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ABSTRACT

The standard model for Type II supernovae explosions, confirmed by the detection of neutrinos emitted during the
supernova explosion, predicts the formation of a compact object, usually assumed to be a neutron star. However,
the lack of detection of a neutron star or pulsar formed in the SN 1987A still remains an unsolved mystery.
In this paper, we suggest that the newly formed neutron star at the center of SN 1987A may undergo a phase
transition after the neutrino trapping timescale (∼10 s). Consequently the compact remnant of SN 1987A may be
a strange quark star, which has a softer equation of state than that of neutron star matter. Such a phase transition
can induce stellar collapse and result in large amplitude stellar oscillations. We use a three-dimensional Newtonian
hydrodynamic code to study the time evolution of the temperature and density at the neutrinosphere. Extremely
intense pulsating neutrino fluxes, with submillisecond period and with neutrino energy (greater than 30 MeV), can
be emitted because the oscillations of the temperature and density are out of phase almost 180◦. If this is true we
predict that the current X-ray emission from the compact remnant of SN 1987A will be lower than 1034 erg s−1, and
it should be a thermal bremsstrahlung spectrum for a bare strange star with a surface temperature of around ∼107 K.
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1. INTRODUCTION

Supernova 1987A, the brightest supernova seen in modern
times, was a milestone in astronomy and fundamental physics.
The detection of neutrinos from SN 1987A (Bionta et al. 1987;
Hirata et al. 1987) confirmed the basic predictions of the physical
mechanisms for Type II supernovae. The explosion is triggered
by the collapse of massive stars. The core collapse of the massive
star (with mass greater than 10M�) is due to electron capture
and photodisintegration, and it is halted when the center density
exceeds the nuclear matter density. As the stellar core collapses,
the gravitational energy is released through the emission of
neutrinos. A small fraction of these neutrinos is absorbed, and
the heating of the neutrinos drives the supernova explosion.

The supernova SN 1987A was observed in every band of the
electromagnetic spectrum, from radio to gamma rays, and hence
it has a well-measured bolometric light curve. By using both the
bolometric light curve and the spectral evolution of its Hα line,
the hydrodynamic and time-dependent atmosphere models are
consistent with a presupernova radius of 35 ± 5R�, an ejecta
mass of 18 ± 1.5M�, an explosion energy of (1.50 ± 0.12) ×
1051 erg, and a radioactive 56Ni mass of 0.0765M� (Utrobin
2007). The inferred energy (∼3 × 1053 erg), temperature
(∼10 MeV), and decay time (∼4 s) of the first neutrino burst
were not inconsistent with what would be expected from the
production of a neutron star through core collapse (Hirata et al.
1987). Currently, about 35 plausible, or at least possible, associ-
ations of pulsars with supernova remnants are known, and these
are all relatively young pulsars, mostly with τp = P/2Ṗ <

105 years, where Ṗ is the first derivative of the pulsar period
P (Manchester 2007). Almost immediately after the observa-
tion of SN 1987A, optical attempts were made to identify the
compact remnant of the explosion (see Manchester 2007 for a
recent review of the optical and X-ray observations on the su-
pernova). Optical searches were done by Percival et al. (1995),
using the High-Speed Photometer System on the Hubble Space
Telescope, and by Manchester & Peterson (1996), using the

3.9 m Anglo-Australian Telescope, respectively. No significant
pulsations were observed in the period range of 0.2 ms to 10 s,
with an upper limit for the pulsed emission equivalent to a V
magnitude of about 25. However, most pulsars are detected at
radio wavelengths. An extensive search was carried out at the
Parkes 64 m radio telescope in 2006, at frequencies between
1390 MHz and 8370 MHz, respectively (Manchester 2007). No
significant candidate with a signal-to-noise ratio greater than
9.0 was observed, and there is no observational evidence for the
presence of a central point (or near point) source at any wave-
length (Park et al. 2004; Graves et al. 2005; Shtykovskiy et al.
2005). The limit on the luminosity of any point source at the
center of SN 1987A is of the order of 1033 erg s−1–1034 erg s−1

(Manchester 2007) .
Therefore, the question of why no compact object is observed

at the center of the SN 1987A explosion is a rather intriguing
one. Several explanations have been advanced to explain the
lack of a neutron star/pulsar. The most obvious one is that the
pulsar may not be beamed toward us (Manchester 2007). The
beaming fraction (fraction of the celestial sphere swept over by
the beam as the star rotates) is not very well determined, but in
the radio band a beaming fraction of 20% is usually assumed,
and for young pulsars it could be even larger (Manchester 2007).
However, even if the pulsar were not directed along our line
of sight, its radiation would heat the surrounding supernova
remnant, and add to its bolometric luminosity. At present,
all of the luminosity of SN 1987A can be accounted for by
a radioactive decay model consistent with the production of
0.075M� of 56Ni (Fryer et al. 1999; Utrobin 2007). It also
would be possible that the pulsar magnetic field develops in a
few decades, and in this case a rapidly spinning neutron star
would still be undetectable (Manchester 2007). However, most
of the current models assume that the magnetic field is either
frozen in the star, or it is generated during the collapse by the
dynamo process (Bonanno et al. 2005). Another possibility is
that the neutron star further collapsed into a black hole, whose
accretion luminosity is below the observational limits (Bethe &
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Brown 1995). Although the duration of the neutrino burst of SN
1987A precludes further collapse in the first 20 s, the neutron
star could have collapsed eventually into a black hole either
because of accretion of a sufficient fallback mass, or due to some
changes in the equation of state (EOS) of the dense matter (Fryer
et al. 1999). The analysis of the collapse of the initially formed
neutron star in SN 1987A puts severe constraints on the EOS of
the dense matter. However, to explain the collapse of a low-mass
neutron star an exotic EOS of the nuclear matter is needed, like,
for example, an EOS softened by pion condensation (Bethe
& Brown 1995), which would contradict other observations
on supernova remnants. Initially, it is likely that neutron stars
formed in Type II supernova explosions are obscured by the
late-time fallback. Much of this fallback is quickly accreted via
neutrino cooling, but some material may remain on the neutron
star, forming an atmosphere that slowly accretes through photon
emission. If the neutron star has either a low magnetic field, or
a low rotational spin frequency, then the neutron star remnant
of SN 1987A cannot be seen (Fryer et al. 1999).

When studying the neutrino data from the SN 1987A explo-
sion, a number of unexpected features have been found (Hirata
et al. 1987; Bionta et al. 1987; Costantini et al. 2004, 2007). For
example, the angular distribution of the two events, one seen at
the Kamiokande-II (KII) (Hirata et al. 1987) and the other at
Irvine–Michigan–Brookhaven (IMB) (Bionta et al. 1987) are
more forward directed than expected. The average cosines of
the polar angles for these two events are 〈cos θKII〉 ≈ 0.3 and
〈cos θ IMB〉 ≈ 0.5. Moreover, the energy distribution of these two
detectors is not in perfect agreement. The mean energy of the
neutrinos detected at KII is around half of the energy of those
detected at IMB, with a mean energy of 〈EIMB〉 ≈ 30 MeV.
The time distribution of the two events is also very different; on
average the neutrinos detected by IMB came ∼5 s after those
detected by KII (see Alekseev et al. 1988 for a summary of
neutrino arrival time for various detectors). When fitted with
thermal spectra, the two independent detections do not seem to
agree with either each other or typical theoretical expectations.
Using parameter-free inferential statistical methods, it can be
shown that the combined KII and IMB data can be best ex-
plained by a spectral shape that is enhanced both at the peak and
the tail of the spectrum, and depressed in between, as compared
to the Fermi–Dirac spectrum (Yüksel & Beacom 2007). Since
these methods make no a priori assumptions and do not rely on
parameter estimation, they allow for more efficient processing
of small data samples. While the supernova neutrino spectra are
expected to be quasi-thermal, modifications due to nonstandard
effects, such as neutrino mixing among various flavors, neutrino
decay, neutrino–neutrino interactions and/or any novel mecha-
nism due to unknown physics, may produce a time-integrated
spectrum that deviates significantly from a quasi-thermal shape
(Yüksel & Beacom 2007).

It is the purpose of the present paper to propose some
explanations for the lack of observational evidence for the
presence of a point source at the center of SN1987 A, as well as
the apparent discrepancy between the two neutrino detections.

Since Witten (1984), following early proposals by Itoh (1970)
and Bodmer (1971), suggested that strange quark matter, con-
sisting of u-, d- and s-quarks, is energetically the most favorable
state of the matter, the problem of the existence of strange quark
stars has been intensively investigated in the physical and astro-
physical literature. The possibility that some compact objects
could be strange stars remains an interesting and intriguing, but
still open, question. Witten (1984) also proposed two methods of

formation of strange matter: the quark–hadron phase transition
in the early universe and conversion of neutron stars into strange
ones at ultrahigh densities. In the theories of strong interaction
quark bag models suppose that breaking of a physical vacuum
takes place inside hadrons. As a result vacuum energy densities
inside and outside a hadron become essentially different, and
the vacuum pressure on the bag wall equilibrates the pressure
of quarks, thus stabilizing the system. If the hypothesis of the
quark matter is true, then some of the neutron stars could ac-
tually be strange stars, built entirely of strange matter (Haensel
et al. 1986; Alcock et al. 1986; Alcock & Olinto 1989). How-
ever, there are general arguments against the existence of strange
stars, e.g., Caldwell & Friedmann (1991). For a general review
of strange star properties and the physics of phase transitions
see Cheng et al. (1998a) and Haensel et al. (2007).

A possibility for the formation of the quark stars is that some
neutron stars in low-mass X-ray binaries can accrete sufficient
mass to undergo a phase transition to become strange stars
(Cheng & Dai 1996). This mechanism has also been proposed
as a source of radiation emission for cosmological gamma-ray
bursts, soft gamma-ray repeaters or other astrophysical objects
(Cheng & Dai 1998; Cheng et al. 1998b; Paczynski & Haensel
2005). Some basic properties of strange stars, such as mass,
radius, cooling, collapse and surface radiation, have also been
studied (Christiansen et al. 2000; Cheng & Harko 2003; Harko &
Cheng 2000, 2002; Zdunik et al. 2001; Gondek-Rosinska et al.
2003; Bejger & Haensel 2004; Zdunik et al. 2006). Quark stars
are expected to form during the collapse of the core of a massive
star after the supernova explosion, as a result of a first- or second-
order phase transition, resulting in deconfined quark matter
(Takahara & Sato 1985a, 1985b; Gentile et al. 1993; Dai et al.
1995). The proto-neutron star core, or the neutron star core, is a
favorable environment for the conversion of ordinary matter to
strange quark matter (Chen et al. 2007).

This paper is organized as follows. In Section 2, we discuss
various possible phase-transition processes in a neutron star, and
estimate the characteristic timescale for the phase transition.
We suggest that the phase transition from neutron star matter
to strange matter in the core of a neutron star may be more
favorable. In Section 3, we present the numerical simulation
results of a phase-induced collapse neutron star. In particular,
we show why high-intensity and high-energy neutrinos can be
emitted after the phase transition. In Section 4, we summarize
the energy dissipation processes of bare strange stars and their
cooling. In Section 5, we give a brief discussion about how
the phase transition may take place in the compact remnant of
1987A, and present final remarks.

2. PHASE TRANSITIONS IN HIGH-DENSITY NEUTRON
MATTER

During the formation and evolution of neutron stars new
states of matter may form inside the stars as a result of a phase
transition, which may be triggered by the accretion of matter,
pulsar spindown, and collapse of the core of a proto-neutron
star in supernova explosions, etc. In the following, we shall
restrict our discussion only to phase transitions of the first order.
As a general physical model, we will discuss the nucleation
of a phase B in the metastable phase A. The nucleation is
concerned with fluctuations of parameters, such as the local
density or the number of particles in a metastable drop of phase
B which triggers the phase transition (Landau & Lifshitz 1980).
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There are two extreme cases of the nucleation theory. In the
classical regime, the temperature is assumed to be sufficiently
high to trigger the phase transition by thermal fluctuation. In the
quantum regime, below a characteristic temperature, thermal
fluctuations are negligible as compared to the quantum ones.
Hence, quantum fluctuations can initiate a phase transition
via the quantum tunneling effect. The relevant thermodynamic
potential for the description of phase transitions is the Gibbs
free energy (Haensel & Schaeffer 1982). In the following, we
denote by ΔF the excess free energy of a critical droplet.

The probability of a local formation of a droplet of phase B
via a fluctuation decreases very strongly with the increase of the
number of baryons Adrop in the droplet. For small Adrop, however,
the positive contribution of the surface energy to ΔF prevails
over the gain in the bulk binding, ΔF (Adrop) > 0, which makes
the droplet unstable with respect to the reconversion to phase
A. However, at some value Adrop = Acrit, the energy excess due
to the droplet formation vanishes, ΔF (Acrit) = 0. Therefore the
droplets with Adrop > Acrit grow spontaneously, destabilizing
the metastable phase A and inducing the phase transition (Harko
et al. 2004).

By using the thermodynamical formalism of nucleation
(Landau & Lifshitz 1980; Haensel & Schaeffer 1982; Haensel
et al. 2007), one can study the nucleation of exotic phases (pion
condensate, kaon condensate, and quark matter) in high-density
neutron matter. In the following, we will briefly review each of
these processes.

2.1. Meson Condensation

The nucleation of the pion condensate in the neutron star core
and its astrophysical implications were studied by Haensel &
Schaeffer (1982), Haensel & Proszynski (1982), and Muto &
Tatsumi (1990), respectively, where a theory of metastability
of dense neutron matter with respect to the first-order phase
transition to a pion-condensed state was also analyzed. The de-
scription of the condensation process is based on the idea of
the nucleation of the pion-condensed phase in the metastable
normal matter, through the appearance of spontaneously grow-
ing droplets of the new phase. Different paths leading from the
false to the true ground state of dense neutron matter have been
considered in Haensel & Schaeffer (1982).

The calculations performed for realistic models of cold neu-
tron matter yield an interval of metastability (on the timescale
of the age of the universe), which is as large as half of that
between the baryon density ρN , where the metastability starts,
and ρcrit, where the potential barrier (without surface effects)
between the true and the false ground state vanishes (Haensel
& Schaeffer 1982). In the case of pion condensation in hot
neutron matter (T ∼ 5 MeV), the region of metastability (on
the timescale of the gravitational collapse of a massive star) is
much narrower than in cold neutron matter. Consequently, addi-
tional energy release and entropy generation from the first-order
phase transition in hot supercompressed matter are negligible.
The value of the Acrit strongly decreases with the growth of the
overcompression ΔPover = P − P0. Thus, the lifetime of an
overcompressed state decreases rapidly with increasing ΔPover
(Haensel & Schaeffer 1982; Haensel et al. 2007). For the case of
the pion condensation the surface tension can be approximated
by the expression derived by Baym et al. (1971) , with the nu-
cleus replaced by a pion-condensed droplet, and the neutron gas
replaced by the ordinary neutron star matter. Then, one can ob-
tain the condition for the pion condensate in the neutron star core
during a time interval equal to the present age of the universe,

tH = 1.5 × 1010 years. Depending on the employed model, the
required overcompression is ΔPover/P0 = 0.02 or ΔPover/P0 =
0.05 (Muto & Tatsumi 1990; Haensel et al. 2007).

Under typical conditions in the neutron star core (T � 109 K),
the nucleation proceeds via quantum tunneling through the
energy barrier. At much higher temperatures, thermal effects
increase the nucleation rate through thermally excited droplet
states. On the other hand, the growth of the temperature increases
Pcrit. For a newly born neutron star with T � 1010 K, the
nucleation proceeds in the classical (thermal) regime (Haensel
et al. 2007). Due to the softening of the EOS, pion condensation
could lead to a significant decrease of the maximum mass and
moment of inertia allowable for neutron star models, constructed
using such an EOS (Haensel & Proszynski 1982).

The formation of a droplet of kaon condensate in a neutron
star core is connected with the production of strangeness, and
nucleation should involve the weak-interaction process. The
transition from npe-type nuclear matter (consisting of neutrons,
protons, and electrons) to matter containing strangeness, using
a Walecka-type model, predicting a first-order kaon-condensate
phase transition, was studied in Norsen (2002). The free energy
of the droplets of the kaon-condensed matter, as well as the den-
sity, temperature, and the neutrino fraction, was obtained. The
surface tension of the interface between the normal and con-
densed kaon phase was calculated by Christiansen et al. (2000),
using the nonuniform relativistic mean field model. In the ap-
proximation in which only linear terms in the curvature of the
surface are kept, the surface contribution to the thermodynamic
potential of a spherical droplet is σ = σS + 2σc/Rdrop, where σS

is the surface tension and σc is the curvature coefficient. For a
small admixture of kaon-condensed droplets in nucleon matter,
σS = 30 MeV (Christiansen et al. 2000).

The case of kaon condensation is drastically different from
the case of the deconfinement transition, since here there is
no intermediate zero-strangeness state, which might allow for
fast nucleation followed by a slow but smooth growth of the
strangeness containing fields. Instead, the thermal fluctuations
responsible for nucleation events must directly involve weak-
interaction processes which produce kaons. Weak-interaction
processes producing strangeness via the reaction e + N →
νe + K− + N (where an additional nucleon N is needed for
momentum conservation) and n → p+K− are too slow to create
a critical droplet of kaon condensate from a density fluctuation
during the fluctuation lifetime (Norsen 2002). Strangeness can
be produced at a reasonable rate from thermal kaon–antikaon
(K−K+) pairs, but this mechanism can operate only at extremely
high temperatures typical for proto-neutron stars. Generally, a
proto-neutron star cools so rapidly that kaon condensate has
no time to nucleate (Haensel et al. 2007). However, as soon
as μe > ω0

K− , where ω0
K− is the minimum energy of a single

zero momentum kaon in dense matter, spontaneous formation
of kaons is possible (Haensel et al. 2007). The kinetics of
kaon condensation was studied by Muto et al. (1997, 2000a,
2000b). Kaon potentials UK with values only a little below
UK = −120 MeV would not be compatible with the mass of
the Hulse–Taylor pulsar, because of a mechanical instability
that is initiated by the central densities for which the pressure
remains constant, and the necessary condition for stability
dM/dρc > 0 is not satisfied (Glendenning 2000). The kaon
condensation process in neutron stars in the framework of the
Zimanyi–Moszkowski model in relativistic mean field theory
was considered in Dai & Cheng (1997). Even though hyperons
which may increase the critical condensation density are not
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included, kaon condensation may not occur in stable neutron
stars for these classes of mean field theories. The existence of the
antikaon condensation phase in neutron stars in the frameworks
of the Glendenning–Moszkowski and Zimanyi–Moszkowski
models was re-analyzed in Wang et al. (2007). The results of
this analysis show that in the very massive (M = 2 ± 0.2M�),
and high-redshift neutron stars, there are still some stiff enough
EOSs of neutron matter, so that the pure antikaon condensation
phase and the mixed phase of normal baryons and antikaon
condensation can still exist. The mass of the neutron star inferred
from the neutrino flux of SN 1987A should be of the order of
1.5–1.7M�, which suggests that the kaon condensate may not
occur in the compact object of SN 1987A.

2.2. Quark Deconfinement

When quarks seeds are formed in the core of a neutron star,
they will propagate through the entire star, and convert it to the
new phase. A phase transition occurs between the hadronic and
quark phases when the pressures and the chemical potentials in
the two phases are equal, Ph = Pq, μh = μq , where Ph, μh

and Pq, μq are the pressures and the chemical potentials in the
hadron and quark phases, respectively. If the transition pressure
is less than that existing in the supernova core the transition can
occur.

The change from the metastable neutron matter phase to
the stable quark phase occurs as the result of fluctuations in
a homogeneous medium, formed of neutrons, in which small
quantities of the quark phase (called bubbles or nuclei) are
randomly generated. Since the process of creation of an interface
is energetically unfavorable, it follows that when a quark nucleus
is below a certain size, it is unstable and disappears again.
Surface effects disfavor the survival of small bubbles below
the radius Rc (called critical size—nuclei of this size are called
critical nuclei or bubbles), which is nothing but the value that
extremizes the thermodynamical work W necessary to create
the bubbles (Alcock & Olinto 1989; Harko et al. 2004). Only
nuclei whose size r is above the value Rc are stable, and can
survive (Landau & Lifshitz 1980). The nuclei are assumed to
be macroscopic objects containing a large number of particles
(quarks).

Following the phase transition to two-flavor quark matter,
the two-flavor quark matter will convert into three-flavor quark
matter through the reactions u + e− ↔ d + νe , u + e− ↔ s + νe,
and u + d ↔ u + s, respectively (Dai et al. 1995).

Once the quark phase is formed inside the neutron star,
it will propagate throughout the entire star. The physical
mechanisms of the transition from neutron matter to quark
matter in an astrophysical background have been studied within
several models. The first is due to Olinto (1987), who used
a nonrelativistic diffusion model. As such, this is a slow
combustion model, with the burning front propagating at a speed
of approximately 10 m s−1. This is determined primarily by
the rate at which one of the down quarks inside the neutrons is
converted, through weak decay, to a strange quark: d+u → s+u.
The second method of describing the conversion process was
first suggested by Horvath & Benvenuto (1988), and analyzed
in detail by Lugones et al. (1994) and Lugones & Benvenuto
(1995), who modeled the conversion as a detonation. In this
case, the conversion rate is several orders of magnitude faster
than that predicted by the slow combustion model. This model
is based on relativistic shock waves and combustion theory. But
regardless of the way in which the transformation occurs, an
initial seed of quark matter is needed to start the process.

The problem of the combustion of neutron matter is closely
related to that of shock waves. Let us assume that we have an
unburnt fluid which converts (by means of a certain reaction)
to a burnt fluid. The combustion process must be exothermic if
it propagates spontaneously to other regions of the fluid. The
condition for spontaneous propagation to other regions of the
fluid is Eburnt (P,X) < Eunburnt (P,X), where Eburnt (P,X) and
Eunburnt (P,X) are the energy densities of the respective fluids,
both evaluated at the same thermodynamic state. In the case of
the transition from nuclear to quark matter this condition can
be reformulated as Enucl − 3Pnucl > 4B (Lugones et al. 1994),
where Enucl and Pnucl correspond to nuclear matter. If this con-
dition is not fulfilled, the combustion is no longer exothermic,
and so it is not possible. At low enough densities, soft EOS
verifies Enucl � Pnucl, and Enucl ≈ mnnBc2. Hence there exists
an absolute lower limit for the combustion to be possible, given
by nB ≈ 4B/mnc

2 = 0.25[B/(145 MeV)4]fm−3 (Lugones
et al. 1994), corresponding to a transition density ρtr of the
order of ρtr ≈ 4.2 × 1014[B/(145 MeV)4] g cm−3.

However, it is important to point out that efficient burning of
the nuclear matter can take place only when the nuclear matter
density is sufficiently high, and in order to convert the entire
neutron star to a quark star a higher density than the minimum
one given by nB is required, and there is always a range of
densities at which the transition occurs. The density for the
deconfinement of baryonic matter with a moderately stiff (or
stiff) EOS to two-flavor quark matter is near 8ρnuc. For a soft
EOS, the deconfinement density may be lower.

Generally, the flow behind the detonation is sonic. Therefore
the typical timescale for the transition is τtr = R/cs , where R is
the radius of the neutron star and cs is the speed of sound.
A simple phenomenological model for the evolution of the
quark phase can be obtained by assuming dr/dt = (r − Rc) /τtr
(Harko et al. 2004), which gives for the transition timescale Ttr
from a microscopic quark nugget to a quark matter distribution
of a macroscopic size the expression

Ttr ≈ 10−4N−1/3
q R6 ln

R

Rq

s, (1)

where R6 is the neutron star radius in units of 106 cm, Rq ∼
300Rc (Harko et al. 2004) is the initial size of the quark bubble,
and Nq is the number of quark seeds inside the core of the neutron
star, which could be as large as 1048 (Iida & Sato 1998). How-
ever, it was found that the conversion process in hadronic matter
at T = 0 always corresponds to a deflagration, and never to a
detonation (Drago et al. 2007). Hydrodynamical instabilities can
develop on the front, and a mixed phase of hadrons and quarks
could form. Due to the formation of wrinkles, the conversion ve-
locity can significantly increase, but this increase is not sufficient
to transform the deflagration into a detonation. In general, one
could assume that the conversion process can take place in two
steps, with a first transition from hadrons to ungapped (or 2SC)
quarks, followed by a second transition in which a color-flavor
locked (CFL) phase is produced. The timescale for the first tran-
sition has been estimated by Drago et al. (2007), and it is of the
order of 0.1–1 s for the first transition in the case of a laminar
front, and is much more rapid if the hydrodynamical instabilities
are taken into account. The second transition lasts only 10−3 s,
due to the formation of a convective layer. If the two
processes take place one after the other, it is even possible
that the formation of a diquark condensate could accelerate
the conversion process by developing a convective layer inside
the hadronic phase. Neutrino trapping can play an important
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role in the hadron–quark phase transition (Vidana et al. 2005).
The quantum nucleation of a quark matter drop, and therefore
the conversion of the hadronic matter to quark matter, is strongly
inhibited at T = 0 by the presence of neutrinos. However, in
the high-temperature regime, the dominant nucleation mecha-
nism is thermal nucleation, and not quantum tunneling (Haensel
et al. 2007). In general, it takes a submillisecond time interval
to convert the matter at the core of a neutron core into quark
matter.

3. NEUTRINO EMISSION FROM A PHASE-INDUCED
COLLAPSE NEUTRON STAR

The total energy emitted in the form of neutrinos in a super-
nova explosion can easily be estimated from qualitative con-
siderations. The total gravitational energy that can be irradiated
is Eb ≈ 3GM2/5R, where M and R are the mass and the ra-
dius of the star, respectively. By using a mass of the order of
M = (1–2)M�, and a radius of R = 20 km (M�/M)1/3 for the
neutron star, one obtains Eb ≈ (1 − 5) × 1053 erg. This amount
of neutrino energy does not conflict with the observed data.
However, it is difficult to understand why, in comparing with
KII, IMB has detected a neutrino burst with a time delay (∼5 s)
and with even higher average energy (∼30 MeV). In the dis-
cussion section, we will argue that a phase transition may take
place after the core temperature of the newly born neutron star is
reduced. The characteristic timescale for the cooling of the core
is the neutrino trapping time, which is of the order of several
seconds. In this section, we use a three-dimensional Newtonian
hydrodynamic code to simulate the neutrino emission from a
phase-induced collapse of a neutron star.

3.1. Description of the Numerical Code

First, we briefly summarize the numerical code used to
simulate the collapse of a neutron star induced by phase
transition. The three-dimensional simulations are based on
Newtonian hydrodynamics and gravity. The code has been used
to study the gravitational wave emission from phase-induced
collapse neutron stars (Lin et al. 2006). We refer the reader to
Lin et al. (2006) for a detailed discussion of the numerical code.

The system of equations describing the nonviscous Newto-
nian fluid flow is given by

∂ρ

∂t
+ ∇ · (ρv) = 0, (2)

∂

∂t
(ρvi) + ∇ · (ρviv) +

∂P

∂xi

= −ρ
∂Φ
∂xi

, (3)

∂τ

∂t
+ ∇ · ((τ + P ) v) = −ρv · ∇Φ, (4)

where ρ is the mass density of the fluid, v is the velocity with
Cartesian components vi (i = 1, 2, 3), P is the fluid pressure,
Φ is the Newtonian potential, and τ is the total energy density,
τ = ρε + ρv2/2, where ε is the internal energy per unit mass of
the fluid. The Newtonian potential Φ is obtained by solving the
Poisson equation, ∇2Φ = 4πGρ. The system is completed by
specifying an EOS P = P (ρ, ε).

The above hydrodynamics Equations (2)–(4) can be rewritten
in a flux conservative form, which can be solved numerically
using quite standard high-resolution shock capturing (HRSC)

schemes. An HRSC scheme has the ability to resolve disconti-
nuities (e.g., shock waves) in the solution. It can also achieve
high accuracy in regions where the fluid flow is smooth. In our
work, we employ the so-called Roe’s solver in the simulations
(see Lin et al. 2006).

It is not known what the EOS is for the neutron star in
the remnant of SN 1987A. We can try all possible existing
realistic EOSs in our study. However, the main purpose of this
paper is to demonstrate that the phase-induced collapse of a
neutron star can emit extremely intense, pulsating and very high
energy neutrinos. Therefore, instead of using a realistic EOS
we will use a polytropic EOS for the initial neutron star. In
Section 2, we have discussed various possible phase transitions
for a newly born hot neutron star. Although both pion condensate
and kaon condensate cannot be ruled out completely, there is no
compelling observational evidence for the their existence. For
simplicity, we will focus our study on the phase transition from
neutron star to strange star in this paper. We use a mixed phase
EOS to mimic a strange star covered by normal nuclear matter.

In the following, we argue that a newly born quark star should
be described by a mixed phase EOS. In Section 2.2, it has been
shown that quark seeds can be spontaneously generated inside
the core of neutron star when the density exceeds the critical
density (e.g., Iida & Sato 1998). These quark seeds formed in
the neutron star core can mix with the normal hadronic matter
by Schwarzschild convection, and the length scale λc for the
convective motion is given by (Wilson & Mayle 1988)

λc =
[

kT η

g (−d ln S/dr)

]1/4

, (5)

where S is the entropy per baryon in units of Boltzmann’s
constant, g is the local gravitational acceleration in the core,
kT = λν/3, where λν is the neutrino mean free path, η =
λνρν/3ρ, where ρν is the neutrino energy density and ρ is the
matter density. With λν = 80 cm, ρν/ρ = 0.1, g = 8 × 1013

cm s−2, and −d ln S/dr = 5 × 10−6 cm−1 (Dai et al. 1995),
one obtains λc = 3.5 × 103 cm. The timescale of the mixing
can be calculated from τc = 2π/

√
g (−d ln S/dr) = 0.3 ms.

Therefore, the convection will result in mixing of the neutron
and quark phases in the large region of the star during the phase-
transition process (Glendenning 2000).

The initial equilibrium neutron star before the phase is given
by a polytropic EOS

P = k0ρ
Γ0 , (6)

where k0 and Γ0 are constants. On the initial time slice, we also
need to specify the specific internal energy ε. For the polytropic
EOS, the thermodynamically consistent ε is given by

ε = k0

Γ0 − 1
ρΓ0−1. (7)

Note that the pressure in Equation (6) can also be written as

P = (Γ0 − 1)ρε. (8)

We assume that the phase transition take place at t = 0, then
we switch the compact object from a polytropic EOS to the
EOS of a mixed phase quark star, which consists of two parts:
(1) a mixed phase of quark and nuclear matter in the core at
density higher than a certain critical value ρtr (quark seeds can
spontaneously produce everywhere when ρ � ρtr) and (2) a
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normal nuclear matter region extending from ρ < ρtr to the
surface of the star. Explicitly, the pressure is given by

P =
{

αPq + (1 − α)Pn for ρ > ρtr

Pn for ρ � ρtr,
(9)

where
Pq = 1

3 (ρ + ρε − 4B) (10)

is the pressure contribution of the quark matter, and

Pn = (Γn − 1)ρε, (11)

where Γn is not necessarily equal to Γ0, is that of the nuclear
matter, and

α =
{

(ρ − ρtr)/(ρq − ρtr) for ρtr < ρ < ρq

1 for ρq < ρ
(12)

is defined to be the scale factor of the mixed phase (Lin et al.
2006). We should note that Pq is not in the usual form of
MIT bag Pq = 1

3 (ρtot − 4B), where ρtot is the (rest-frame)
total energy density, and B is the bag constant. It is because
in Newtonian simulation we use the rest mass density ρ
and specific internal energy ε as fundamental variables in
the hydrodynamics equations. The total energy density ρtol,
which includes the rest mass contribution, is decomposed as
ρtot = ρ + ρε. We choose Γn < Γ0 in our simulations to take
into account the possibility that the nuclear matter may not be
stable during the phase-transition process, and hence some quark
seeds could appear inside the nuclear matter, or the convection
mentioned in the early part of this section may mix some quark
matter with the nuclear matter. In the presence of the quark
seeds in the nuclear matter, the effective adiabatic index will be
reduced. The possible values of B1/4 range from 145 MeV to
190 MeV (DeGrand et al. 1975; Satz 1982; Steffens et al. 1995).
For ρ > ρq , the quarks will be deconfined from the nucleons.
The value of ρq is model dependent; it could range from 4 to 8
ρnuc (Cheng & Dai 1998; Haensel 2003; Bombaci et al. 2004),
where ρnuc = 2.8 × 1014gcm−3 is the nuclear density.

In the simulations, we set Γ0 = 2, Γn = 1.85, B1/4 =
160 MeV, and ρq = 9ρnuc. The phase-transition density ρtr ≈
2.1ρnuc is defined to be the point where Pq is zero initially.
This value is approximately equal to the value estimated in
Section 2.2. The total time span of each run is ∼5 ms, the time
step is 3.7 × 10−4 ms. The grid spacing is set to be dx =
0.28 km and the outer boundary of the computational domain
is at 27.5 km, which is about twice the stellar radius of our
models. During the numerical simulation, a low-density atmo-
sphere is added outside the neutron star for numerical stability
purposes. The density and temperature of the atmosphere are
3 × 109 gcm−3 and 0.003 MeV, respectively.

Finally, we remark that although Equation (9) is not the ex-
act situation of quark matter distribution inside the star, it al-
lows us to simulate the phase-induced collapse and study the
energy transport processes. The exact quark matter distribu-
tion can certainly affect the evolution of the star in detail and
neutrino emission from the stellar surface quantitatively. How-
ever, since Equation (9) should still represent the qualitative
quark matter distribution, the simulated features produced by
Equation (9) should still be qualitatively correct.

3.2. Neutrino Luminosity

For a newborn neutron star, the internal temperature is so hot
that neutrinos will be trapped inside the star for at least a few
seconds (see Shapiro & Teukolsky 1983 for a general review).
However, neutrinos very near the surface of the star can still
escape because the optical depth near the stellar surface is low.
In fact we can define a radius (Rν) called the neutrinosphere,
where the optical depth of electron neutrinos is given by

τeff =
∫ ∞

Rν

dr κeff(r) = 1, (13)

where the effective optical depth, τeff , is defined as inverse mean
free paths and the effective opacity, κeff , is given by (Janka 2001)

〈κeff〉(r) = 1.202 × 10−7ρ10(r)

(
Tν(r)

4 MeV

)2 1

cm
, (14)

where ρ10(r) is the density in units of 1010 g cm−3 and Tν(r)
is the temperature at r, respectively. The electron neutrino
luminosity emitted from the neutrinosphere is given by (Janka
1995; Balantekin & Yuksel 2005)

Lν = 7
16πR2

νacT 4
ν . (15)

In our simplified calculation, we also assume equal luminosities
for the neutrino and antineutrino, hence the combined luminos-
ity for a single neutrino flavor is

Lν, ν = Lν + Lν

= 7

8
πR2

νacT 4
ν . (16)

Since the neutrinosphere is very near the stellar surface,
where the nuclear matter is described by an ideal gas EOS
Pn = (Γn−1)ρε (see the previous section), we thus approximate
the temperature by T = 2mBε/3k, where k is Boltzmann’s
constant and mB = 1.67 × 10−24 g is the baryon mass. With
the simulated density and temperature profiles at a given time,
we obtain the value of each Rν from 0 to 3 ms with the trial-
and-error method. Since the neutrinosphere is a function of
both temperature and density, which oscillates with a period
∼0.32 ms, therefore it also oscillates with the same period. The
temperatures and densities as a function of time are shown in
Figures 1 and 2 for a neutron star with 1.55 and 1.75 M�,
respectively.

From these two figures, it appears that the temperature
oscillation and the density oscillation are almost close to 180◦
out of phase. Since the entire system is oscillating, every quantity
should oscillate with the same period. Also the equations
governing the evolution of temperature and density are not
identical; it is not surprising that they have a phase difference.
However, the question is: why are they almost 180◦ out of
phase? This phenomenon can be explained qualitatively as
follows. When the oscillatory cycle begins, matter is falling
in until the end of the first half-cycle. However, once the matter
is squeezed, the temperature is rising everywhere inside the star
and the gradient of the temperature starts to drive the thermal
energy outward. In fact, most of the thermal energy is generated
in the core. Furthermore, the definition of the neutrinosphere is
that the product of the temperature and density is a constant.
Therefore, when the density is decreasing with time, but the
temperature is increasing with time in the first half of the cycle,
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Figure 1. Left: neutrinosphere temperature vs. time. Right: neutrinosphere density vs. time. The initial mass of the neutron star is 1.55 M�.
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Figure 2. Left: neutrinosphere temperature vs. time. Right: neutrinosphere density vs. time. The initial mass of the neutron star is 1.7 M�.

there will always be a situation that the density is minimum and
the temperature is maximum near the end of the first half of the
cycle at the neutrinosphere.

Using Rν and Tν at the neutrinosphere obtained from the
numerical simulation, we compute the time evolution of the
neutrino luminosity. The results are shown in Figures 3 and 4
for two different neutron star masses, respectively. We can
see that extremely intense neutrino pulses can occur when
the temperature at the neutrinosphere is maximum while the
density at the neutrinosphere is minimum. The pulsation period
of the neutrino luminosity is equal to that of the temperature and
density. In calculating the neutrino luminosity we have used the
constraint Lν < ĖM , where ĖM represents the rate of energy
flow carried by a fluid into the cell containing the neutrinosphere
Rν . Explicitly ĖM = 4πR2

νΔRτ/δt , where δt is the dynamical
timescale for the energy flow from one grid to another grid and
τ = 0.5ρv2 + ρε is the total energy density at Rν .

The maximum neutrino luminosities range from 1053 to
1054 erg s−1. The total energies carried away by neutrinos in
the period of first 3 ms are 6.75 × 1049 erg and 7.12 × 1049 erg
for the star with 1.55 M� and for the star with 1.75 M�,
respectively, and the typical neutrino energy is >30 MeV during
the peaks.

3.3. Damping of the Oscillation

With the grid resolution (dx = 0.28 km) we used for the
simulations, which is limited by the computational resource,
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Figure 3. Neutrino luminosity as a function of time for a star with 1.55 M�.

we see that numerical damping becomes significant after about
3 ms. Recently, Abdikamalov et al. (2009) have used a two-
dimensional general relativistic numerical code to study the
gravitational wave signals emitted from the phase-induced col-
lapse of neutron stars and their results are very similar to our
previous results (Lin et al. 2006). Since Abdikamalov et al.
(2009) can achieve much higher resolution in two dimen-
sions, they can perform longer timescale simulations with high
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Figure 4. Neutrino luminosity as a function of time for a star with 1.7 M�.

accuracy. They conclude that the timescale of hydrodynamical
damping effects (e.g., due to mass-shedding) is typically a few
tens to hundreds of milliseconds.

However, there are still other physical damping effects which
are not modeled in the simulations (Lin et al. 2006; Abdikamalov
et al. 2009). Wang & Lu (1984) first pointed out theoretically that
the dissipation due to nonleptonic reaction is of great importance
and the stellar pulsations of the quark stars would be strongly
damped via the following process:

s + u ↔ u + d. (17)

According to Sawyer (1989) and Madsen (1992), in the high-
temperature limit, which is exactly our case, the bulk viscosity
can be obtained analytically:

ζ = αT 2

ω2 + βT 4

(
1 − (1 − exp(−β1/2T 2τ ))

2β1/2T 2/τ

ω2 + βT 4

)
(18)

α = 9.39 × 1022m4
sμ

3
d g cm−1s−1 (19)

β = 7.11 × 10−4μ6
d (1 + m2

s /4μ2
d )2 s−2, (20)

where ms is the mass of strange quark mass in MeV, typically
ranging from 100 to 300 MeV. μd is the down quark chemical
potential; the typical value is around 235 MeV, assuming that the
nuclear matter density is 2.8×1014 g cm−3. τ is the perturbation
period and ω = 2π/τ .

For a star with relative constant density, Sawyer (1989)
estimated the damping time of vibration:

τD = 30−1ρR2ζ−1. (21)

The average damping time is thus calculated with average
temperature (〈T 〉) and density (〈ρ〉), which are given by

〈T 〉 =
∫ Rtr

0 4πr2T (r)ρ(r)dr∫ Rtr

0 4πr2ρ(r)dr
, (22)

〈ρ〉 =
∫ Rtr

0 4πr2ρ(r)dr∫ Rtr

0 4πr2dr
, (23)

where Rtr is the radius where the matter transits to quark matter,
i.e., ρ(Rtr) = ρtr.

If we take ms ∼ 140 MeV, 〈ρ〉 ∼ 1015 g cm−3, and 〈T 〉 ∼
50 MeV, the damping timescale is ∼10 s. This timescale is
sufficiently long to allow the neutrinos to carry away most of the
gravitational energy released from the phase-induced collapse
neutron star (ΔEG ∼ GM2ΔR/R2, where ΔR is the change
of radius before and after the phase transition). For the model
presented in this paper, ΔR/R is ∼0.2, which gives ∼1053 erg,
which does not conflict with the IMB results. Furthermore, in
our simulation neutrinos can carry away ∼1050 erg in 3 ms.
If we assume that this is the only mechanism to damp out the
oscillation energy, it only takes 3 ms × 1053 erg

1050 erg ∼ 3 s to take this
amount of energy away by neutrinos with energy >30 MeV.

4. COOLING OF QUARK STARS AND NEUTRON STARS

The use of thermally excited helical vortex waves that pro-
duce fast magnetosonic waves in the stellar crust, and which
propagate toward the surface and transform into outgoing elec-
tromagnetic radiation, has allowed the direct determination
of the core temperature of neutron stars (Svidzinsky 2003).
The core temperature of the Vela pulsar is T = 8 × 108 K,
while the core temperature of PSR B0656+14 and Geminga
exceeds 2 × 108 K. These temperature estimates rule out the
EOSs incorporating Bose condensations of pions or kaons
and superfluid quark matter in these objects. Thermal X-ray
radiation from neutron star soft X-ray transients in quies-
cence provides the strongest constraints on the cooling rates
of neutron stars, and thus on the interior composition and
properties of matter in the cores of compact objects (Heinke
et al. 2007). The analysis of the new (2006) and archival (2001)
XMM-Newton observations of the accreting millisecond pul-
sar SAX J1808.4-3658 in quiescence provides the most strin-
gent constraints to date. Simultaneous fitting of all available
XMM data allows a constraint on the quiescent neutron star
(0.01–10 keV) luminosity of LNS < 1.1 × 1031 erg s−1. This
limit excludes some current models of neutrino emission me-
diated by pion condensates (Heinke et al. 2007), and provides
further evidence for additional cooling processes, such as neu-
trino emission via direct Urca processes, involving nucleons
in the cores of massive neutron stars. Hence, these recent ob-
servations show that the observed thermal luminosity of some
neutron stars does not agree with some proposed exotic cooling
processes (Tsuruta 1998; Yakovlev & Haensel 2003; Yakovlev
& Pethick 2004).

4.1. Energy Dissipation Mechanisms for Strange Stars

Several physical processes that contribute to the energy emis-
sion from the bare quark star surface have been proposed. The
most important of these energy loss mechanisms is electron–
positron pair creation, due to the strong electric field at the sur-
face of the strange star (Usov 1998a, 1998b). Other processes
include neutral pion emission (Ng et al. 2003), quark–quark
bremsstrahlung (Chmaj et al. 1991; Cheng & Harko 2003), equi-
librium blackbody radiation (Chmaj et al. 1991), and electron–
electron bremsstrahlung (Jaikumar et al. 2004; Harko & Cheng
2005).

In the case of energy loss via the production of e−e+ pairs,
the energy flux is given by F± = ε±ṅ±, with ε± = me + T and

ṅ± = Δr
9T 3

2πε2
F

√
α

π
e−2me/T neJ (ξ ) , (24)
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where εF = (π2ne)1/3 is the Fermi momentum of the electrons
with number density ne, α is the fine structure constant, ξ =
2
√

α/π (εF /T ), J (ξ ) = (1/3)ξ 3 ln(1 + 2ξ−1)/(1 + 0.074ξ )3 +
(π5/6)ξ 4/(13.9+ξ )4, and Δr is the thickness of the electron layer
(Usov 2001). Harko & Cheng (2006) have considered the mean
value of the z-dependent chemical potential, εF ≈ 〈μe(z, T )〉 ≈
(1/d)

√
3/απ (VI/T )(1 +

√
1 + V 2

I /2π2T 2)−1. For temperatures
of around T = 10 MeV we obtain εF ≈ 3 MeV, a smaller value
than that considered in Usov (2001), εF ≈ 18 MeV. This choice
of the Fermi momentum significantly reduces the energy flux
from electron–positron pair creation.

Pions are created at the stellar surface due to the collision
between the quarks and the bag, representing the conversion
of the quark kinetic energy to the mass of the pion cloud (Ng
et al. 2003). The pions are assumed to decay via the processes
π0 → 2γ ←→ e+ + e− and π± → μ± + νμ → e± + νe + 2νμ.
The energy flux due to this process is given by Fπ = ρπvπ ,
where ρπ is the energy density of the pion field at the star’s
surface, which is fixed by the axial current conservation, and
vπ , the speed of the emitted pions, is vπ ≈ √

2T/mπ , where
mπ ≈ 140 MeV is the mass of the pion (Ng et al. 2003).

Electron–electron bremsstrahlung is an important energy loss
mechanism for strange stars (Jaikumar et al. 2004; Harko
& Cheng 2005). For surface temperatures T < 109 K, the
photon flux exceeds that of the electron–positron pairs that
are produced via the Schwinger mechanism in the presence
of a strong electric field that binds electrons to the surface of
the quark star. The average energy of photons emitted from
the bremsstrahlung process can be 0.5 MeV or more, which
is larger than that in electron–positron pair annihilation. The
effect of multiple and uncorrelated scattering on the radiation
spectrum (the Landau–Pomeranchuk–Migdal effect), together
with the effect of the strong electric field at the surface of the star,
was discussed in Harko & Cheng (2005). The presence of the
electric field strongly influences the radiation spectrum emitted
by the electrosphere. The radiation properties of the electrons
in the electrosphere essentially depend on the value of the
electric potential at the quark star surface. The effect of multiple
scattering, which strongly suppresses radiation emission, is
important only for the dense layer of the electrosphere situated
near the star’s surface, and only for high values of the surface
electric potential of the star. The bremsstrahlung emissivity of
the electrosphere can be obtained as

ε
(ee)
Br (μ, T ) = 75

4π2
αr2

e g2Li7/2 (η)

[ (
ln

T

2me

+
77

30
− γ

)

× Li7/2 (η) +
dLin (η)

dn

∣∣∣∣
n=7/2

]
T 7, (25)

where g = 2 is the statistical weight for electrons, η =
− exp [μe (T ) /T ], Lin (η) = ∑∞

k=1 ηk/kn is the polylogarithm
function, and γ = 0.577216 is Euler’s constant.

The bremsstrahlung energy flux from the exterior electron
layer of the strange star, coming out from a thin surface layer
of thickness dz, is F

(ee)
Br = ε

(ee)
Br dz/π . Taking into account the

contribution of all layers we find

F
(ee)
Br (T ) = 1

π

∫ ∞

0
ε

(ee)
Br (z, T ) dz = σ

(ee)
Br (T )T 7, (26)

where

σ
(ee)
Br (T ) = 75

4π3
αr2

e g2

×
∫ ∞

0
Li7/2 [η (z, T )]

{(
ln

T

2me

+
77

30
− γ

)

× Li7/2 [η (z, T )] +
dLin (η)

dn

∣∣∣∣
n=7/2

}
dz.

(27)

The energy flux from quark–quark bremsstrahlung can be
represented as Fq–q = σBr(nb, T )T 4, where σBr(nb, T ) ≈
g2Li2

2 [− exp((π2nb)1/3/T )]I (nb, T )λ/(2π )3, λ is the mean
photon path in the quark matter, nb is the baryon number density
at the surface of the star, and

π

α
I (nb, T ) ≈ 1 + 3π/4αs

τ
ln

[
1 + 4 (1 + 3π/4αs)2

(1 + 4τ 2a2n
2/3
b )an

1/3
b

]

+
1

τ
[arctan 2 (1 + 3π/4αs) − arctan 2τan

1/3
b ]

− 4

(
1 + 3π/4αs

τ
− an

1/3
b

)

+
1

2τ
[D(1 + 3π/4αs) − D(τan

1/3
b )], (28)

where αs is the strong coupling constant, a = 21/334/3π5/3g2/3e4

Z2 ln(184Z−1/3)/α2
s , τ is the mean collision time between

quarks given by

τ−1 ≈ −n
−1/3
b T 2Li2[− exp((π2nb)1/3/T )]/8π8/3, (29)

which can be roughly estimated as τ = 1/nσ0v, and the function
D(x) is defined as D(x) = i [Li2 (−2ix) − Li2 (2ix)] (Cheng
& Harko 2003). σ0 is the quark–quark elastic scattering cross
section. Due to interference between amplitudes of nearby in-
teractions, the bremsstrahlung emissivity from the strange star
surface is suppressed for frequencies smaller than a critical
frequency (the Landau–Pomeranchuk–Migdal effect; Cheng &
Harko 2003). The range of the suppressed frequencies is a func-
tion of the quark matter density at the star’s surface and of the
QCD coupling constant. For temperatures much smaller than the
Fermi energy of the quarks, the bremsstrahlung spectrum has
the same temperature dependence as the equilibrium blackbody
radiation. Multiple collisions could reduce the intensity of the
bremsstrahlung radiation by an order of magnitude. The absorp-
tion in the semidegenerate electron gas can also significantly re-
duce the intensity of the quark–quark bremsstrahlung radiation
and, consequently, the surface emissivity. The combined effects
of multiple collisions and absorption in the electron layer could
make the soft photon surface radiation of quark stars six orders
of magnitude smaller than the equilibrium blackbody radiation
(Cheng & Harko 2003).

At temperature T strange matter is filled with electromagnetic
waves in thermodynamic equilibrium with quarks. The quanta
of the electromagnetic waves in plasma (transverse plasmons)

have a characteristic dispersion relation ω (k) =
√

ω2
p + k2,

where k is the wavenumber and the plasma frequency ωp =
e (8πnb/3μ)1/2 (Chmaj et al. 1991). The characteristic trans-
verse plasmon cutoff frequency can be estimated as ωp ≈ 20–
25 MeV (Chmaj et al. 1991; Ng et al. 2003). A beam of trans-
verse plasmons hitting the edge of strange star matter from
inside will be partially reflected and will partially pass to the
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Figure 5. Temperature variation of the energy fluxes (in a logarithmic scale),
emitted by the bare quark star surface, via different radiation mechanisms:
electron–electron bremsstrahlung flux F

(ee)
Br (solid curve), electron–positron pair

creation energy flux F± (dotted curve), quark–quark bremsstrahlung energy flux
Fq–q (dashed curve), energy flux Fπ due to pion emission (long dashed curve),
and blackbody radiation energy flux Fbb (ultra-long dashed curve). For the
surface electrostatic potential of the quark star we have chosen the typical value
VI = 14 MeV, while the thickness of the electron layer was taken as d = 1
000 fm. For the electron–positron energy flux, the Fermi energy of the electrons
εF = 18 MeV = constant. For the energy density of the pion field at the strange
star surface we have adopted the value ρπ ≈ 3.417 × 105 MeV4 ≈ 7.1 × 1031

erg cm−3.

outer vacuum, being refracted. The energy flux of thermal equi-
librium photons radiated from the bare strange surface is given
by

Feq = 1

2

∫ ∞

ωp

ω
(
ω2 − ω2

p

)
g (ω)

[
eω/T − 1

]−1
dω, (30)

where g(ω) = (1/2π2)
∫ π/2

0 [1 − (R⊥ + R‖)/2] sin θ cos θdθ ,
with R⊥ = sin2(θ − θ0)/ sin2(θ + θ0) and R‖ = tan2(θ − θ0)/
tan2(θ + θ0). θ0 is defined as θ0 = arcsin[sin θ

√
1 − (ωp/ω)2],

respectively (Chmaj et al. 1991).
The variations of the energy fluxes F for these energy

mechanisms are represented as a function of temperature in
Figure 5.

When the temperature of the quark star core drops below 109

K, the strange matter becomes superfluid. At this temperature,
quarks can form colored Cooper pairs near the Fermi surface
and become superconducting. From the BCS theory it follows
that the critical temperature Tc at which the transition to the
superconducting state takes place is Tc = Δ/1.76, where Δ
is the pairing gap energy (Blaschke et al. 2000). An early
estimation of Δ gave Δ ∼ 0.1–1 MeV (Bailin & Love 1984), but
some recent studies considering instanton-induced interactions
between quarks estimated Δ ∼ 100 MeV (Alford et al. 1999;
Rajagopal & Wilczek 2001). When the temperature of the star is
below Tc, the emissivity of the quark matter is modified by the
superconducting effects. Since the collisions between the quarks
and the bag are suppressed, pion emissivity is suppressed by a
factor of exp (−Δ/T ) (Ng et al. 2003). The same factor can be
used to describe the suppression of quark–quark bremsstrahlung
due to the superconductivity of the strange matter.

Figure 6 shows the variation with temperature of the energy
fluxes for various dissipation mechanisms if quarks become
superfluid.

For T � ωp the equilibrium photon emissivity of strange
matter is negligibly small compared to the blackbody spectrum.
Even for a small value of the gap pairing energy Δ, the
superfluidity of the quark matter strongly suppresses the quark–
quark bremsstrahlung and pion emissivity of the star.

Figure 6. Temperature variation of the energy fluxes (in a logarithmic
scale), emitted by the superfluid bare quark star surface, via different radi-
ation mechanisms: electron–electron bremsstrahlung flux F

(ee)
Br (solid curve),

electron–positron pair creation energy flux 〈F±〉 (dotted curve), quark–quark
bremsstrahlung energy flux F

(sup)
q–q (dashed curve), energy flux F

(sup)
π due to pion

emission (long dashed curve), and the thermal photon equilibrium radiation en-
ergy flux Feq (ultra-long dashed curve). For the surface electrostatic potential
of the quark star we have chosen the typical value V, while the thickness of the
electron layer was taken as d = 1000 fm. The energy gap Δ = 1 MeV.

Strange quark matter in the CFL phase of QCD, which occurs
for large gaps (Δ ∼ 100 MeV), could be rigorously electrically
neutral, despite the unequal quark masses, even in the presence
of the electron chemical potential (Alford et al. 1999; Rajagopal
& Wilczek 2001).

However, Page & Usov (2002) pointed out that for sufficiently
large ms the low-density regime is rather expected to be in the
“two-color-flavor superconductor” phase in which only u and
d quarks of two colors are paired in a single condensate while
those of the third color and s quarks of all three colors are
unpaired. In this phase, electrons are present. In other words,
electrons may be absent in the core of strange stars but present, at
least, near the surface where the density is lowest. Nevertheless,
the presence of CFL effect can reduce the electron density at the
surface and hence also significantly reduces the bremsstrahlung
emissivity of the electrons in the surface layer.

4.2. Cooling of Strange Stars

In this subsection, we consider the cooling of a quark star.
For simplicity, we assume that the star is of uniform density and
isothermal, that is, the core and surface temperatures are equal.
The effect of the magnetic field on the cooling is also neglected.
The thermal evolution of the quark star is determined by the
equation

CV

dT

dt
= −

n∑
i=1

Li = −(Lpair+Lqq+Lee+Lπ +Leq+Lν), (31)

where CV is the specific heat, T is the temperature, and Lpair
is the electron–positron pair luminosity, Lqq is the quark–
quark bremsstrahlung luminosity, Lee is the electron–electron
bremsstrahlung luminosity, Lπ is the pion emission luminosity,
Leq is the luminosity due to the thermal equilibrium radiation,
and Lν is the neutrino luminosity, respectively. In the normal
state of quark matter, the quark Fermi momentum pFq can be
approximated as pFq = 235 (ρ/ρ0)1/3 MeV/c, where ρ0 is the
nuclear density, and the specific heat of the quark matter is given
by cq = 2.5×1020 (ρ/ρ0)2/3 T9 erg cm−3 K−1 (Iwamoto 1980).
In the superfluid state, for 0.2Tc � T � Tc, the specific heat can
be obtained as c(sf)

q = 3.15cq (Tc/T ) exp (−1.76Tc/T ) [2.5 −
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1.66 (T/Tc) + 3.64 (T/Tc)2], while for T < 0.2Tc the specific
heat is zero (see Ng et al. 2003, and references therein). The
Goldstone excitations in the quark–gluon plasma contribute to
the specific heat of the strange star, so that cg−γ = 3.0 ×
1013Ng−γ T 3

9 erg cm−3 K−1, where Ng−γ is the number of
available massless gluon–photon states, which are present even
in the color superconducting phase (Blaschke et al. 2000). When
the temperature is low, the specific heat of quark matter vanishes.
However, the electrons are not affected, and at low temperatures
their effect is important. The specific heat of the electrons is
given by ce = 1.7 × 1020 (Yeρ/ρ0)2/3 T9 erg cm −3 K−1 (Ng
et al. 2003), where Ye ≈ 10−3 is the electron fraction.

Neutrinos are emitted by quark matter through the URCA
process, d → u + e− + ν̄e− , u + e− → d + νe− . The
neutrino emissivity for this process can be obtained as
εd � 8.8 × 1026αc (ρ/ρ0) Y

1/3
e T 6

9 erg cm−3 s−1 (Iwamoto
1980). In the superfluid state, the neutrino emissivity is
suppressed by a factor of exp (−Δ/T ). The exact form
for the neutrino emissivity can be obtained as εd =(
457π/840h̄10c9

)
G2

F cos2 θC (1 − cos θue/a) PFuPFdPFe (kBT )6

erg cm−3 s−1 (Duncan et al. 1983), where GF is the Fermi
weak coupling constant, θC is the Cabibbo angle, a =
(1 − 2αc/π )−1/3, PFu, PFd, and PFe are the Fermi momenta
of the u, d quarks, and of the electrons, respectively. The an-
gle between the u and e momenta, θue, is given by cos θue =(
P 2

Fd − P 2
Fu − P 2

Fe

)
/2PFuPFe. The condition for the URCA

process to occur is |cos θue| � 1 (Ng et al. 2003). In the case
of the similar reactions for the s quarks, s → u + e− + ν̄e− ,
u + e− → s + νe− , the condition

∣∣cos θ
′
ue

∣∣ � 1, where the an-
gle θ

′
ue is defined as cos θ

′
ue = (

P 2
Fs − P 2

Fu − P 2
Fe

)
/2PFuPFe,

is satisfied only if the density of the quark matter is as high as
4 × 1016 g cm−3. Therefore, these reactions do not exist in the
quark stars. The neutrino emissivity due to the photon–gluon
mixing, which can generate a massive photon–gluon excitation,
is neglected, since it is important only at temperatures higher
than 70 MeV (Blaschke et al. 2000). The cooling curve and
the luminosity curve of the 1.55 M� strange star are presented
as the solid curve in Figures 7 and 8, respectively. We can see
the radiation luminosity at t ∼ 20 years is below 1034 erg s−1

but with a high temperature T ∼ 107 K and the spectrum is a
thermal bremsstrahlung.

4.3. Neutron Star Cooling Process

In this subsection, we describe a simple cooling model of
neutron stars including a possible exotic matter core, e.g., meson
condensate or quark core (see, e.g., Cheng et al. 1992, Chong
& Cheng 1993). We assume that the neutron star with 1.55 M�
and 106 cm in radius has uniform density, and has an isothermal
core temperature (Tc). We adopt the simple relation between the
core temperature and the surface temperature (Ts) given by the
relation Tc8 = 1.3(T 4

s6/gs14)0.445 (Gudmundsson et al. 1983).
The core temperature evolution of the star is given by

CvdTc/dt = −Lν − Lbb(Ts). (32)

The heat capacity Cv is given by (Maxwell 1979)

Cv = C(e) + C(n), (33)

where
C(e) = 1.9 × 1037M�ρ

1/3
14 T9 erg K−1 (34)

is the electron heat capacity with ρ14 = ρ/1014 g cm−3 and
T9 = T/109 K, and

C(n)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cn(T ) = 2.3 × 1039M�
(

m∗
n

mn

)
ρ

−2/3
14 T9 erg K−1

for T > Tn

3.15Cn(T )
(

Tn

T

)
e−1.76Tn/T

[
2.5 − 1.66 T

Tn
+ 3.64

(
T
Tn

)2
]

erg K−1 for T � Tn
(35)

is the neutron heat capacity, with Tn being the transition
temperature of normal-superfluid neutrons and m∗

n the effective
mass of neutrons. We adopted m∗

n/mn � 1 and Tn = 3.2 ×
109 K (Takatsuka & Tamagaki 1971).

The major neutrino emissions are due to the modified URCA
process and NN-bremsstrahlung, where N is a nucleon, n or p.
These mechanisms are relatively weak and the luminosity can
be approximated by (Yakovlev & Haensel 2003)

Lν = LsT
8

9 , (36)

where Ls is at the range of 4 × 1038 to 1040 erg s−1.
When considering some exotic neutrino processes, the emis-

sion is greatly enhanced. The neutrino luminosity can be written
as (Yakovlev & Haensel 2003)

Lν = Lf T 6
9 , (37)

where Lf lies at the range 4 × 1041 to 4 × 1044 erg s−1 for the
pion condensation process and 4 × 1041 to 4 × 1043 erg s−1 for
the kaon condensation and quark cooling processes.

The cooling curves and the radiation luminosities of neutron
star with various cooling mechanisms are shown in Figures 7
and 8, respectively. We can see that for neutron stars with-
out exotic cooling processes, e.g., pion condensation or kaon
condensation, their thermal luminosity is much larger than
1034 erg s−1. But the exotic cooling processes can cool the star
much faster and the thermal luminosity can be much lower than
1034 erg s−1. On the other hand, the surface temperature of the
neutron star with exotic cooling processes is very low, <106 K,
and it is a thermal spectrum.

5. DISCUSSIONS AND FINAL REMARKS

The detection of neutrinos from SN 1987A has suggested that
a compact object should be formed at the center of SN 1987A.
If the time delay and energy distribution difference between
neutrinos detected by KAM-II and IMB are genuine together
with the absence of hot compact object at the center of 1987A,
which implies a rapidly cooling cold compact object, we have
proposed that the neutrinos detected by IMB may result from a
delay phase-induced collapse after the neutron star is formed.
The final compact object may be a neutron star with exotic matter
core or a strange star; either of them is a rapidly cooling object.
Consequently, the current radiation luminosity from SN 1987A
should be much lower than 1034 erg s−1. However, we have
argued that the phase transition from neutron star to strange star
may be the most possible phase transition occurring in 1987A.
Such a collapse process can generate temperature and density
oscillation on the neutrinosphere. By using a three-dimensional
Newtonian code with a toy model, in which the phase transition
is taken to be instantaneous and the EOS is assumed to be
a mixed phase, we find that intense pulsating neutrinos with
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Figure 7. Surface temperature as a function of time. The heavy solid line is the bare strange star cooling curve. The light solid line, the dotted line, and the dashed line
are the cooling curves of the neutron star with modified URCA, kaon condensate, and pion condensate, respectively.
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Figure 8. Surface photon luminosity as a function of time. The heavy solid line is the bare strange star cooling curve. The light solid line, the dotted line, and the
dashed line are the cooling curves of the neutron star with modified URCA, kaon condensate, and pion condensate, respectively.

energy >30MeV can be emitted. This phenomenon should be
generic because the compression generates more heat in the
core and the heat flow is outgoing during the contraction phase,
whereas the matter is flowing in. That should create a situation
where the temperature is maximum and the density is minimum
at the neutrinosphere. It is very interesting to detect intense
pulsating hot neutrino emission from supernova explosions
occurring from nearby galaxies. Future neutrino experiments,
such as ANTARES and IceCube (see Halzen 2006 for a review),
may be able to detect such signals.

In calculating the cooling of a strange star, we have assumed
a bare strange star, i.e., a strange star without crust. This
assumption may be justified for the following reasons: on the

top of the quark matter, a thin crust can exist as long as the
electron density within it is smaller than that in the quark matter
(Alcock et al. 1986). Such a baryonic crust is, however, much
thinner than the neutron star crust. The mass of the crust on
the quark star is at most 10−5M�, because the density of the
crust bottom cannot exceed neutron drip density, and it may
extend to up to 250–300 m. The normal crust may occur, for
instance, due to the accretion of normal matter onto a bare
strange star. The oscillation spectrum of strange stars with crust
differs from the spectrum of neutron stars (Chuganov 2006). If
detected, acoustic oscillations would allow one to discriminate
between strange stars with crust and neutron stars, and constrain
the mass and radius of the star. The recent detection of seismic
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vibrations in the aftermath of giant flares from two magnetars
(highly magnetized compact stars) is a major breakthrough in
observational astronomy. The oscillations excited seem likely
to involve the stellar crust, the properties of which differ
dramatically for strange stars. The resulting mode frequencies
for strange stars cannot be reconciled with the observations,
for reasonable magnetar parameters (Watts & Reddy 2007).
On the other hand, young and hot strange stars are the source
of a powerful pair wind, consisting of electron–positron pairs
and photons, created by the Coulomb barrier at the quark
surface (Aksenov et al. 2005). Photons dominate in the emerging
emission, and the emerging photon spectrum is rather hard and
differs substantially from the thermal spectrum expected from
a neutron star with the same luminosity. The total luminosity
in the case of a stationary, spherically outflowing, pair wind
is in the range of L = 1035–1042 erg s−1. These results have
direct relevance to the emission from hot, bare, strange stars. For
L > 2×1035 erg s−1, photons dominate the emerging emission.
As L increases from 1035 to 1042 erg s−1, the mean photon energy
decreases from ∼400–500 keV to 40 keV, while the spectrum
changes in shape from a wide annihilation line to being nearly
blackbody with a high-energy (greater than 100 keV) tail. Such a
correlation of the photon spectrum with the luminosity, together
with the fact that super-Eddington luminosities can be achieved,
might be a good observational signature of hot, bare, strange
stars (Aksenov et al. 2003). At the moment of its formation,
a strange star is very hot. The temperature of the interior may
be as high as a few 1011 K. The neutrino luminosity of the
young quark star is of the order of 1054 erg s−1, the rate of mass
ejection from such a hot compact object is very high, and the
normal matter envelope is blown away by radiation pressure in
a few seconds. High temperatures also lead to a considerable
reduction of the Coulomb barrier, increasing the tunneling of
nuclei through the barrier toward the surface. Therefore, it is
natural to expect that the surface of a young strange star will be
nearly (or completely) bare (Usov 2001). Since the strange quark
matter at the surface of the star is bound via strong interactions
rather than gravity, such a star can radiate at the luminosity
greatly exceeding the Eddington limit. Therefore, due to the
radiation pressure, a normal matter crust cannot be built around
a young strange star.

We have also assumed that the phase transition should take
place after the neutron star is formed. We argue that the delay
timescale of the phase transition is of the order of the neutrino
trapping timescale for the following reasons: the theory of
type II supernovae predicts the gravitational collapse of a
degenerate core on timescales of the order of tcoll ∼ (Gρ)−1/2 ∼
4 × 10−3ρ12s ∼ 0.1 s, followed by the formation of a hot
(kBT ∼ 50 MeV) proto-neutron star, with a radius of around
50 km, composed of Nb ∼ 1057 baryons, and with electron
lepton number Le ≈ 0.35Nb (Haensel et al. 2007). The initial
mass of the collapsing core is Mcore ≈ Nbm0, where m0 =
1.6586×10−24 g is the mass of the 56Fe nucleus, divided by 56.
The gravitational mass of the proto-neutron star is only slightly
lower than Mcore, because the gain in the gravitational energy
is compensated by the increase of the internal energy contained
mostly in the strongly degenerate neutrinos νe, trapped in the
stellar interior. The diffusion timescale of the neutrinos may be
estimated by assuming that coherent scattering is the dominant
opacity source, so that tdiff ≈ λcoh

A Nscatt/c, where λcoh
A is the

mean free path in the sea of heavy nuclei (A,Z) and Nscatt > 1
is the number of scatterings experienced by the neutrino prior
to escape. By taking into account the explicit expressions of

the neutrino mean free path and of the number of scatterings,
the neutrino diffusion time can be written as tdiff ∼ 0.08ρ12 s.
At sufficiently high densities tdiff � tcoll (Shapiro & Teukolsky
1983). The two timescales becomes comparable at tdiff ∼ tcoll,
a condition which is satisfied at a density of ρtrap ∼ 1.4 ×
1011 g cm−3.

Neutrino trapping has enormous implications for the core
collapse. For ρ � ρtrap, most of the neutrinos from electron
capture remain in the matter, and the lepton number per
baryon does not change. The neutrino distribution approaches an
equilibrium Fermi–Dirac distribution. The neutrino luminosities
are greatly reduced by trapping. Once the center of the core
exceeds nuclear densities of the order of ρnucl = 2.8 × 1014

g cm−3, thermal pressure and nuclear forces cause the EOS
of the matter to stiffen, preventing further collapse. Most
of the gravitational binding energy of the core is released
in the form of neutrinos, following the collapse to nuclear
densities. In the absence of neutrino trapping, the total binding
energy would be completely emitted as neutrinos in a collapse
timescale, the time for the core to contract from 2Rnucl to
Rnucl, where Rnucl ∼ 12 km for M ∼ M�. Accordingly, the
neutrino luminosity would then achieve its maximum possible
value, Lν,max = GM2/Rnucl/tcoll ∼ 1057 erg s−1 (Shapiro
& Teukolsky 1983). In reality, neutrino trapping forces the
liberated gravitational potential energy to be emitted on a much
longer diffusion timescale, tdiff � tcoll at ρ ∼ ρnucl. As a
result, the actual neutrino luminosity is of the order of Lν =
GM2/Rnucl/tdiff ∼ 1052 erg s−1. Thus during the advanced
stages of the collapse, the neutrinos are unable to stream freely
out of the core. The bulk of the liberated gravitational energy
must therefore be converted into other forms of internal energy
(e.g., thermal energy, energy of the excited nuclear states,
bounce kinetic energy), rather than being released immediately
in the form of escaping neutrinos.

In order for the phase transition to take place in the neutron
star, the density inside the core must satisfy the condition
ρ � ρtrans, as discussed in Section 2. Since the core temperature
during the neutrino trapping period is very high, the thermal
pressure will give a significant contribution to the total pressure,
thus lowering the central density of the neutron star, so that
ρ < ρtrans. In order to satisfy the thermodynamical conditions
for the phase transition, the core must cool down so that the
core density increases. To estimate the density increase resulting
from the temperature decrease in the core of the neutron star,
we solve the TOV equation by using a temperature-dependent
EOS, i.e., Shen et al. (1998), to obtain core density as a function
of temperature for a fixed stellar mass. In implementing this
EOS, we have added an ideal electron gas contribution. We have
also imposed the condition of beta equilibrium to determine the
electron fraction. The left panel of Figure 9 shows the energy
density profiles for a star model with M = 1.55M� at different
temperatures. Note that the temperature profiles are determined
by the general relativistic isothermal condition. The right panel
of Figure 9 shows the results for a neutron star with M = 1.7M�.
In Figure 9, we can see that indeed when core temperature
decreases by a factor of 2, the core energy density can increase
by more than 20%. We can see that these changes are sufficiently
large to trigger the phase transition when the core temperature
decreases after the neutrino trapping timescale.

We conclude that the abnormally high energy neutrinos and
the time delay detected by the IMB detector can be explained
by neutrino trapping in the newly formed very hot neutron star,
followed by a phase transition. After phase transition if the
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Figure 9. Left: the energy density profile of stars with mass 1.55 M� at different surface temperatures Ts = 1, 10, 15, 19 MeV. The central temperatures of the
stars are Tc = 1.49, 14.7, 21.5, 26.0 MeV, respectively. Right: the energy density profile of stars with mass 1.7 M� at different surface temperatures Ts = 1, 10, 15,

20 MeV. The central temperatures of the stars are Tc = 1.57, 15.5, 22.8, 28.9 MeV, respectively.

compact object is a neutron star with exotic matter core, its
surface luminosity is lower than 1034 erg s−1 and it should have
blackbody thermal spectrum with temperature <106 K. On the
other hand if it is a bare strange star, its surface luminosity is also
lower than 1034 erg s−1 but the radiation spectrum is a thermal
bremsstrahlung spectrum with temperature >107 K. However,
the nature of the phase transition cannot be inferred from the
present data, since the observed features cannot differentiate
or discriminate between the different phase-transition models.
We suggest that future observations on spectral features of
the compact remnant of 1987A could provide better clues to
elucidate the nature of the phase transition that might take place
in SN1987A.
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Yüksel, H., & Beacom, J. F. 2007, Phys. Rev. D, 76, 083007
Zdunik, J. L., Bejger, M., Haensel, P., & Gourgoulhon, E. 2006, A&A, 450, 747
Zdunik, J. L., Haensel, P., & Gourgoulhon, E. 2001, A&A, 372, 535

http://dx.doi.org/10.1143/PTP.44.291
http://adsabs.harvard.edu/cgi-bin/bib_query?1970PThPh..44..291I
http://adsabs.harvard.edu/cgi-bin/bib_query?1970PThPh..44..291I
http://dx.doi.org/10.1103/PhysRevLett.44.1637
http://adsabs.harvard.edu/cgi-bin/bib_query?1980PhRvL..44.1637I
http://adsabs.harvard.edu/cgi-bin/bib_query?1980PhRvL..44.1637I
http://dx.doi.org/10.1103/PhysRevD.70.023004
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PhRvD..70b3004J
http://adsabs.harvard.edu/cgi-bin/bib_query?2004PhRvD..70b3004J
http://dx.doi.org/10.1016/0927-6505(95)00016-A
http://adsabs.harvard.edu/cgi-bin/bib_query?1995APh.....3..377J
http://adsabs.harvard.edu/cgi-bin/bib_query?1995APh.....3..377J
http://dx.doi.org/10.1051/0004-6361:20010012
http://adsabs.harvard.edu/cgi-bin/bib_query?2001A&A...368..527J
http://adsabs.harvard.edu/cgi-bin/bib_query?2001A&A...368..527J
http://dx.doi.org/10.1086/499202
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...639..382L
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...639..382L
http://dx.doi.org/10.1103/PhysRevD.52.1276
http://adsabs.harvard.edu/cgi-bin/bib_query?1995PhRvD..52.1276L
http://adsabs.harvard.edu/cgi-bin/bib_query?1995PhRvD..52.1276L
http://dx.doi.org/10.1103/PhysRevD.50.6100
http://adsabs.harvard.edu/cgi-bin/bib_query?1994PhRvD..50.6100L
http://adsabs.harvard.edu/cgi-bin/bib_query?1994PhRvD..50.6100L
http://dx.doi.org/10.1103/PhysRevD.46.3290
http://adsabs.harvard.edu/cgi-bin/bib_query?1992PhRvD..46.3290M
http://adsabs.harvard.edu/cgi-bin/bib_query?1992PhRvD..46.3290M
http://adsabs.harvard.edu/cgi-bin/bib_query?2007AIPC..937..134M
http://dx.doi.org/10.1086/309877
http://adsabs.harvard.edu/cgi-bin/bib_query?1996ApJ...456L.107M
http://adsabs.harvard.edu/cgi-bin/bib_query?1996ApJ...456L.107M
http://dx.doi.org/10.1086/157181
http://adsabs.harvard.edu/cgi-bin/bib_query?1979ApJ...231..201M
http://adsabs.harvard.edu/cgi-bin/bib_query?1979ApJ...231..201M
http://dx.doi.org/10.1143/PTP.83.499
http://adsabs.harvard.edu/cgi-bin/bib_query?1990PThPh..83..499M
http://adsabs.harvard.edu/cgi-bin/bib_query?1990PThPh..83..499M
http://adsabs.harvard.edu/cgi-bin/bib_query?1997AuJPh..50...13M
http://adsabs.harvard.edu/cgi-bin/bib_query?1997AuJPh..50...13M
http://dx.doi.org/10.1103/PhysRevD.61.063001
http://adsabs.harvard.edu/cgi-bin/bib_query?2000PhRvD..61f3001M
http://adsabs.harvard.edu/cgi-bin/bib_query?2000PhRvD..61f3001M
http://dx.doi.org/10.1103/PhysRevD.61.083002
http://adsabs.harvard.edu/cgi-bin/bib_query?2000PhRvD..61h3002M
http://adsabs.harvard.edu/cgi-bin/bib_query?2000PhRvD..61h3002M
http://dx.doi.org/10.1016/S0927-6505(02)00197-4
http://adsabs.harvard.edu/cgi-bin/bib_query?2003APh....19..171N
http://adsabs.harvard.edu/cgi-bin/bib_query?2003APh....19..171N
http://dx.doi.org/10.1103/PhysRevC.65.045805
http://adsabs.harvard.edu/cgi-bin/bib_query?2002PhRvC..65d5805N
http://adsabs.harvard.edu/cgi-bin/bib_query?2002PhRvC..65d5805N
http://dx.doi.org/10.1016/0370-2693(87)91144-0
http://adsabs.harvard.edu/cgi-bin/bib_query?1987PhLB..192...71O
http://adsabs.harvard.edu/cgi-bin/bib_query?1987PhLB..192...71O
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.362L...4P
http://adsabs.harvard.edu/cgi-bin/bib_query?2005MNRAS.362L...4P
http://dx.doi.org/10.1103/PhysRevLett.89.131101
http://adsabs.harvard.edu/cgi-bin/bib_query?2002PhRvL..89m1101P
http://adsabs.harvard.edu/cgi-bin/bib_query?2002PhRvL..89m1101P
http://dx.doi.org/10.1086/421701
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...610..275P
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...610..275P
http://dx.doi.org/10.1086/175840
http://adsabs.harvard.edu/cgi-bin/bib_query?1995ApJ...446..832P
http://adsabs.harvard.edu/cgi-bin/bib_query?1995ApJ...446..832P
http://dx.doi.org/10.1103/PhysRevLett.86.3492
http://adsabs.harvard.edu/cgi-bin/bib_query?2001PhRvL..86.3492R
http://adsabs.harvard.edu/cgi-bin/bib_query?2001PhRvL..86.3492R
http://dx.doi.org/10.1016/0370-2693(82)90831-0
http://adsabs.harvard.edu/cgi-bin/bib_query?1982PhLB..113..245S
http://adsabs.harvard.edu/cgi-bin/bib_query?1982PhLB..113..245S
http://dx.doi.org/10.1103/PhysRevD.39.3804
http://adsabs.harvard.edu/cgi-bin/bib_query?1989PhRvD..39.3804S
http://adsabs.harvard.edu/cgi-bin/bib_query?1989PhRvD..39.3804S
http://dx.doi.org/10.1016/S0375-9474(98)00236-X
http://dx.doi.org/10.1134/1.1896069
http://adsabs.harvard.edu/cgi-bin/bib_query?2005AstL...31..258S
http://adsabs.harvard.edu/cgi-bin/bib_query?2005AstL...31..258S
http://dx.doi.org/10.1016/0370-2693(95)00923-9
http://adsabs.harvard.edu/cgi-bin/bib_query?1995PhLB..358..139S
http://adsabs.harvard.edu/cgi-bin/bib_query?1995PhLB..358..139S
http://dx.doi.org/10.1086/374977
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...590..386S
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...590..386S
http://dx.doi.org/10.1086/166928
http://adsabs.harvard.edu/cgi-bin/bib_query?1988ApJ...335..301T
http://adsabs.harvard.edu/cgi-bin/bib_query?1988ApJ...335..301T
http://dx.doi.org/10.1016/0370-2693(85)91346-2
http://adsabs.harvard.edu/cgi-bin/bib_query?1985PhLB..156...17T
http://adsabs.harvard.edu/cgi-bin/bib_query?1985PhLB..156...17T
http://dx.doi.org/10.1143/PTP.46.114
http://adsabs.harvard.edu/cgi-bin/bib_query?1971PThPh..46..114T
http://adsabs.harvard.edu/cgi-bin/bib_query?1971PThPh..46..114T
http://dx.doi.org/10.1016/S0370-1573(97)00041-0
http://dx.doi.org/10.1103/PhysRevLett.80.230
http://dx.doi.org/10.1103/PhysRevLett.81.4775
http://dx.doi.org/10.1086/319639
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...550L.179U
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...550L.179U
http://adsabs.harvard.edu/cgi-bin/bib_query?2007AIPC..937...25U
http://dx.doi.org/10.1088/0954-3899/31/6/079
http://adsabs.harvard.edu/cgi-bin/bib_query?2005JPhG...31.1165V
http://adsabs.harvard.edu/cgi-bin/bib_query?2005JPhG...31.1165V
http://dx.doi.org/10.1103/PhysRevC.76.065802
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvC..76f5802W
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvC..76f5802W
http://dx.doi.org/10.1016/0370-2693(84)91640-X
http://adsabs.harvard.edu/cgi-bin/bib_query?1984PhLB..148..211W
http://adsabs.harvard.edu/cgi-bin/bib_query?1984PhLB..148..211W
http://dx.doi.org/10.1111/j.1365-2966.2007.11904.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.379L..63W
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.379L..63W
http://dx.doi.org/10.1016/0370-1573(88)90036-1
http://adsabs.harvard.edu/cgi-bin/bib_query?1988PhR...163...63W
http://adsabs.harvard.edu/cgi-bin/bib_query?1988PhR...163...63W
http://dx.doi.org/10.1103/PhysRevD.30.272
http://adsabs.harvard.edu/cgi-bin/bib_query?1984PhRvD..30..272W
http://adsabs.harvard.edu/cgi-bin/bib_query?1984PhRvD..30..272W
http://dx.doi.org/10.1051/0004-6361:20030829
http://adsabs.harvard.edu/cgi-bin/bib_query?2003A&A...407..259Y
http://adsabs.harvard.edu/cgi-bin/bib_query?2003A&A...407..259Y
http://dx.doi.org/10.1146/annurev.astro.42.053102.134013
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ARA&A..42..169Y
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ARA&A..42..169Y
http://dx.doi.org/10.1103/PhysRevD.76.083007
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvD..76h3007Y
http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhRvD..76h3007Y
http://dx.doi.org/10.1051/0004-6361:20054260
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...450..747Z
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...450..747Z
http://dx.doi.org/10.1051/0004-6361:20010510
http://adsabs.harvard.edu/cgi-bin/bib_query?2001A&A...372..535Z
http://adsabs.harvard.edu/cgi-bin/bib_query?2001A&A...372..535Z

	1. INTRODUCTION
	2. PHASE TRANSITIONS IN HIGH-DENSITY NEUTRON MATTER
	2.1. Meson Condensation
	2.2. Quark Deconfinement

	3. NEUTRINO EMISSION FROM A PHASE-INDUCED COLLAPSE NEUTRON STAR
	3.1. Description of the Numerical Code
	3.2. Neutrino Luminosity
	3.3. Damping of the Oscillation

	4. COOLING OF QUARK STARS AND NEUTRON STARS
	4.1. Energy Dissipation Mechanisms for Strange Stars
	4.2. Cooling of Strange Stars
	4.3. Neutron Star Cooling Process

	5. DISCUSSIONS AND FINAL REMARKS
	REFERENCES

