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Abstract

To predict the ordering probabilities of multi-entry competitions
(e.g. horse-races), Harville (1973) proposed a simple ,way of
computing the ordering probabilities based on the simple winning
probabilities. This simple model essentially assumes the underlying
model {e.g. running time in horse-racing) is independent exponential.
Henery (1981) and Stern (1990) respectively proposed to use normal
and gamma distributions for the running time. However, both the
Henery and Stern model are too complicated to use in practice.
Bacon-Shone, Lo & Busche {1992,b) have shown that the Henery model
fits better in horse-racing using particular data sets. In this
paper, we propose to use a simple way of computing ordering
probabilities which approximate both the Henery and Stern meodel quite
well. Using Hong Kong, U.5. and Japanese data, a large scale

empirical investigation is undertaken.

Keywords : Ordering probabilities; Horse-races; Running time

distributions

I. Introduction

In multi-entry competitions, Harville (1973) proposed to use the

following formula to compute the ordering probabilities :

rrlnj 1)

where niJ = P(i wins and j finishes second), and

n o= P(i wins).
In horse-racing, i and j are two horses, and the value of n can be

estimated by the win bet fraction (see Ali (1977), Snyder (1978),




Busche & Hall (1988) and Bacon-Shone, Lo & Busche (1992,a) for

details of using the win bet fractions). Similarly for more
complicated ordering probabilities.

This simple formula {1} is implied by the assumption of
independent exponential distributions for running times with
dif ferent parameters for each horse in each race (Dansie (1983)).
Henery (1981) proposed assuming independent normal distribution for
the running times (hereafter called the Henery model). However,
numerical integration or an approximation method has to -be used.
Similarly, Stern (1990) proposed to use gamma distribution with fixed
integral shape parameter r. Similar to the Henery model, we have to
find the parameters using the win bet fractions by solving a
complicated set of nonlinear equations. For descriptions of the three
models, see Bacon-Shone, Lo & Busche (1992,b). Bacon-Shone, Lo &
Busche {1992,b) reported many empirical analyses of different
complicated bets. Qur conclusion is that using the information from
win bet fractions alone, for the analyses of exacta bet (in
Meadowlands]. trifecta bet (in Meadowlands and Hong Kong) and
quinella bet (in Hong Kong), the Henery model was found to be better
than the others in predicting the relevant ordering probabilities for
those bets according to a likelihood approach. The results are
confirmed by Cox’s test (Cox(1962}). For details, see Bacon-Shone, Lo
& Busche (1992,b).

In this paper, we consider a simple approximation to the Henery
model in section 11 and extend the approximation to the Stern model

in section III. Conclusion will be given in section IV.

II. A simple approximation of the Henery model

For the Henery model, computation of nu is not simple because
it involves integrations and approximations. We now propose a simple
way based on the fact that a function of the ordering probabilities
is close to a constant.

Define : A A
Hen ln(rr1 /n“)
Ay nw F_KJT 2)
ln(nj/nl)



"

We can co'm;iute‘this term for any combination of.i,j,1 in all the
races. This A is very close to a constant (say, A" for
different i,j,1 and in different races. Thus, based on (2], %” can

be estimated directly instead of using numerical integrations by

=M

A . .
We may take n as the win bet fraction.

Consider the following two models :

logit L h = pHarvloglt lei (win bet) 3)

i

., AH
M, fogitm =

logit “Jll en . j\l (4)

AHen AHen AHen
where 7 =T VA i ..
il i} i j#i

and @ AH: are obtained by the Henery model using win bets,

AHen AHen
Eilr'

P(horse j finishes second | horse i wins),

Jll
JI‘ = P] / (l—P) based on the Harville model,
Pl Win bet fraction of horse i.

n

Empirical results for the models in (3) and (4) were reported in
Bacon-Shone, Lo & Busche (1992,b). We may estimate the constant AHe

by ﬁ / ﬁ using maximum likelihood because :
Harv Hen

If (3) and (4) are true,

LA .
u /uHen = logit n”l / logit P

Harv ]‘ i
In (R 1 %1‘1) In(R  / o)
= J = J for any 1
ln(PJ\‘/ Pl |l} ln(l:’j / Pl)

] 11
ln{n 7/

Hen
1j1

= A

m(%1 7R )
%)

1t can be found in the Hong Kong and Meadowlands data sets that



the PLI::T is close to hHen = 0.76 which is itself close to the value
of ﬁ / ﬁ obtained by maximum likelihood method.
Harv Hen

Some summary values of l}:j? in Hong Kong, Meadowlands and Japan are

shown in Table 1.
Table 1
Hen

Summary values of :\l )1

Racetrack mean standard deviation
Hong Kong (89) 0.76694 0.023841
Meadowlands 0.75609 0.021646
Japan 0.77929 0.033924
(Note : In the above table, 1,J are herses finishing first  and
second, respectlvely. Horse | (¥1,)) varies.)

Further, similar observation can be found for T, where

Hen

A A

In{fR /n
Lk

T -
1kl

111)
A LA
‘ln(nk/rtll

{5)

" . Hen . .
Again, from our data, we observe that this © " iz estimated to be

0.62 by using a ratio of maximum likelihood estimators of two

.k Hen
parameters similar to the above. The summary values of lekl are

shown in Table 2.

Table 2

Hen
Summary values of T

1]l

Racetrack mean standard deviation
Hong Kong (89) 0.65182 0.034036
Meadowlands 0.63932 0.042666
Japan 0 . 66051 0.038304

(In the above table, 1,} and k are horses finishlng flrst, second and

third, respectively. Horse L (¥1,}.k) varles.}

Although the mean of Tl:jrl‘ is close to 0.64 or 0.65 in the above
table, using 0.62 does not make much difference. This can be seen by
comparing the use of 0.62 and 0.65 as shown in Table 3. In this
table, A"" is fixed at 0.76 and the following model is used

(hereafter called the "discount model™) :




We can see that.there is no

values when -r:Hen iz set to 0.62 and 0.65.

Empirical comparisons for t

To understand the effect of race size on AHe

compute the summary values fo

AT
t§1j“t

Table 3

Hen

Hen

Racetracks T 1(1)

Hong Kong 0.65 -700.20
0.62 -699.68

Meadowlands 0.65 -10667.47
0.62 -10667.80

the following tables.

Summary values of At

Table 4 {a)

in Hong Kong (89)

n

(6)

Hen _ .65 & 0.62

t a big difference in the log likelihood

Hen
and T , we can

n Hen . .
and T for different race S1Zes

r different race sizes. This is shown in

Hen

Hen

race size no.of races mean ? s.d. mean s.d.
4 4 66849 .040495 51855 .012520
5 69144 .036893 55803 .020846
6 20 72090 .021310 58774 .016298
7 30 74073 .020627 61269 .018581
8 78 75068 .019147 62511 .021593
9 54 76199 .016006 63991 022372

10 88 76540 .015475 65187 .024506
11 28 71256 017335 65686 .023166
12 42 17764 014179 66479 .026024
13 28 78205 017591 67245 .026179
14 43 .T8585 017244 67855 .033779




Summary values of A" and 1" for different

Table 4 (b)

in Meadowlands

race sizes

3 Hen LHen
race size no.of races mean s.d. mean g.d.
6 10 70887 .029418 581171 .021856
7 16 .72873 .025289 60771 .023279
8 59 74547 .022320 62140 025569
9 119 715221 .020152 63577 028272
10 275 716051 .018940 64514 .030223
11 20 75881 .018647 62615 .134344
12 11 75728 .031161 66438 .032847
Table 4 (c)
Summary values of A" and <" for different race sizes
in Japan
yHen Hen
race size no.of races mean s.d. mean s.d.
5 16 LT1797 .018695 56012 .016663
6 48 .7T3225 025915 .58574 .020141
7 78 .74290 .027168 60243 .025457
8 148 .75414 .028855 62272 024623
9 186 .76282 .030605 .63234 .027260
10 213 .76952 .030276 64505 .029224
11 181 77911 .029083 65454 .028384
12 221 .7T7880 031315 66154 .029983
13 102 .78498 .030542 66749 030749
14 109 .78867 026733 67742 .029808
15 66 .79424 028137 68049 .035557
16 188 .79718 031614 68721 .032792
17 5 .82112 .030213 .68467 .032733
18 22 .79706 .035295 69389 .033436




H . .
From the above tables, we see that A " and 7"*" have an increasing

trend as the race size n increases but the values do not vary a lot.

Simulation results

We will present some simulation results to support our idea of

AT~ 0.76.

1id
Assume that, for each race, Gi ~ N(]J.U,O‘o) for i=l,2,...,n, where

M, is an arbitrary constant (since ordering probabilities depend on
the difference between Bi’s only) and 0‘5 is a prespecified value. The
value ¢, can be interpreted as a measure of dispersicn of the mean
running times of the horses in the same race. In other words, it
measures the variation of abilities (or winning probabilities) of the
horses in the race. Based on this assumption, we can use Monte Carlo
simulation of @ = (81,...,9n)T and then cempute aten using (3).

We have set n = 10 for our simulation purpose as the average
number of horses in both of our data sets are ahout 10. We try

dif ferent 0'0 to observe its influence on the '.\I::r:.

Fifty races are
simulated for each o‘o. For each race, we have fixed two horses for i
& j but 1 is varying over the other horses and thus, we have eight
h}::r; ’s for each race. Therefore, there are 50x8 = 400 RTT; !
each simulation. The simulation results are shown in Table S,

Table 5

s for

Simulations of ?«T:z for n=10 and S50 races

o mean of A"®" s.d. of A"
0.7697 0.00913
0.7666 0.02477
.6 0.7571 0.03806
1. 0.7513 0.05679
1.5 0.7319 0.09233

From Table 5, we observe that the mean value of A" is close
to 0.76 for all o, values though the standard deviation depends on

T This means the the accuracy of our discount model depends on e




Large e, may affect our approximation of HIJ' Simulation results for

other extreme values of n are shown in Table 6 and 7. Though the mean
values deviate from 0.76 a little, the differences are quite small
and thus using 0.76 should not have any serious adverse effect on the

estimation of 1t”.

Table 6

Hen

Simulations of h”k for n=7 and 50 races

T, mean of AH“ s.d. of AHen

0.2 0.7475 0.00969

0.4 0.7400 0.02292

0.6 0.7437 0.03401

1.0 0.7486 0.04834

1.5 0.7467 0.09244
Table 7

Hen

Simulations of A”k for n=14 and 50 races

a mean of ater s.d. of aten
0.2 0.7865 0.01972
0.7912 0.02625
0.6 0.7881 0.03918
1.0 0.7738 0.05914
1.5 0.7774 0.09160

Empirical analysis using the discount model

In this section, we will use fixed A and T to compare with different

models. Some empirical results are shown in Table &.



Table 8
Comparison among different models in

different het types

Models loglik Models loglik
Exacta : 510 races Quinella : 4153 races
(Meadowlands) {Hong Kong)

Harville -1875.77 Harville -1361%.

Henery -1859.63 Henery -13589.

d i scount -1859.25 discount -13586.
Trifecta : 120 races Trifecta : 1809-ralces
(Meadowlands) (Hong Kong)

Harville -711.50 Harville -10747.

Henery -699.83 Henery -10667.

discount -699.68 discount -10667.

From Table 8, it is clear that the accuracy {measured by the log
likelihoods) of the discount model is close to that of the Henery

model.

Comparison of probzability estimations using a closeness measure

In this subsection, we aim at comparing the closeness of probability
estimations produced by different models by assuming the Henery model
is correct. That is, we want to show that our discount model is a
relatively close to the Henery model. We apply the following

well-known closeness measure for our comparisoh purpose.
A

. n
I(ﬁ;g):ZEQUln( Uy

L

n
i

where %” is the exacta probability {i.e. P(i wins and j finishes
*

second)} ) produced by the Henery model, and 11” is the associated

probability produced by other model. This is called the

Kullback-Leibler quantity of information (hereafter called the KL

information quantity) which has the following properties :




0,

v

O IRy

1§

Gi) IR ;=) =0 iff & = u:] (i,j = 1,...,m)

1

(see Sakamoto, Ishiguro & Kitagawa (1986) for details)

We adopt the above quantity to compare the closeness of two
distributions. Namely, the .smaller the value of I(ﬁ ;E‘), the closer
we consider the model for n:j to the Henery model. Other
approximations to the Henery model are also considered for comparison
purposes. Application of the Henery mode} involves two stages :

(i) Compute & based on the win bet fractions,

(ii) Compute more complicated probabilities based on the 6 obtained
in (i).

Here, we include both first and second order Taylor series
approximations in both stages for comparisons. The first order Taylor
series approximation is due to Henery (1981). The second order Taylor
series approximation formula is developed by the first author and is
available upon request. The result of comparisons for exacta
probability in Meadowlands (510 races) is shown in the following

table.
Table 9

Comparisons using KL information quantity

Model average KL s.d. of KL

(i) 1st order Taylor series for 8 (Henery)

a) 1st order for T 0.013105 0.01175%9
b) 2nd order for nij 0.014162 0.015276
¢) Numerical integration for 1!” 0.002217 0.003137
(ii) 2nd order Taylor series for 8 (Henery)

a) 2nd order for n” 0.000415 0.000601

b) Numerical integration for LA 0.000723 0.000679
(iii} Fixed A 0.000339 0.000262
(iv) Harville 0.019989 0.008370

10




In the above table, inclusion of the Harville model is to show
the relative large difference between the Harville and the Henery
models. Each result is a comparison between the stated mode} with the
exact Henery model. The exact Henery ﬁmdel is based on a numerical
methed for computing e and numerical integration for nij. We can see
that the discount model is closest to the Henery model. Besides,
(ii) a) is quite .good but that still invelves a lot of computation
time when compared to the discount model. Hence, the discount model
is very close to the exact Henery model and very convenient to use in

practice.

III. Approximation to a more general model

In this section, we discuss the approximation to a more general
model - the Stern model (Stern(i990)) which assumes that the running
times follow the Gamma distribution with a fixed shape parameter, r.
It is more general in the sense that when the shape parameter r=i, it
reduces to the Harville model; when r=w, it becomes the Henery model.
Maximum likelihood estimation of r in Japan will also be reported. By
using a likelihood-based argument, we will show that Stern’s Gamma
model with maximum likelihood estimate of r is better than both the
Harville (r=1) and Henery (r=«) models in Japan. Since predicting
complicated probabilities under the Stern model is computationally
intensive, we will propose a simple approximation and give numerical

evidence.

Fitting the Stern model

Stern’s Gamma model (Stern (1990)) is motivated by considering a
competition in which n players, scoring points according to
independent Poisson processes, are ranked according to the time until
r points are scored. Thus r should be an integer under this
assumption. Whether this assumption is reasonable or not when applied
to horse-racing problem is an open question. But we can consider it
as an alternative model to the Harville and Henery models. Let the

running time of horse i, Ti~ Gamma(r,si) independently or,

11




LA -

1 r r—l
gr[tllel] = % exP[_eitl] t >0.

where r is predetermined and E)Il can be estimated from n (or the bet

fraction, Pl).

We may try to estimate this.r by comparing the log likelihood :

-y Inm where [123]1 denotes the 3 top horses in race |},
]

(1231’

with different values of r. The result for Japanese data is shown in
Table 10. The computations are done by using Gauss-Laguerre
‘integration for the Stern model and Gauss-Hermitian integration for
the Henery model (i.e. r=w). For the Stern model, we need to find @

first by solving the following equation :
ra}
Pl = JO sgill_Gr(tl Ies)] gr[tllgi]| di_;i

where Gr(ts|9 ) is the cumulative distribution function associated
]
with g (t |8) .
il B -
Table 10
Log likelihood values under the Stern model

for Japanese data

r log likelihood

e

(i.e. Harville) . —8977.57
-8954.57
-8350.60
-8950.35
-8950.94
-8951.82
~8952.65
-8953.44
w (i.e. Henery) -8986.88

0 ~1 ¢ h WN

From the above table, the log likelihood is maximized when r=4
Thus the Gamma distribution with r=4 is a better distributional
assumption of running time in Japan. We may also fit the Stern model
in Hong Kong and Meadowlands and the results are shown in Table 11

and 12 respectively.

12



Table 11
Log likelihood values under the Stern model

for Hong Kong (89) data

r log likelihood
1 -2523.37

10 -2504.55

20 -2503.58

30 ~2503.44

40 -2503.72

o (Henery) -2502.74

Table 12

Log likelihood values under the Stern model

for Meadowlands data

r log likelihood
1 -2845.93

10 -2800.87

20 . =2798.02

30 -2796.90

40 -2795.78

o (Henery) -2792.94

We can see that r=e (i.e. the Henery model) appears to be the best in
both data sets.

The discount method proposed in section Il is simple enough to
apply the Henery model in practice. In this section, we will extend

the idea for the Stern model. We define :

ln{n(r}/ T[(r})
AT o "1} il
1! In(x /rtl)
] )
In(n(” / n(r.))
L 1)k ij1
1l In{n /n )
K 1

where r{:;} is P(horse i wins and horse j finishes 2nd) under the

13



Stern model with’shape parameter r. Similarly for n:

r]-. If we can
Ik
assume that the above two values are close to two constants, denoted

by A" and ©° respectively, the model for approximation of the Stern

model is :

T r

- A - T

1r[{r} = 1 1 k

Lk i 5T r (8)

T

PR 2"

¥l % t¥1j t

where T[l's are estimated by the win bet fraction Pi’s ; A"and T can
be estimated by the mean of ATJl and 'l:’;jki based on a large number of
races or by the ratic of maximum likelihood estimators. Here, we

choose the first method because the second one requires to compute

Ar}

n '~ for all combinations and for each race. We have large number of

1)k

races in Japan and r is varying and thus, the second method will be

too tedious.

The summary values of A" and T’ based on 1583 races in Japan are

shown in Table 13.

Table 13

Summary values of A" and t¥

r A" "
mean s.d. mean s.d.
2 0.9336 0.01346 0.8920 0.02685
3 0.9021 0.01683 0.8423 0.02495
4 0.8836 0.01859 0.8140 0.02663
5 0.8712 0.01976 0.7953 0.02778
[ 0.8623 0.02064 0.7819 0.02859
7 0.8555 0.02135 0.7717 0.02919
8 0.8500 0.02193 0.7636 0.02967
( Note : In this table, we have set ILLk equal to the horses
finishing in  the top three positlons in each rTace and 1 s varying
for ?\:“ and r:Jkl.

From the above table, the standard deviations are quite small,

in general. Hence, we expect the mean values are good approximations

14
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. to the h:“ and T’ for different combinations of horses:.in

1)K
different races. The relation between (A",") may be approximated as

-~

AT =A%+ (Al- A%)/vr  and 2" (1:1-— IV
where A1= 'r1= i, A% = 0.76 and * = 0.62.

We also compute the summary statistics of KL information
quantities for different r to compare the true n” (obtained by
numerical integration) with the above discount model (using the
values in Table 13) in the following table. Also, the KL information
quantities for comparing the true nlj with those predicted by the

Harville model is treated as a control for comparison.

Table 14
Comparison between the discount model and the Harville model

using KL information quantity {500 races)

Discount Harville

r Ave. KL sd. KL Ave. KL sd. KL

2 000286 000520 .002098 .001078
3 .000085 .000097 .003961 .001534
4 000124 .000090 . 005670 .002129
5 000142 .000105 .006983 .002594
6 .000155 .000117 .008046 .002985
7 000166 .000128 .008912 .003286
8 .000176 000136 .009651 .003557

Clearly, by comparing the KL information quantities above, our
discount model is much more accurate than the naive Harville model
for predicting the complicated probabilities based on the Stern
model.

Moreover, we compare the log likelihood values of Stern models
using numerical integrations (i.e. from Table 10) with our discount
model for predicting “uk in the foliowing table. Note that we have
chosen A” = AMe"= 0.76 and 1T = «"*"= 0.62. We observe that the
log likelihood values based on two methods do not have big

dif ferences.

15
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Comparisons of log likelihood values for Japanese data

numerical

r integrations Discount
1 (Harville) ~8977.57 8977 .57
2 -8954.57 8956.22
3 -8950.60 8952.38
4 ~8950.35 8952.00
5 -8950.94 8952.50
6 ~8951.82 8953.23
7 -8952.63 8954.00
8 -8953.44 8954.75
= {Henery) -8986.88 8986 .45

IV. Conclusion

We have proposed to use the discount model in (8) with different
values of (Ar,tr] for different r. This model has been shown to
provide good approximations to both the Henery and Stern model. It
also includes the Harville model (r=1). To apply the model in
practice {e.g. betting), we suggest to collect relevant data and find
out what value of r is most appropriate and then apply (8) using
appropriate parameter values. The effect of this improved probability
estimation on betting strategy (e.g. the Dr.Z system proposed by
Hausch, Ziemba & Rubinstein (1981)) is wusually to improve the
strategy. This is investigated in Lo & Bacon-Shone (1992).
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