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Abstract— This paper proposes a prediction method 

for vehicle-to-pedestrian collision avoidance, which 

learns and then predicts pedestrian behaviors as their 

motion instances are being observed. During learning, 

known trajectories are clustered to form Motion 

Patterns (MP), which become knowledge a priori to a 

multi-level prediction model that predicts long-term or 

short-term pedestrian behaviors. Simulation results 

show that it works well in a complex structured 

environment and the prediction is consistent with 

actual behaviors. 

I. INTRODUCTION 

ehicle-to-pedestrian accidents are a major concern for 

road safety in general. Compared with vehicles, 

pedestrians are physically more vulnerable, and suffer 

higher risk of death per kilometer traveled [1]. For many 

years, the number of pedestrian accidents remains at a 

plateau and shows no signs of reduction. It is clearly 

desirable to bring this number down [2]. Obviously, if 

potential collisions can be predicted, some of the 

vehicle-to-pedestrian accidents may be avoided altogether. 

Thus, collision avoidance has been an important research 

area for reducing pedestrian fatalities. 

In a Dynamically Changing Environment (DCE) 

involving a vehicle and multiple pedestrians, the basic 

Collision Avoidance (CA) is to predict pedestrian behavior 

and decide a proper path for the vehicle itself. 

Conventionally, pedestrian behavior refers to pedestrian 

motion in the next time-step [3-8]. Techniques such as 

neural network [3], Markov models [4], Kalman filter [5, 6], 

and collision/velocity cones [7, 8] use current and historical 

motion data as their basis to predict motion in the next time 

step, which is short term and restrictive because they treat 

the CA problem locally and sub-optimally [9]. 

In order to perform CA more effectively, some 

researchers have recently attempted long-term behavior 

prediction for global CA [10, 11]. They predict over a 

number of future time-steps giving the vehicle a better 

chance of making the right action decision. Clearly, 

long-term behavior prediction is superior for avoiding 

collisions with globally optimal paths, but is naturally far 

more challenging. In [10], it treats the final destination 

point of the pedestrian’s movement as a long-term 

prediction goal, though this does not guarantee 

collision-free motion because there are many possible 

routes and motion patterns between each origin-destination 

pair. In [11], long-term prediction is made based on a set of 

trajectories between a number of resting places where 

people stop and stay. It requires the locations of these 

resting places be known a priori for the formation of 

Motion Patterns (MP) of the pedestrian. In more realistic 

DCE, prior knowledge of MP is usually not available. This 

generic scenario is what motivates our research. 

 In this paper, we propose a new prediction method that 

learns and predicts pedestrian behaviors as their motion 

instances are being observed. The observed trajectories (in 

terms of spatial location, velocity or heading angle) are 

clustered using the CGC algorithm [13] to form MP. For 

each clustered MP, it is evaluated for completeness against 

a criterion. They are then classified as complete MP 

(MP-C), which represents pattern that does not change 

much over time, or as incomplete MP (MP-I), which may 

be updated after subsequent prediction. Based on these MP, 

a multi-level prediction model is proposed. It consists of 

three levels of prediction in which the high and middle 

levels are both long-term predictions based on the MP-C 

and MP-I that predict future trajectories over a number of 

time-steps. The low level uses an AR model [14] to predict 

future trajectories over the next time step. The proposed 

method has been implemented and a number of simulation 

experiments have been conducted. The results show that it 

works well in a multiple pedestrian environment and the 

prediction is consistent with the actual behavior.  

The rest of this paper is organized as follows. In Section 

II, we present an overview of the proposed method and a 

description of its main functions. Section III depicts the 

simulation results produced by the proposed method. 

Section IV concludes the paper with a brief discussion of 

future research direction.  

II. PROPOSED METHOD 

A. Overview 

Our proposed method consists of four main functions: (1) 

Trajectory Formation; (2) MP Clustering; (3) MP 
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Classification; and (4) Pedestrian Behavior Prediction; as 

depicted in Fig. 1. In this paper, we assume that (a) the 

proposed method runs in a vehicle, which is to perform CA 

and other tasks in a DCE; (b) the method for determining 

the vehicle’s action decision is outside the scope of this 

paper (Interested reader should refer to [12] for details); (c) 

an observable pedestrian instance is a distance value 

measured at time t by the vehicle’s sensors; and (d) 

pedestrian behavior is defined by a series of pedestrian 

motions. 
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Fig. 1: Block diagram of the proposed method 

 

To start with, when a group of pedestrian instances at time 

t are observed, they are first associated with existing 

trajectories that have been assembled through the previous 

t-1 time steps. The association relies on the t-1 instances to 

optimize a global shortest distance for all instances. From 

the newly formed trajectories with spatial location feature, 

we can derive the corresponding velocity and heading angle 

features. Given the trajectories, MP are clustered using an 

instance-based clustering algorithm as a general 

representation of a sub-group of trajectories. Trajectories 

that do not cluster with others are only kept for one more 

time step, just in case they represent the birth of a new 

trajectory. Each clustered MP is further classified into 

MP-C or MP-I which is conditioned upon that the MP has 

been obtained based on a relative number of observable 

motion instances. Those MP that are evaluated as MP-C 

will be used for all subsequent predictions, and the MP-I 

may be modified or discarded after the behavior prediction 

is completed. 

Finally, pedestrian behavior prediction accepts three 

inputs: (1) MP-C; (2) MP-I; and (3) current trajectories. 

Given a trajectory at time t, it is matched with the available 

MP-C first which is called high-level prediction if there is a 

close match between a trajectory and an MP-C, then the 

long-term behavior of the trajectory is predicted to be 

similar to the MP-C. If no MP-C is available or the match is 

negative, the remaining unmatched trajectories are matched 

with the MP-I. This is called middle-level prediction. If 

there is a match, then the medium-term behavior of a 

trajectory is predicted to be similar to the span of the 

matched MP-I. If all else fail, then prediction is performed 

for t+1 step using an Auto-Regressive (AR) model [14].  

B. Trajectory Formation 

In trajectory formation, we assume that the location 

information (xk(t), yk(t)) of pedestrian PDk can be derived 

from distance sensors in the form of discrete time location 

information rk[n] where rk[n]=(xk[n], yk[n]) given that 

xk[n]=xk(nTs) and yk[n]=yk(nTs) where Ts is the sampling 

time. We further assume that pedestrians cannot be 

identified otherwise such that we only know a set of 

sequential location information {rk[n]} without the 

knowledge of which location information is associated with 

which pedestrian. The trajectory Tk
s
 of PDk for spatial 

location is defined by the set of sequential states associated 

with the pedestrian such that Tk
s
=tk

s
(n1,n2)={rk[n]}, where 

n1≤n≤n2. We propose a candidate solution using an AR 
model to predict the possible current location of a 

pedestrian given its historical locations. We then associate 

the newly observed location to Tk
s
 such that it is closest to 

the predicted location of Tk
s
.  

Apart from spatial locations, other motion features such 

as velocity vk[n] and heading angle φk[n] can also be 

derived and used for prediction at a later stage to give 

predicted velocity and heading angle profiles. The 

advantages of including these extra feature dimensions are 

that firstly, each pattern can be more comprehensively 

described, and secondly, consistency of patterns can be 

identified based on multiple dimensions depending on the 

need. In summary, PDi is described by {Tk
s
, Tk

v
, Tk

φ
}, 

where Tk
v
=tk

v
(n1,n2)={vk[n]} and Tk

φ
= tk

φ
(n1,n2)={φk[n]} 

where n1≤n≤n2. 

C. MP Clustering 

To cluster MP from trajectories of one of the three feature 
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dimensions, we employ the constrained gravitational 

clustering (CGC) method as described in [13]. The CGC 

method imposes a clustering constraint per iteration to 

control the formation of multiple clusters, without needing 

to assign a termination condition. At the start, each 

trajectory is regarded as the initial mean location vector of a 

cluster. In principle, the clustering process is completely 

controlled by the attraction and repulsion between existing 

clusters in the feature space. Analogy to gravitational force, 

existing clusters separated by a short distance are more 

likely to form a new cluster compared with those separated 

by a long distance. The ‘gravitational force’, 
k jT TF between 

the k
th
 and j

th
 clusters is given as: 

                       )(
3 jk

jk

jk

TT ll
ll

mm
GF

jk
−

−

×
= , (1) 

where G is the gravitational constant which is set to 1 here, 

mk and mj are the masses represented by the numbers of 

trajectories in the k
th
 and j

th
 clusters respectively, and lk and 

lj are the mean location vectors in the feature space. Similar 

clustering effect can be found in the velocity and heading 

angle trajectories. The MP clustering step is repeated at 

each time step. 
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Fig. 2: Calculation of Cx 

 

D. MP Classification 

To classify MP, we propose a criterion based on the triangle 

algorithm [15]. Let Nd denotes the number of observable 

instances in the d
th
 MP. The criterion is presented by setting 

a threshold Cx for Nd. For the d
th
 MP, if Nd>Cx, then the MP 

is classified as an MP-C, otherwise it is classified as an 

MP-I. Fig. 2 depicts the adaptive calculation of Cx for the 

results shown in Fig.5. Initially, all MP are ordered in a 

descending order in terms of Nd. In this case, MP with the 

size above 15 are classified as MP-C, and the other MP are 

classified as MP-I. 

E. Pedestrian Behavior Prediction 

The focus of the proposed method is to predict pedestrian 

motion behavior in the most appropriate manner based on 

the MP-C, MP-I and current trajectories, through a multiple 

prediction hierarchy as depicted in Fig. 3. 

 Let Tk denotes the observable trajectory of PDk, and Pm
i
 

and Pn
c
 represent the m

th
 MP-I and the n

th
 MP-C 

respectively. Tk is given by {Tk
s
, Tk

v
, Tk

φ
} and Pm

i
 and Pn

c
  

are given by {Pm
s,i
, Pm

v,i
, Pm

φ,i
} and{Pn

s,c
, Pn

v,c
, Pn

φ,c
}, 

respectively. Let T*k denotes the predicted behavior of PDk 

in any future motion. T*k is also given by {T*k
s
, T*k

v
, T*k

φ
}. 

If Tk is defined up to t, then T*k is defined from t+1 onward. 

For illustration convenience, we choose the spatial location 

feature as an example for presenting the multi-level 

prediction process. Thus Tk, Pm
i
, Pn

c
 and T*k in this case are 

all simplified into {Tk
s
, Ø, Ø }, {Pm

s,i
, Ø, Ø }, {Pn

s,c
, Ø, Ø } 

and {T*k
s
, Ø, Ø }, respectively. Suppose there are a total of 

N observable trajectories and M MP with m2 MP-C and m1 

MP-I (m1+m2=M). 
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Fig. 3: Block diagram of multi-level prediction 

 

For high level prediction, the trajectories and MP consist 

of spatial locations of different number of time steps, so the 

corresponding Tk and Pm
i
 and Pn

c
 have different dimensions. 

Before matching is performed, their dimensions are 

equalized. To do that, we first segment each Pn
c
 (1≤n<m2) 

into portions which have the same data dimension with each 

Tk (1≤k<N). For example, if Tk has Kk
T
 time steps, then a 

portion of Pn
c
 with Kn

P
 time steps (Kn

P
>Kk

T
) is denoted by 

Pn(q)
c
, which is given as: 

 Pn(q)
c
 = tk

s
(q, q+Kk

T
), q = 0, 1, … Kn

P
-Kk

T
.
 

(2) 

We then use a Gaussian function f(X, µ) for determining 

the similarity between each trajectory and each portion of 
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each MP-C. f(X, µ) is defined as: 

 

2

0
2

( )

2,( )

L

i i

i

x

f ae

µ

σ
=

−

−

∑

=X µ , (3) 

where a is a positive real constant which is set to 1.0, and σ 

is an error coefficient which is set to 10. Both values are 

obtained through extensive experimentation. X and µ are 

both vectors, in which xi and µi are their elements, 

respectively. L is the total number of xi, which is the same 

for µi after equalization. To perform a match, we simply 

compute f(Tk, Pn(q)
c
). Tk is regarded as matched with MP-C 

Pn
c
 when it satisfies the following decision function: 

 f(Tk, Pn(q)
c
) > f(Pn(q)

c
’, Pn(q)

c
), (4) 

in which 

 Pn(q)
c
’ = {rk[n] + σ I}, q= 0, 1, … Kn

P
-Kk

T
.
 
(5) 

where I is an unit vector and σ is set to the same value as in 

(3). 
When a match is successful, Pn

c
 is taken as a candidate 

behavior of Tk. After applying (4) between each trajectory 

and all MP-C, Tk can be categorized into three cases in 

terms of the number of candidate behavior. Let A(Tk) 

denotes the number of candidate behaviors for Tk. The three 

cases are: 

Case 1:  A(Tk)=1. This results in setting the only 

candidate behavior as the predicted behavior of 

Tk; 

Case 2:  A(Tk)>1. This results in setting the most similar 

behavior (with the largest f(Tk,Pn(q)
c
) value) as 

the predicted behavior of Tk; 

Case 3:  A(Tk)=0. The prediction is unsuccessful and Tk 

needs to be considered in the next level.  

If the set of MP-C is null, or there exists unpredicted 

trajectories after the high-level prediction, middle-level 

prediction is applied based on MP-I. The principle for 

middle-level prediction is the same as the high-level 

prediction, whereas the only difference is that Pm
i
 are used 

for matching at this level. By replacing Pn
c
 by Pm

i
 in the 

above formulation, we can match the remaining trajectories 

with MP-I in a similar manner.  

If there are still trajectories that cannot be matched with 

any MP after the middle-level prediction, then a single time 

step prediction is performed. The next position at time step 

s+1 can be predicted by the following equation: 

         2)()()()1( SsaBSsuswsw s++=+ ,                 (6) 

where w(s) means the position at time step s, and u(s) and 

a(s) are corresponding velocity value and acceleration 

value. Bs is time-dependent and is updated by the adaptive 

algorithm in [16]. 

In summary, the algorithmic steps are given below: 

Step 1:  If Pn
c ∉ Ø, proceeds to Step 2, otherwise mark 

all Tk as first-unpredicted and go to Step 3. 

Step 2:  For each Tk, where 1≤k<N, match it with each 

Pn
c
, where 1≤n<m2. If match is successful, then 

output corresponding prediction result T*k, 

otherwise, mark Tk as first-unpredicted. 

Step 3:  For each first-unpredicted Tk, where 1≤k<n1 and 

n1≤N, match it with each Pm
i
, where 1≤m<m1. If 

match is successful, then output corresponding 

prediction result T*k, otherwise, mark Tk as 

second-unpredicted. 

Step 4:  For each second-unpredicted Tk, where 1≤k<n2 

and n2≤n1, predict a single time step based on an 

AR model, and output the corresponding 

prediction result T*k. 

III. EXPERIMENT 

In this section, we present the simulation experiment in a 

DCE to demonstrate our proposed method. A continuous 

trajectory of a moving object is generally represented by a 

series of discrete positions which are recorded at all 

sampled time steps in the moving process. In this 

experiment, we assume that the sampling time Ts=1s, which 

is a flexible parameter that can be changed depending on 

the actual system and environment. The scenario of the 

simulation experiment is based on the shuttle-bus (the 

vehicle) for ferrying passengers in an airport terminal, 

where passengers can freely move around as shown in Fig. 

4. We also use spatial location feature as an illustration in 

this experiment. At each time step, new-born pedestrian 

trajectories will come into the scene, and also some existing 

pedestrian trajectories will disappear from the scene.  

 
Fig. 4: The scene of the simulation experiment 

 

We track a pedestrian from when it first enters into the 

scene to when it goes out of the scene and regard its 

corresponding trajectory in the scene as one training 

instance for MP clustering. Fig. 5 depicts the observable 

pedestrian instances and their corresponding clustered MP 

at t=200s. 

There are altogether 30 MP which are accordingly 

clustered. Since there are double-directional trajectories in 

the scene, two MP are clustered between each pair of 

entrances in the scene and we use solid-curve and dot-curve 

for differentiation in Fig. 5. By passing all 30 clustered MP 

to the MP classification, 13 of them are qualified for as 

MP-C, as depicted in Fig.2. It should be noted that 

compared with MP-I, MP-C have better convergent 
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attributes. Thus, MP-C will be regarded as learned 

knowledge for high-level prediction which remains in the 

entire prediction process while MP-I may be upgraded to 

MP-C later based on more observable pedestrian instances. 

 
Fig.5: Observable pedestrian instances and clustered MP (t=200s) 

 

 
Fig. 6: New-born trajectories for prediction 

 

 To further illustrate how prediction is made at 

different levels, we randomly select the observable 

trajectories of pedestrians in the scene at t=220s, where 

there are totally 10 observable pedestrian instances 

(brown-circle) in the scene. Fig. 6 depicts all 10 trajectories 

(black-curve) and all clustered MP (red-curve). The 

multi-level prediction results (blue curves) are depicted in 

Fig. 7. Out of 10 trajectories, 8 can be predicted at the high 

or middle level, since they match with one of the MP-C or 

MP-I. It can also be observed that (1) the matching allows 

slight variations in spatial locations; (2) most of the 

predictions are long-term; and (3) the essence of the MP 

determines the predicted behaviors, not the actual spatial 

locations. For the remaining 2 observable pedestrian 

instances that could not find a match in either high or 

middle level, it can be seen that both trajectories are quite 

different from all existing MP-C/MP-I in both behaviors 

and spatial locations. In this case, the proposed method 

makes a single time step action prediction shown by a blue 

‘×’ in Fig. 7.  

 
Fig. 7: Multi-level prediction results 

 

In order to test and evaluate the performance of our 

prediction methods, we have conducted 30 simulation 

experiments in total 3 different simulation scenarios 

including the above and compare the predicted behavior 

with the actual behavior in the simulation. For each 

predicted trajectory, an error is computed as the ratio 

between the distance deviation during the whole prediction 

process which is represented by the accumulated deviated 

distance between the predicted location and the actual 

location at the last time step, and the actual total traversed 

distance. For each simulation experiment, we calculate the 

average error of all predicted trajectories as the prediction 

error of the experiment. It is found that the prediction error 

of each experiment is around 8% and the prediction can be 

considered as reasonably accurate. The comparison 

between predicted behavior and actual behavior in the 

above simulation experiment is shown in Fig. 9. 

 
Fig. 8: Comparison between predicted behavior  

and actual behavior 

 

Fig. 9 shows the application of the prediction results 

from the proposed multi-level prediction model. For 

vehicle-to-pedestrian collision avoidance, it is necessary 
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and important for the vehicle to know where the pedestrians 

are as well as where they are going to move to in general. 

With the availability of long-term prediction, the vehicle 

benefits from being able to ‘look-ahead’ further into the 

future and make appropriate plan to achieve a global 

optimal path and to avoid potential collisions and traps. 

 
Fig. 9: Application of the proposed multi-level prediction model 

IV. CONCLUSION 

In this paper, we presented a multi-level prediction 

model based on MP clustering and classification for 

long-term pedestrian behavior prediction. From the 

simulation result, it can be concluded that the proposed 

method is reasonably effective in deploying high-level, 

middle-level and low-level predictions for different 

trajectory behaviors. The main contribution of the proposed 

method is to offer a viable approach for predicting 

long-term behavior rather than a single time step prediction, 

which is more common in existing methods. The ability to 

make long-term behavior prediction is obviously 

advantageous, thus, we believe it would have substantial 

impact to vehicle-to-pedestrian collision avoidance. 

Furthermore, for some other related application areas, such 

as crowd control, it should be noted that long-term behavior 

prediction can also be effective. Based on the general 

innovative idea and the proposed framework, our future 

work will mainly focus on three aspects: (1) to conduct 

extensive simulation study based on velocity and heading 

angle; (2) to investigate other features to characterize 

pedestrian behavior; (3) to research online management of 

MP and to improve the accuracy of pedestrian behavior 

prediction based on online updated MP. 
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