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Abstract

To predict the ordering probabilities of multi-entry competitions

(e.g. horse-races), Harville (973) proposed a simple; way of

computing the ordering probabilities based on the simple. winning

probabilities. This simple model essentially assumes the underlying

model (e.g. running time in horse-racing) is independent exponential.

Henery (1980 and Stern (1990) respectively proposed to use normal

and gamma distributions for the running time. However. both the

Henery and Stern model are too complicated to use in practice.

Bacon-Shone, La & Busche (t992,b) have shown that the Henery model

fits better in horse-racing using particular data sets. In this

paper. we propose to use a simple way of computing ordering

probabilities which approximate both the Henery and Stern model quite

well. Using Hong Kong. U.S. and Japanese data. a large scale

empirical investigation is undertaken.
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1. Introduction

In multi-entry competitions. Harville (973) proposed to use the

following formula to compute the ordering probabilities

n •
I)

n n
1 J

) - n
1

(l)

where 1t = PO wins and j finishes second). and
I)

1t = PO wins).
1

In horse-racing, i and

estimated by the

j are two horses. and the value of n
I

win- bet fraction (see Ali (977), Snyder

can be

09781.
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Busche &. Hall (1988) and Bacon-Shone, La &. Busche (I992,a) for

details of using the win bet fractions). Similarly for more

complicated ordering probabilities.

This simple formula Ol is implied by the assumption of

independent exponential distributions for running times with

different parameters for each horse in each race (Dansie (1983».

Henery (l9SIl proposed assuming independent normal distribution for

the running times (hereafter called the Henery model). However.

numerical integration or an approximation method has to -be used.

Similarly, Stern (1990) proposed to use gamma distribution with fixed

integral shape parameter T. Similar to the Henery model. we have to

find the parameters using the win bet fractions by solving a

complicated set of nonlinear equations. For descriptions of the three

models, see Bacon-Shone, Lo &: Busche (l992,b). Bacon-Shone, Lo &:

Busche U992,b) reported many empirical analyses of different

complicated bets. Our conclusion is that using the information from

win bet fractions alone, for the analyses of exacta bet Un

Meadowlands), trifecta bet (in Meadowlands and Hong Kong) and

quinella bet Un Hong Kong), the Henery model was found to be better

than the others in predicting the relevant ordering probabilities for

those bets according to a likelihood approach. The results are

confirmed by Cox's test (Cox(l962)). For details, see Bacon-Shone, Lo

&: Busche U992,b).

In this paper, we consider a simple approximation to the Henery

model in section II and extend the approximation to the Stern model

in section III. Conclusion will be given in section IV.

II. A simple approximation of the Henery model

For the Henery model, computation of 1l is not simple because
IJ

it involves integrations and approximations. We now propose a simple

way based on the fact that a function of the ordering probabilities

is close to a constant.

Define:

A
Hen =

IJI

A A
In (rr /rr )

I j 11

A AIn(n /1l)
J I

2

(2)



II

can

for

theterm for any combination of. i.j.l in all
H••

very close to a constant (say. A )
A

different races. Thus, based on (21. 'It I j

be estimated directly instead of using numerical integrations by

We can compute' this

races. This A
Hen

is
1]1

different i,j,l and in

A ;\Hen
n

A A J
n = n

IJ I A ;tHen
E n, ,

AWe may take Ttl as the win bet fraction.

Consider the following two models:

logit 1t IJ I
= ~ logit P I

Harv j I
(win bet)

j;ti

(3)

1ogi t n j II
• AHen

=~ lOgltTrI
Hen .jl (4)

h
"Hen "Hen / AHen

werenl=n nJ I i J I

AHen •and 'It are obtained by the Henery model using win bets,
I J

AHen li AHen
'It == 'It •

I r I II'
n I = P(horse j finishes second I horse i wins),

J I
P I = p / (l-P) based on the Harville model,

J I j I

P = Win bet fraction of horse i.
I

Empirical results for the models in (3) and (4) were reported in
H••

Bacon-Shone, La & Busche (I992,b). We may estimate the constant A

by ~ / ~ using maximum likelihood because :
Harv Hen

If (3) and (4) are true,

~ / ~ = logit ~ I / logit P
J IIHarv Hen J I

A A In{ji lj
A )

In(nJII/nl~
/ n

II for any 1
= =

In(P I / PI) 1n{P j / PI)
j I I 1

In{ji /
A )n

I J II A
Hen

= =
A / ~ I )

I J I
1n (-rr

J

]t can be found in the Hong Kong and Meadowlands data sets that

3



the I\Hen is close to i\Hen = 0.76 which is itself close to the value
1 ) 1

of n / n obtained by maximum likelihood method.
Harv Hen

Some summary values of A
Hen in Hong Kong, Meadowlands and Japan are
1) l

shown in Table 1.
Table 1

summary va lues of A
Hen

1 ) 1

Racet rack mean standard dev i ation

Hong Kong (89) 0.76694

Meadowlands 0.75609

Japan 0 . 77929

0.023841

0.021646

0.033924

(Note In the above table, I,J are horses finishIng first and

second, respectively. Horse I [:;I':I,j) varies.)

Further, similar observation can be found for "'to where

A A
In(n /n )

I J k IJIH,", =
I J k I

Again, from our data.

A A
·In(n /n )

k 1

we observe

(5)

that this -cHen is estimated to be

areH,",
I Jklparameters similar to the above. The summary values of

shown in Table 2.

0.62 by using a ratio of maximum likelihood estimators of two

Table 2

summary values of H,",
I) I

Racetrack mean standard dev i ation

Hong Kong (89) 0.65182

Meadowlands 0.63932

Japan 0 . 66051

0.034036

0.042666

0.038304

On the above table, I,J and k are horses finishing first, second and

third. respectively. Horse I ['l"'I,J,kl varies.)

Although the mean of "'tHen is close to 0.64 or 0.65 in the above
I) I

table, using 0.62 does not make much difference. This can be seen by

comparing the use of 0.62 and 0.65 as shown in Table 3. In this

table, i\Hen is fixed at 0.76 and the following model is used

(hereafter called the "discount model") :
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A ;XHen Hon
A .,

R R
A A J k
R = R (6)

IJk I A ;XHen H.n
A .,

s~ ills t~iJllt

We can see that; there is not a big difference in the log likelihood

values when 'tHen is set to 0.62 and 0.65.

Table 3
H.n

Empirical comparisons for 't = 0.65 & 0.62

Racetracks

Hong Kong

Meadowlands

H.n t [I).,
0.65 -700.20

0.62 -699.68

0.65 -10667.47

0.62 -10667.80

• Hen Hen
To understand the effect of race Size on A and 't • we can

compute the summary values for different race sizes. This is shown in

the following tables.

Table 4 (a)

H.n H.n for different race sizes
Summary values of A and 't

in Hong Kong (89)

;XHen
H.n.,

race size no.of races mean s. d. mean s.d.

4 4 .66849 .040495 .51855 .012520

5 6 .69144 .036893 .55803 .020846

6 20 .72090 .021310 .58774 .016298

7 30 .74073 .020627 .61269 .018581

8 78 .75068 .019147 .625 [ 1 .021593

9 54 .76[99 .016006 .63991 .022372

[0 88 .76540 .015475 .65 I 87 .024506

11 28 .77256 .017335 .65686 .023 [66

[2 42 .77764 .014179 .66479 .026024

13 28 .78205 .017591 .67245 .026179

14 43 .78585 .017244 .67855 .033779
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Table 4 (b)

Summary values of ?tHen and THen for different race sizes

in Meadowlands

?tHen "<0,
race size no.of races mean s. d. mean s.d.

6 10 .70887 .029418 .58 171 .021856

7 16 .72 873 .025289 .60771 .023279

8 59 .74547 .022320 .62140 .025569

9 119 .75221 .020[52 .63577 .028272

10 275 .76051 .018940 .64514 .030223

11 20 .7588[ .018647 .62615 .134344

12 1 [ .75728 .031161 .66438 .032847

Table '4 (c)

Hen Hen . sizesSummary values of?t and"t' for different race

in Japan

?t Hen ",n,
race size no.of races mean s. d. mean s.d.

5 16 .71797 .018695 .560[2 .016663

6 48 .73225 .025915 .58574 .020141

7 78 .74290 .027168 .60243 .025457

8 148 .75414 .028855 .62272 .024623

9 [86 .76282 .030605 .63234 .027260

10 2[3 .76952 .030276 .64505 .029224

11 181 .77911 .029083 .65454 .028384

12 221 .77880 .031315 .66154 .029983

13 102 .78498 .030542 .66749 .030749

14 109 .78867 .026733 .67742 .029808

15 66 .79424 .028137 .68049 .035557

16 188 .79718 .031614 .68721 .032792

17 5 .82112 .0302 [3 .68467 .032733

18 22 .79706 .035295 .69389 .033436
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From the above tables, we see that XHen and 'tHen have an increasing

trend as the race size n increases but the values do not vary a lot.

Simulation results

We will present some simulation results to support our idea of

;\Hen ~ 0.76.

lid

Assume that, for each race, a - N(ll ,0' ) for i=I.2•...•0. where
, 0 0

/lo is an arbitrary constant (since ordering probabilities depend on

the difference between 8
1
's only) and lT~ is a prespecified value. The

value cr can be interpreted as a measure of dispersion of the mean
o

running times of the horses in the same race. In other words, it

measures the variation of abilities (or winning probabilities) of the

horses in the race. Based on this assumption, we can use Monte Carlo

( ) T Hen.()simulation of 8 = 8 •...•8 and then compute;\ uSing 3.
, n

We have set n = 10 for our simulation purpose as the average

number of horses in both of our data sets are about 10. We try

different cr to observe its influence on the i\Hen. Fifty races are
a i J I

simulated for each cro. For each race, we have fixed two horses for i

& j but I is varying over the other horses and thus. we have eight

i\Hen 's for each race. Therefore. there are 50x8 = 400 ;\Hen 's for
I J I I jI

each simulation. The simulation results are shown in Table 5.

Table 5

Simulations of ;\Hen for n=10 and 50 races
, J k

0'0

0.2

0.4

0.6

1.0

1.5

f
... Henmean 0 1\

0.7697

0.7666

0.7571

0.7513

0.7319

d of
... Hens.. 1\

0.00913

0.02477

0.03806

0.05679

0.09233

From Table 5. we observe that the mean value of ;\Hen is close

to 0.76 for all cr values though the standard deviation depends on
o

(ro· This means the the accuracy of our discount model depends on cro.
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Large (1" may affect our approximation of II . Simulation results for
o U

other extreme values of n are shown in Table 6 and 7. Though the mean

values deviate from 0.76 a little, the differences are quite small

and thus using 0.76 should not have any serious adverse effect on the

estimation of 1r
U

·

Table 6

Simulations of ,\He n for n=7 and 50 races
1 ) k

" mean of AHen s.d. of AHen
0

0.2 0.7475 0.00969

0.4 0.7400 0.02292

0.6 0.7437 0.0340 [

1.0 0.7486 0.04834

1.5 0.7467 0.09244

Table 7

Simulations of ,\Hen for n=14 and 50
1 J k

races

" mean of AHen s.d. of A
Hen

0

0.2 0.7865 0.01972

0.4 0.79[2 0.02625

0.6 0.7881 0.03918

1.0 0.7738 0.05914

1.5 0.7774 0.09160

Empirical analysis using the discount model

In this section, we will use fixed A and T to compare with different

models. Some empirical results are shown in Table 8.

8
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Table 8

Comparison among different models in

different bet types

Model s log I i k Mode 1s loglik

Exacta 510 races Quinella 41 S3 races
(Me adowl a nds) (Hong Kong)

Harville -1875.77 Harville -13619.28

Henery -1859.63 Henery -13589.55

d i seount -1859.25 discount -13586.95

Trif'ecta 120 rae es Trifecta 1809 races
(Meadowlands) (Hong Kong)

Harvi lIe -711.50 Harville -10747.98

Henery -699.83 Henery -10667.25

d i seount -699.68 discount -10667.80

From Table 8, it is clear that the accuracy (measured by the log

likelihoods) of the discount model is close to that of the Henery

model.

Comparison of probability estimations using a closeness measure

In this subsection, we aim at comparing the closeness of probability

estimations produced by different models by assuming the Henery model

is correct. That is, we want to show that our discount model is a

relatively close to the Henery model. We apply the following

well-known closeness measure for our comparison purpose.
A
rr

I(;i n·) = EE ;ill In(~)

rr I)

A
where 11 is the exacta probability (Le. PO wins and j finishes

I) •

second) ) produced by the Henery model. and nil is the associated

probability produced by other model. This is called the

Kullback-Leibler quantity of information (hereafter called the KL

information quantity) which has the following properties :

9



I(~ •(i) ;1l ) • 0,

A • A •
Ui) I(n ;1l ) = 0 iff n = n U.j = 1•...•n)

IJ IJ

(see Sakamoto. Ishiguro 8< Kitagawa (1986)

We adopt the above quantity to compare

distributions. Namely. the .smaller the value

for details)

the closeness of two
A •

of I(n ;n ). the closer

;

•we consider the model for 1t" IJ to the Henery model. Other

approximations to the Henery model are also considered for comparison

purposes. Application of the Henery model involves two stages :

(i) Compute a based on the win bet fractions,

Ui) Compute more complicated probabilities based on the 8 obtained

in m.
Here. we include both first and second order Taylor series

approximations in both stages for comparisons. The first order Taylor

series approximation is due to Henery (1981). The second order Taylor

series approximation formula is developed by the first author and is

available upon request. The result of comparisons for exacta

probability in Meadowlands {SIO races) is shown in the following

table.
Table 9

Comparisons using KL informat i on quantity

Model average KL s. d. of KL

0) 1 s t or del' Taylor ser i e s for a (Henery)

aJ 1 s t order for n 0.013105
I J

bJ 2n d order for n 0.014162
I J

cJ Numer i cal integration for n 0.0022[1
I J

(iil 2nd order Taylor ser i es for a (Henery)

0.011199

0.0[5216

0.003137

a) 2nd order for 1t"
I J

b) Numer ical integration for 1t"1

(iii) Fixed A

(iv) Harvi lIe

10

0.000415

0.000723

0.000339

0.019989

0.000601

0.000679

0.000262

0.008370



]n the above table, inclusion of the Harville model is to show

the relative large difference between the Harville and the Henery

models. Each result is a comparison between the stated model with the

exact Henery model. The exact Henery model is based on a numerical

method for computing a and numerical integration for 1t • We can see
- ij

that the discount model is closest to the Henery model. Besides,

Uil a) is quite good but that still involves a lot of computation

time when compared to the discount model. Hence, the discount model

is very close to the exact Henery model and very convenient to use in

practice.

III. Approximation to a more general model

In this section, we discuss the approximation to a more general

model - the Stern model (Stern(l990)) which assumes that the running

times follow the Gamma distribution with a fixed shape parameter, r.

It is more general in the sense that when the shape parameter r=l, it

reduces to the Harville model; when r=oo, it becomes the Henery model.

Maximum likelihood estimation of r in Japan will also be reported. By

using a likelihood-based argument, we will show that Stern's Gamma

model with maximum likelihood estimate of r is better than both the

Harville (r=l) and Henery (r=oo) models in Japan. Since predicting

complicated probabilities under the Stern model is computationally

intensive, we will propose a simple approximation and give numerical

evidence.

Fitting the Stern model

Stern's Gamma model (Stern (1990)) is motivated by considering a

competition in which n players, scoring points according to

independent Poisson processes, are ranked according to the time until

r points are scored. Thus r should be an integer under this

assumption. Whether this assumption is reasonable or not when applied

to horse-racing problem is an open question. But we can consider it

as an alternative model to the Harville and Henery models. Let the

running time of horse i, T - Gamma(r,a) independently or;
I I

11
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g(tle)=
, I I

1 r r-l
"""r) e t exp(-e t)
I \r J 1 I I 1

,., ,

where r is predetermined and a can be estimated from 'If (or the bet
I I

fraction, P).
I

We may try to estimate this r by comparing the log likelihood

- E In Jll123U' where [lZ3]l denotes the 3 top horses in race 1.
I

with different values of r. The result for Japanese data is shown in

Table 10. The computations are done by using Gauss-Laguerre

integration for the Stern model and Gauss-Hermitian integration for

the Henery model (i.e. r=oo). For the Stern model, we need to find 9

first by solving the following equation:

where G (t Ie ), , ,
with g(t Ie)., , .

TI(I-G It Ie)] g (t Ie) dt
sitl r 1 sri I .1

is the cumulative distribution function associated

Table 10

Log likelihood values under the Stern model

for Japanese data

r log likeli hood

I (Le. Harvi lIe) -8977.57

2 -8954.57

3 -8950.60

4 -8950.35

5 -8950.94

6 -8951.82

7 -8952.65

8 -8953.44

~ (Le. Henery) -8986.88

From the above table. the log likelihood is maximized when r=4

Thus the Gamma distribution with r=4 is a better distributional

assumption of running time in Japan. We may also fit the Stern model

in Hong Kong and Meadowlands and the results are shown in Table 11

and 12 respectively.

12
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Table 11

Log likelihood values under the Stern model

for Hong Kong (89) data

r log 1 ikelihood

1 -2523.37

10 -2504.55

20 -2503.58

30 -2503.44

40 -2503.72

m (Henery) -2502.74

Tabl e 12

Log 1ike 1 ihood val u e s under the Stern model

for Meadowlands data

,

r

I

10

20

30

40

0) (Henery)

log likelihood

-2845.93

-2800.87

-2798.02

-2796.90

-2795.78

-2792.94

We can see that r=co (i.e. the Henery model) appears to be the best in

both data sets.

The discount method proposed in section II is simple enough to

apply the Henery model in practice. In this section, we will extend

the idea -ror the Stern model. We define:

In(n:(r)/ n(d)

;;' I J II

IJI In(n /n )
. J I (7)

Io(n I" / n(~», IJk IJI
T

IJkl In(n he )
k I

where nlr) is P(horse i wins and horse j finishes 2nd) under the
IJ

13
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Pi'S ; i\rand 'trean

a large number of

'clStern model witli.! snape parameter r. Similarly for 1l ". -If we can
I Jk

assume that the above two values are close to two constants, denoted

by i\r and T
r respectively, the model for approximation of the Stern

model is :

"
,,

n n
'cl J k

n = n (8)'lk I

"
,

s~l 11:$ t~1 j n t

,

where 1[1's are estimated by the win bet fraction

be estimated by the mean of 7\r and '["r based on
lJl iJkl

races or by the ratio of maximum likelihood estimators. Here, we

choose the first method because the second one requires to compute

1i(rl for all combinations and for each race. We have large number of
I Jk

races in Japan and r is varying and thus, the second method will be

,.". ' ..

too tedious.

The summary values of Arand ./ based on 1583 races in Japan are

shown in Table 13.

Table 13

Summary values of Ar- and
,, ,

"
,

r ,
mean s.d. mean s. d.

2 0.9336 0.01346 0.8920 0.02685

3 0.9021 0.01683 0.8423 0.02495

4 0.8836 0.01859 0.8 140 0.02663

5 0.8712 0.01976 0.7953 0.02778

6 0.8623 0.02064 0.7819 0.02859

7 0.8555 0.02135 0.7717 0.02919

8 0.8500 0.02193 0.7636 0.02967

Note In thIs table, w, have "t 1,1,k equal to th, hor-ses

flnlshlng In th, top thr-ee positions In each race end
"

varying

"
,

roc ond ,
, J , 11k I

From the above table, the standard deviations are quite small,

in general. Hence, we expect the mean values are good approximations

14
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to the i\r and -rr for different combinations of horses,.,in
i J I I Jk I

different races. The relation between (i\r,-rr) may be approximated as

11 co co
where i\ = -r = I, i\ = 0.76 and -r = 0.62.

We also compute the summary statistics of KL information

quantities for different r to compare the true 1t (obtained by
I J

numerical integration) with the above discount model (using the

values in Table 13) in the following table. Also, the KL information

quantities for comparing the true 1t IJ with those predicted by the

Harville model is treated as a control for comparison.

Table 14

Comparison between the discount model and the Harville model

using KL information quantity (500 races)

Discount Harvill e

r Ave. KL sd. KL Ave. KL sd. KL

2 .000286 .000520 .002098 .001078

3 .000085 .000097 .003961 .001534

4 .000124 .000090 .005670 .002129

5 .000142 .000105 .006983 .002594

6 .000155 .000117 .008046 .002985

7 .000166 .000128 .0089 I 2 .003286

8 .000176 .000136 .009651 .003557

Clearly, by comparing the KL information quantities above, our

discount model is much more accurate than the naive Harville model

for predicting the complicated probabilities based on the Stern

model.

Moreover, we compare the log likelihood values of Stern models

using numerical integrations (i.e. from Table 10) with our discount

model for

chosen i\co

predicting n in the
Ijk

Hen co= i\ = 0.76 and -r

following table. Note that we have
Hon= "t' = 0.62. We observe that the

log likelihood values based on two methods do not have big

differences.

15



,-' " ..-,~ Tab I e 15

Comparisons of log likelihood values for Japanese data

numer i ca I
r integrations Discount

1 (Harvi lIe) -8977.57 8977.57

2 -8954.57 8956.22

3 -8950.60 8952.38

4 -8950.35 8952.00

5 -8950.94 8952.50

6 -8951.82 8953.23

7 -8952.65 8954.00

8 -8953.44 8954.75

00 ( Henery) -8986.88 8986.45

IV. Conclusion

We have proposed to use the discount model in (8) with different

values of (i{,L'r) for different r. This model has been shown to

provide good approximations to both the Henery and Stern model. It

also includes the Harville model (r=I). To apply the model in

practice (e.g. betting), we suggest to collect relevant data and find

out what value of r is most appropriate and then apply (8) using

appropriate parameter values. The effect of this improved probability

estimation on betting strategy (e.g. the Dr.Z system proposed by

Hausch, Ziemba & Rubinstein (981)) is usually to improve the

strategy. This is investigated in Lo & Bacon-Shone (1992).
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