate. This gives
an effective observational method to discriminate between
wormholes and black hole type compact general relativis-
tic objects.

The present paper is organized as follows. In Sec. II, we
review the formalism and the physical properties of the
thin disk accretion onto compact objects, for stationary
axisymmetric spacetimes. In Sec. III, we analyze the basic
properties of matter forming a thin accretion disk in rotat-
ing wormhole spacetimes. We discuss and conclude our
results in Sec. IV. In the Appendix, we present for self-
completeness and self-consistency the effective potential
for the Kerr black hole. Throughout this work, we use a
system of units so that c ¼ G ¼ @ ¼ kB ¼ 1, where kB is
Boltzmann’s constant.

II. THERMAL EQUILIBRIUM RADIATION
PROPERTIES OF THIN ACCRETION DISKS IN
STATIONARYAXISYMMETRIC SPACETIMES

A. Stationary and axially symmetric spacetimes

The physical properties and the electromagnetic radia-
tion characteristics of particles moving in circular orbits
around general relativistic bodies are determined by the
geometry of the spacetime around the compact object. For
a stationary and axially symmetric geometry the metric is
given in a general form by

ds2 ¼ gttdt
2 þ 2gt�dtd�þ grrdr

2 þ g��d�
2 þ g��d�

2:

(1)

In the equatorial approximation, which is the case of
interest for our analysis, the metric functions gtt, gt�,

grr, g��, and g�� only depend on the radial coordinate r,

i.e., j�� �=2j � 1.
To compute the relevant physical quantities of thin

accretion disks, we determine first the radial dependence
of the angular velocity �, of the specific energy ~E, and of
the specific angular momentum ~L of particles moving in
circular orbits in a stationary and axially symmetric ge-
ometry through the geodesic equations. The latter take the
following form:

dt

d�
¼

~Eg�� þ ~Lgt�

g2t� � gttg��

; (2)

d�

d�
¼ �

~Egt� þ ~Lgtt

g2t� � gttg��

; (3)

grr

�
dr

d�

�
2 ¼ �1þ

~E2g�� þ 2 ~E ~Lgt� þ ~L2gtt

g2t� � gttg��

: (4)

From Eq. (4) one can introduce an effective potential term

as

VeffðrÞ ¼ �1þ
~E2g�� þ 2 ~E ~Lgt� þ ~L2gtt

g2t� � gttg��

: (5)

For stable circular orbits in the equatorial plane the
following conditions must hold: VeffðrÞ ¼ 0 and Veff;rðrÞ ¼
0, where the comma in the subscript denotes a derivative
with respect to the radial coordinate r. These conditions
provide the specific energy, the specific angular momen-
tum, and the angular velocity of particles moving in circu-
lar orbits for the case of spinning general relativistic
compact spheres, given by

~E ¼ � gtt þ gt��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt � 2gt��� g���

2
q ; (6)

~L ¼ gt� þ g���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt � 2gt��� g���

2
q ; (7)

� ¼ d�

dt
¼

�gt�;r þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgt�;rÞ2 � gtt;rg��;r

q
g��;r

: (8)

The marginally stable orbit around the central object can
be determined from the condition Veff;rrðrÞ ¼ 0. To this

effect, we formally represent the effective potential as

VeffðrÞ � �1þ f

g
;

where

f � ~E2g�� þ 2 ~E ~Lgt� þ ~L2g��;

g � g2t� � gttg��;

and where the condition g � 0 is imposed. From VeffðrÞ ¼
0, we obtain first f ¼ g. The condition Veff;rðrÞ ¼ 0 pro-

vides f;rg� fg;r ¼ 0. Thus, from these conditions one

readily derives Veff;rrðrÞ ¼ 0, which provides the following
important relationship:

0 ¼ ðg2t� � gttg��ÞVeff;rr

¼ ~E2g��;rr þ 2 ~E ~Lgt�;rr þ ~L2gtt;rr � ðg2t� � gttg��Þ;rr;
(9)

where g2t� � gttg�� (appearing as a cofactor in the metric

determinant) never vanishes. By inserting Eqs. (6)–(8) into
Eq. (9) and solving this equation for r, we obtain the radii
of the marginally stable orbits, once the metric coefficients
gtt, gt�, and g�� are explicitly given.

B. Physical properties of thin accretion disks

For a thin accretion disk the vertical size (defined in
cylindrical coordinates along the z axis) is negligible, as
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compared to its horizontal extension (defined along the
radial direction r), i.e., the disk height H, equal to the
maximum half thickness of the disk, is always much
smaller than the characteristic radius R of the disk, H �
R. The thin disk is assumed to be in hydrodynamical
equilibrium, and the pressure gradient, as well as the
vertical entropy gradient, are negligible in the disk. The
efficient cooling via the radiation over the disk surface
prevents the disk from cumulating the heat generated by
stresses and dynamical friction. In turn, this equilibrium
causes the disk to stabilize its thin vertical size. The thin
disk has an inner edge at the marginally stable orbit of the
compact object potential, and the accreting matter has a
Keplerian motion in higher orbits.

In steady-state accretion disk models, the mass accretion
rate _M0 is assumed to be a constant that does not change
with time. The physical quantities describing the orbiting
matter are averaged over a characteristic time scale, e.g.
�t, for a total period of the orbits, over the azimuthal angle
�� ¼ 2�, and over the height H [8–10].

The particles moving in Keplerian orbits around the
compact object with a rotational velocity � ¼ d�=dt
have a specific energy ~E and a specific angular momentum
~L, which in the steady-state thin disk model depend only
on the radii of the orbits. These particles, orbiting with the
four-velocity u�, form a disk of an averaged surface den-
sity �, the vertically integrated average of the rest mass
density �0 of the plasma. The accreting matter in the disk is
modeled by an anisotropic fluid source, where the density
�0, the energy flow vector q�, and the stress tensor t�� are
measured in the averaged rest frame (the specific heat was
neglected). Then, the disk structure can be characterized by
the surface density of the disk [8,10]

�ðrÞ ¼
Z H

�H
h�0idz; (10)

with averaged rest mass density h�0i over �t and 2� and
the torque

W�
r ¼

Z H

�H
ht�ridz; (11)

with the averaged component htr�i over �t and 2�. The

time and orbital average of the energy flux vector gives the
radiation flux F ðrÞ over the disk surface as F ðrÞ ¼ hqzi.

The stress-energy tensor is decomposed according to

T�� ¼ �0u
�u� þ 2uð�q�Þ þ t��; (12)

where u�q
� ¼ 0, u�t

�� ¼ 0. The four-vectors of the en-

ergy and angular momentum flux are defined by �E� �
T
�
� ð@=@tÞ� and J� � T

�
� ð@=@�Þ�, respectively. The struc-

ture equations of the thin disk can be derived by integrating
the conservation laws of the rest mass, of the energy, and of
the angular momentum of the plasma, respectively [8,10].
From the equation of the rest mass conservation
r�ð�0u

�Þ ¼ 0, it follows that the time averaged rate of

the accretion of the rest mass is independent of the disk
radius

_M 0 � �2�r�ur ¼ constant: (13)

The conservation law r�E
� ¼ 0 of the energy has the

integral form

½ _M0
~E� 2�r�W�

r�;r ¼ 4�rF ~E; (14)

which states that the energy transported by the rest mass
flow _M0

~E and the energy transported by the dynamical
stresses in the disk 2�r�W�

r are in balance with the

energy radiated away from the surface of the disk
4�rF ~E. The law of the angular momentum conservation
r�J

� ¼ 0 also states the balance of these three forms of

the angular momentum transport

½ _M0
~L� 2�rW�

r�;r ¼ 4�rF ~L: (15)

By eliminatingW�
r from Eqs. (14) and (15), and apply-

ing the universal energy-angular momentum relation dE ¼
�dJ for circular geodesic orbits in the form ~E;r ¼ �~L;r,

the flux F of the radiant energy over the disk can be
expressed in terms of the specific energy, angular momen-
tum, and of the angular velocity of the compact sphere
[8,10]

F ðrÞ ¼ � _M0

4�
ffiffiffiffiffiffiffi�g

p �;r

ð ~E��~LÞ2
Z r

rms

ð ~E��~LÞ ~L;rdr:

(16)

Another important characteristic of the mass accretion
process is the efficiency with which the central object
converts rest mass into outgoing radiation. This quantity
is defined as the ratio of the rate of the radiation of the
energy of photons escaping from the disk surface to infin-
ity, and the rate at which mass-energy is transported to the
central compact general relativistic object, both measured
at infinity [8,10]. If all the emitted photons can escape to
infinity, the efficiency is given in terms of the specific
energy measured at the marginally stable orbit rms,

� ¼ 1� ~Ems: (17)

For Schwarzschild black holes the efficiency � is about
6%, whether the photon capture by the black hole is
considered or not. Ignoring the capture of radiation by
the hole, � is found to be 42% for rapidly rotating black
holes, whereas the efficiency is 40%with photon capture in
the Kerr potential [11].
The accreting matter in the steady-state thin disk model

is supposed to be in thermodynamical equilibrium.
Therefore the radiation emitted by the disk surface can
be considered as a perfect black body radiation, where the
energy flux is given by F ðrÞ ¼ 	T4ðrÞ (	 is the Stefan-
Boltzmann constant), and the observed luminosity Lð�Þ
has a redshifted black body spectrum [3]
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Lð�Þ ¼ 4�d2Ið�Þ ¼ 8

�
cos


Z rf

ri

Z 2�

0

�3
erd�dr

expðh�e=TÞ � 1
:

(18)

Here d is the distance to the source, Ið�Þ is the Planck
distribution function, 
 is the disk inclination angle, and ri
and rf indicate the position of the inner and outer edge of

the disk, respectively. We take ri ¼ rms and rf ! 1, since

we expect the flux over the disk surface vanishes at r ! 1
for any kind of general relativistic compact object geome-
try. The emitted frequency is given by �e ¼ �ð1þ zÞ, and
the redshift factor can be written as

1þ z ¼ 1þ�r sin� sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt � 2�gt� ��2g��

q ; (19)

where we have neglected the light bending [15,16].
The flux and the emission spectrum of the accretion

disks around compact objects satisfy some simple scaling
relations, with respect to the simple scaling transformation
of the radial coordinate, given by r ! ~r ¼ r=M, where M
is the mass of the compact sphere. Generally, the metric
tensor coefficients are invariant with respect of this trans-
formation, while the specific energy, the angular momen-
tum, and the angular velocity transform as ~E ! ~E,
~L ! M ~L, and � ! ~�=M, respectively. The flux scales
as FðrÞ ! Fð~rÞ=M4, giving the simple transformation
law of the temperature as TðrÞ ! Tð~rÞ=M. By also rescal-
ing the frequency of the emitted radiation as � ! ~� ¼
�=M, the luminosity of the disk is given by Lð�Þ !
Lð~�Þ=M. On the other hand, the flux is proportional to
the accretion rate _M0, and therefore an increase in the
accretion rate leads to a linear increase in the radiation
emission flux from the disk.

III. ACCRETION DISK PROPERTIES IN
ROTATING WORMHOLE GEOMETRIES

A. Metric and field equations

The canonical metric for a stationary, axisymmetric
traversable wormhole can be written as [14]

ds2 ¼ �N2dt2 þ e�dr2

þ r2K2½d�2 þ sin2�ðd��!dtÞ2�; (20)

where N, �, K, and ! are functions of r and �. To ensure
that the metric is nonsingular on the rotation axis (� ¼ 0,
�), regularity conditions on N, �, and K have to be
imposed [14], which essentially means that their respective
� derivatives have to vanish on the rotation axis.

For simplicity, we shall consider the following defini-
tions [14]

Nðr; �Þ ¼ e�ðr;�Þ; e��ðr;�Þ ¼ 1� bðr; �Þ
r

; (21)

which are well-suited to describe a traversable wormhole.

�ðr; �Þ is the redshift function, which needs to be finite to
ensure that there are no event horizons or curvature singu-
larities. bðr; �Þ is the shape function which satisfies b � r
and the flaringout condition. Kðr; �Þ determines the proper
radial distance, while! governs the angular velocity of the
wormhole.
The scalar curvature of the spacetime (20) is extremely

messy, but at the throat r ¼ r0 simplifies to

R ¼ � 1

r2K2

�
��� þ 1

2
�2

�

�
� ��

Nr2K2

ðN sin�Þ�
sin�

� 2

Nr2K2

ðN� sin�Þ�
sin�

� 2

r2K3

ðK� sin�Þ�
sin�

þ e���r½lnðNr2K2Þ�r þ sin2�!2
�

2N2
þ 2

r2K4
ðK2 þ K2

�Þ;
(22)

where the subscripts denote partial derivatives with respect
to r and �. Note that the only troublesome terms are the
ones involving �� and ���, i.e.,

�� ¼ b�
ðr� bÞ ; ��� þ 1

2
�2

� ¼ b��
r� b

þ 3

2

b�
2

ðr� bÞ2 :
(23)

Thus, one needs to impose that b� ¼ 0 and b�� ¼ 0 at the
throat to avoid curvature singularities. This condition
shows that the throat is located at a constant value of r.
The stress-energy tensor components are extremely

complicated, but assume a more simplified form in an
orthonormal reference frame and evaluated at the throat.
They have the following nonzero components

8�Tt̂ t̂jr¼r0 ¼ �ðK� sin�Þ�
r2K3 sin�

�!2
�sin

2�

4N2
þ e���r

ðrKÞr
rK

þ K2 þ K2
�

r2K4
; (24)

8�Tr̂ r̂jr¼r0 ¼
ðK� sin�Þ�
r2K3 sin�

�!2
�sin

2�

4N2
þ ðN� sin�Þ�

Nr2K2 sin�

� K2 þ K2
�

r2K4
; (25)

8�T�̂ �̂jr¼r0 ¼
N�ðK sin�Þ�
Nr2K3 sin�

þ!2
�sin

2�

4N2
��re

��ðNrKÞr
2NrK

;

(26)

8�T�̂ �̂jr¼r0 ¼ ��re
��ðNKrÞr
2NKr

� 3sin2�!2
�

4N2

þ N��

Nr2K2
� N�K�

Nr2K3
; (27)
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8�Tt̂ �̂jr¼r0 ¼
1

4N2K2r
ð6NK!� cos�þ 2NK sin�!��

��re
��r2NK3 sin�!r þ 4N!� sin�K�

� 2K sin�N�!�Þ: (28)

The components Tt̂ t̂ and Tî ĵ have the usual physical

interpretations and, in particular, Tt̂ �̂ characterizes the

rotation of the matter distribution.
Taking into account the stress-energy tensor components

above, the NEC at the throat is given by

8�T�̂ �̂k
�̂k�̂jr¼r0 ¼ e���r

ðrKÞr
rK

�!2
�sin

2�

2N2

þ ðN� sin�Þ�
ðrKÞ2N sin�

: (29)

Rather than reproduce the analysis here, we refer the reader
to Ref. [14] for details, where it was shown that the NEC is
violated in certain regions, and is satisfied in others. Thus,
it is possible for an infalling observer to move around the
throat and avoid the exotic matter supporting the worm-
hole. However, it is important to emphasize that one cannot
avoid the use of exotic matter altogether.

B. Electromagnetic signatures of thin accretion disks in
rotating wormhole geometries

The radial geodesic equation (4) for the metric (20) is
given by �

1� b

r

��1
�
dr

d�

�
2 ¼ Veff : (30)

Using the relationship g2t� � gttg�� ¼ r2K2e2�, the effec-

tive potential takes the following form:

VeffðrÞ ¼ �1þ ½ ~E2r2K2 � 2 ~E ~L r2K2!

� ~L2ðe2� � r2K2!2Þ�=ðr2K2e2�Þ: (31)

In analogy to the effective potential for a Kerr black
hole, provided by Eq. (A4), the above relationships may be
rewritten in the following manner:

r4
�
dr

d�

�
2 ¼ VðrÞ (32)

with VðrÞ given by

VðrÞ ¼ r4
�
1� b

r

�
VeffðrÞ: (33)

In this work, we consider the specific case of

! ¼ 2J

r3
; (34)

where J ¼ M2a� is the total angular momentum of the
wormhole. As we are only interested in the equatorial
approximation, i.e., j�� �=2j � 1, we also consider K ¼
1 throughout our analysis.

We consider the case of � ¼ �r0=r, and the following
respective shape functions:

b ¼ r0; bðrÞ ¼ r20
r
; bðrÞ ¼ ffiffiffiffiffiffiffi

rr0
p

; (35)

and

bðrÞ ¼ r0 þ 
r0

�
1� r0

r

�
; (36)

with 0<
< 1.
For simplicity, we also assume the following values for

the mass and the spin parameter:

M ¼ 0:06776M�ð¼ 1000 cmÞ (37)

a� ¼ 0:2; 0:4; 0:6; 0:8; 1:0 (38)

respectively.
In Figs. 1–6 we plot the energy flux, the disk tempera-

ture, and the emission spectra �Lð�Þ emitted by the accre-
tion disk with a mass accretion rate of _M0 ¼ 10�12M�=yr
for various wormhole geometries. The form functions we
have used are given by Eqs. (35) and (36), respectively. We
also present, for the sake of comparison, the properties of
the thin disks in the Kerr black hole geometry.
Comparing the energy flux, depicted in Figs. 1 and 2,

from the thin disk in a stationary rotating wormhole ge-
ometry with the one of a Kerr black hole for a� < 0:8, we
see that the intensity of the flux emerging from the disk
surface is at least 2 orders of magnitude greater for worm-
holes than for the rotating black hole with the same geo-
metrical mass r0 and accretion rate _M0. The flux amplitude
exhibits the similar dependence on the spin parameter for
both types of the rotating central objects: with the increas-
ing values of a�, the maximal values of F ðrÞ are also
increasing. As the central object is rotating faster the flux
maxima are shifted closer to the black hole, whereas they
are located somewhat at lower disk radii in wormhole
spacetimes. Since each value of a� in the plots is greater
than the critical spin parameter (discussed in the next
section), the inner edge of the accretion disk, i.e., the left
edge of the flux profile, is always located at r0, the throat of
the wormhole, in contrast to the different positions of the
inner edge of the disk around the Kerr black hole.
The different shape functions (35) and (36) in the worm-

hole metric change only the amplitudes of the flux profiles:
the accretion disk of the wormhole with the shape function
b ¼ r20=r produces the radiation flux with highest intensity,

and we obtain the lowest values of F ðrÞ for bðrÞ ¼
ðr0rÞ1=2. By increasing the numerical value of the parame-
ter 
 in the shape function bðrÞ ¼ r0 þ 
r0ð1� r0=rÞ, the
intensity of the flux is decreasing, as the 1=r term is
becoming more and more dominant in bðrÞ.
All these characteristics appear in the disk temperature

profiles, depicted in Figs. 3 and 4, as well. The temperature
of the disk radiation for the Kerr black hole and the worm-
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FIG. 1 (color online). The energy flux radiated by an accretion disk in a Kerr black hole geometry (upper left-hand plot) and in the
stationary axially symmetric wormhole spacetimes for � ¼ �r0=r and b ¼ r0 (upper right-hand plot), b ¼ r20=r (lower left-hand

plot), and b ¼ ðr0rÞ1=2 (lower right-hand plot), respectively. In all plots r0 ¼ 1000 cm, and the values of the spin parameter are
a� ¼ 0:2, 0.4, 0.6, 0.8, and 1, respectively.
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hole geometry have the same order of magnitude only for
a� � 1. For lower values of the spin parameter the disks
rotating around the wormholes are much hotter than those
around the Kerr black holes.

In Figs. 5 and 6, we display the disk spectra for the
rotating wormholes. Although there are no significant dif-
ferences between the spectral amplitudes of the disk radia-
tion for the different rotating central objects, the cutoff
frequencies of the spectra highly depend on the nature of
the holes and their rotational velocities. The cutoff fre-
quencies for the Kerr black hole are systematically lower
than those for the wormholes. However, the spectral pro-
files of the radiation emitted by the accretion disk are rather
similar, no matter which of the shape functions bðrÞ we use
for the wormhole spacetimes. The cutoff frequencies of the

spectra take the lowest values for bðrÞ ¼ ðr0rÞ1=2, and the
highest ones can be found in the plot for bðrÞ ¼
r0 þ 
r0ð1� r0=rÞ but these differences are negligible.
The plots in Fig. 6 show that the spectral features are
also insensitive to the variation of the parameter 
 in the
shape function bðrÞ ¼ r0 þ 
r0ð1� r0=rÞ.

We also present in Table I the conversion efficiency � of
the accreting mass into radiation for the case where the
photon capture by the Kerr black hole is ignored. The value
of � measures the efficiency of the energy generating

mechanism by mass accretion. The amount of energy
released by matter leaving the accretion disk and falling
down the black hole or through the throat of the wormhole
is the binding energy ~EðrÞjr¼rin of the hole potential.

Table I shows that � is always higher for rotating worm-
holes than for Kerr black holes. Even for a� ¼ 0:2 the
conversion efficiency of the accretion process in the worm-
hole potential is greater than � derived for the extreme Kerr
black holes with a� ¼ 1. If we consider rapidly rotating
wormholes, the efficiency is even higher but there is a limit
of � for high values of the spin parameter: at a� * 0:6 we
obtain � ¼ 0:508, where the accretion process is reaching
its saturation point, and we cannot attain higher efficiencies
even if we increase a� further. However, these high num-
bers demonstrate that the rotating wormholes provide a
much more efficient engine for the transformation of the
energy of the accreting mass into radiation than the Kerr
black holes.

C. Extremely slowly rotating wormholes

As seen in the previous section, the inner edge of the
accretion disk is always located at r0 for any value of the
spin parameter we considered. Nevertheless, for extremely
small values of a� we found some critical behavior related
to the dependence of the location of the marginally stable
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FIG. 5 (color online). The emission spectra of the accretion disk in the Kerr spacetime (upper left-hand plot) and in the stationary
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orbit on the spin parameter. By increasing a� from zero, the
radius rms decreases from 2r0. There is a critical value of
the spin parameter, namely acrit� ¼ 0:016 693, where rms ¼
1:29r0 and any further small rise of a� results in a jump of
rms from 1:29r0 to 0:19r0. The latter value is already
behind the throat of the wormhole, and therefore the
boundary of the allowed region for the stable circular orbits
(Veff;rr always remains negative) expands from 1:29r0 to

the throat. This phenomenon is demonstrated in Fig. 7,
which depicts the quantity given by Eq. (9) determining the
marginally stable orbit and the radial profiles of the photon
flux for small values of a�.

For a value of the spin parameter between 0 and acrit� the
function ðg2t� � gttg��ÞVeff;rr has zeros between 2r0 and

1:29r0. For a� > acrit� there are no solutions for Eq. (9),
although ðg2t� � gttg��ÞVeff;rr < 0 for any r (g2t� � gttg��

is always positive), indicating the presence of stable circu-
lar orbits for r > r0. At the critical value of the spin
parameter the flux profiles also show the jump of the inner
edge of the accretion disk from 1:29r0 to r0.
If we substitute the metric (20) in Eq. (9), we get

0 ¼ Veff;r

¼ �2e2�ð�;rr þ 2�2
;rÞ

�e2� þ r2K2ð!��Þ2

þ 2K2½ð!þ r!;rÞ2 þ r!ð2!;r þ r!;rrÞ�
�e2� þ r2K2ð!��Þ2

þ�2K2�½2!þ rð4!;r þ r!;rrÞ� þ 2K2�2

�e2� þ r2K2ð!��Þ2
þ 2ðKr!;re

��Þ2 þ 8r�1�;r; (39)

which is a general formula for any stationary axially sym-
metric wormhole. Here

� ¼ 1

2
ð2!þ r!;rÞ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2!2

;r þ 4K�2r�1�;re
2�

q
:

For the specific case in this study, expression (39) leads to
the following relationship:

TABLE I. The inner edge of the accretion disk and the effi-
ciency for rotating black hole and wormhole geometries.

Kerr black hole Wormhole

a� rin=r0 � rin=r0 �

0.2 5.33 0.065 1.00 0.498

0.4 4.62 0.075 1.00 0.506

0.6 3.83 0.091 1.00 0.507

0.8 2.91 0.122 1.00 0.508

1.0 1.00 0.421 1.00 0.508
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FIG. 6 (color online). The emission spectra of the accretion disk in the stationary axially symmetric wormhole spacetime for � ¼
�r0=r and b ¼ r0 þ 
r0ð1� r0=rÞ, where 
 ¼ 0:2 (upper left-hand plot), 0.4 (upper right-hand plot), 0.6 (lower left-hand plot) and
0.8 (lower right-hand plot), respectively. In all plots r0 ¼ 1000 cm and the values of the spin parameter are a� ¼ 0:2, 0.4, 0.6, 0.8, and
1, respectively.
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0 ¼ e�2=x2½x4 þ 2ðx2 � 1Þ� þ ð6a�x�2Þ2

�x4e�2=x2 þ 4a� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2� þ x6e�2=x2

q þ 1

þ ð6a�x�4e1=x
2Þ2 � 4x�2;

where x2 ¼ r=r0. This result shows that the location of the
marginally stable orbit given in the dimensionless radial
coordinate x2 depends only on a� and the value of acrit� does
not depend on r0, as depicted in Fig. 7.

By comparing two states with the spin parameters neg-
ligibly smaller and greater than acrit� we see that the dis-
tance between the inner edge of the accretion disk and the
wormhole throat is 1:29r0 � r0 ¼ 0:29r0 in both cases. If
the accretion process increases the spin of the wormhole
such that it just exceeds acrit� with a infinitesimally small
value then the inner edge of the disk will fall into the throat
with supersonic velocity, eliminating the so-called plung-
ing region located between the disk and the rotating central
object. It must have a strong physical influence, e.g., shock
waves are generated. However, after this transient situ-
ation, the inner edge of the disk will be located at r0 and
all the orbits for r > r0 will be stable ðVeff;rr < 0Þ, i.e., the
thin accretion disk exists in the whole equatorial plane
outside the throat.

IV. DISCUSSIONS AND FINAL REMARKS

In the present paper, we have studied thin accretion disk
models in stationary axially symmetric wormhole geome-
tries, and have carried out an analysis of the properties of
the radiation emerging from the surface of the disk. In
classical general relativity, wormholes are supported by
exotic matter, which involves a stress-energy tensor that
violates the null energy condition. Thus, it is important to
analyze the properties of the accretion disks around worm-
holes supported by exotic matter, namely, the time aver-
aged energy flux, the disk temperature, and the emission
spectra. By comparing the accretion disk properties in a
stationary rotating wormhole geometry with the properties

of disks around a Kerr black hole, we have shown that the
intensity of the flux emerging from the disk surface is
greater for wormholes than for the rotating black hole
with the same geometrical mass r0 and accretion rate
_M0. We also presented the conversion efficiency � of the
accreting mass into radiation, and proved that rotating
wormholes are much more efficient in converting the ac-
creting mass into radiation than the Kerr black holes.
It is generally expected that most of the astrophysical

objects grow substantially in mass via accretion. Recent
observations suggest that around most of the active galactic
nuclei (AGN’s) or black hole candidates there exist gas
clouds surrounding the central far object, and an associated
accretion disk, on a variety of scales from a tenth of a
parsec to a few hundred parsecs [17]. These clouds are
assumed to form a geometrically and optically thick torus
(or warped disk), which absorbs most of the ultraviolet
radiation and the soft x rays. The gas exists in either the
molecular or the atomic phase. The most powerful evi-
dence for the existence of super massive black holes comes
from the very long baseline interferometry (VLBI) imag-
ing of molecular H2O masers in the active galaxy NGC
4258 [18]. This imaging, produced by Doppler shift mea-
surements assuming Keplerian motion of the masering
source, has allowed a quite accurate estimation of the
central mass, which has been found to be a 3:6	 107M�
super massive dark object, within 0.13 parsecs. Hence,
important astrophysical information can be obtained from
the observation of the motion of the gas streams in the
gravitational field of compact objects.
The determination of the accretion rate for an astrophys-

ical object can give a strong evidence for the existence of a
surface of the object. A model in which Sgr A*, the 3:7	
106M� super massive black hole candidate at the Galactic
center, may be a compact object with a thermally emitting
surface was considered in [19]. For very compact surfaces
within the photon orbit, the thermal assumption is likely to
be a good approximation because of the large number of
rays that are strongly gravitationally lensed back onto the
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surface. Given the very low quiescent luminosity of Sgr A*
in the near-infrared, the existence of a hard surface, even in
the limit in which the radius approaches the horizon, places
a severe constraint on the steady mass accretion rate onto
the source, _M � 10�12M� yr�1. This limit is well below
the minimum accretion rate needed to power the observed
submillimeter luminosity of Sgr A*, _M 
 10�10M� yr.
Thus, from the determination of the accretion rate it fol-
lows that Sgr A* does not have a surface, that is, it must
have an event horizon. Therefore the study of the accretion
processes by compact objects is a powerful indicator of
their physical nature. However, up to now, the observatio-
nal results have confirmed the predictions of general rela-
tivity mainly in a qualitative way. With the present
observational precision one cannot distinguish between
the different classes of compact/exotic objects that appear
in the theoretical framework of general relativity [4].

However, important technological developments may
allow one to image black holes and other compact objects
directly [19]. For a black hole embedded in an accretion
flow, the silhouette will generally be asymmetric regardless
of the spin of the black hole. Even in an optically thin
accretion flow an asymmetry will result from special rela-
tivistic effects (aberration and Doppler shifting). In princi-
ple, detailed measurements of the size and shape of the
silhouette could yield information about the mass and spin
of the central object, and provide invaluable information on
the nature of the accretion flows in low luminosity galactic
nuclei. With the improvement of the imaging observational
techniques, which give the physical/geometrical properties
of the silhouette of the compact object cast upon the
accretion flows, it will also be possible to provide clear
observational evidence for the existence of wormholes, and
to differentiate them from other types of compact general
relativistic objects.

In this context, we conclude our study by pointing out
that the specific properties that appear in the physical
characteristics of the thin accretion disks around worm-
holes can lead to the possibility of directly detecting and
discriminating wormhole geometries by observing accre-
tion disks around compact astrophysical objects.

ACKNOWLEDGMENTS

The work of T.H. is supported by an RGC grant of the
government of the Hong Kong SAR. Z.K. was supported
by the Hungarian Scientific Research Fund (OTKA) Grant
No. 69036. F. S. N. L. was partially funded by Fundação
para a Ciência e a Tecnologia (FCT)–Portugal through the
Grant No. SFRH/BPD/26269/2006.

APPENDIX A: EFFECTIVE POTENTIAL FOR THE
KERR BLACK HOLE

The Kerr metric in the Boyer-Lindquist (BL) coordinate
system is given by

ds2 ¼ �
�
1� 2mr

�

�
dt2 þ 2

2mr

�
asin2�dtd�þ�

�
dr2

þ�d�2 þ
�
r2 þ a2 þ 2mr

�
a2sin2�

�
sin2�d�2:

(A1)

In the equatorial plane, the metric components reduce to

gtt ¼ �
�
1� 2mr

�

�
¼ �

�
1� 2m

r

�
;

gt� ¼ 2mr

�
asin2� ¼ 2

ma

r
;

grr ¼ �

�
¼ r2

�
;

g�� ¼
�
r2 þ a2 þ 2mr

�
a2sin2�

�
sin2�

¼ r2 þ a2
�
1þ 2m

r

�
;

respectively.
The geodesic equation (4) for r is

r2

�

�
dr

d�

�
2 ¼ VeffðrÞ; (A2)

with the effective potential given by

VeffðrÞ ¼ �1þ f ~E2½r2ðr2 þ a2Þ þ 2ma2r� þ 4 ~E ~Lmar

� ~L2ðr2 � 2mrÞg=½r2ðg2t� � gttg��Þ�: (A3)

Note that these relationships may be rewritten as

r4
�
dr

d�

�
2 ¼ VðrÞ; (A4)

with VðrÞ given by

VðrÞ ¼ r2�VeffðrÞ ¼ r2ðg2t� � gttg��ÞVeffðrÞ; (A5)

where the relationship � ¼ g2t� � gttg�� ¼ r2 � 2mrþ
a2 along the equatorial plane has been used.
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