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Abstract— In opportunistic networks, communities of mobile
entities may be utilized to improve the efficiency of message
forwarding. However, identifying communities that are dynam-
ically changing in mobile environment is non-trivial. Based on
random walk on graphs, in this paper we present a community
detection algorithm that takes into account the aging and weight
of contacts between mobile entities. Our idea originates from
message-forwarding operations in opportunistic networks. We
evaluate the algorithm on both computer-generated networks
and real-world human mobility traces. The result shows that
our proposed algorithm can find the communities and detect the
changes in their structures over time.

Index Terms— Opportunistic network, community detection,
message forwarding, algorithm.

I. INTRODUCTION

Communities are submodules or substructures that are func-
tionally important to their corresponding networks. Categoriz-
ing objects into communities has numerous potential appli-
cations. In protein-protein networks, identifying modules that
have significant functions [30] can provide valuable insights
in developing new therapeutics to fight disease; in social
networks, grouping individuals into communities [31] can
help to highlight interaction patterns and common attributes
among them; in the World Wide Web, capturing clusters of
related pages [12] can aid the design of efficient search engine
and content filtering; and in mobile networks, identifying
communities of mobile entities can help improve the efficiency
of message forwarding [9] [14] [33] so as to facilitate oppor-
tunistic communication. In the literature, a host of community
detection algorithms has been proposed [8] [22] [23] [26],
by agglomerative clustering [16], divisive partitioning [25],
clique percolation [26], or maximization of certain measure
function [24]. However, detecting communities in networks
is non-trivial. While the majority of existing work addresses
community detection in static network and focuses on its
structural properties, the study for dynamic network that
continually changes is still lacking.

Opportunistic network that utilize short-range wireless ra-
dio connection is a variant of disruption tolerant network
(DTN) [17], in which portable devices exploit contact opportu-
nities to communicate with each other without network infras-
tructure. Its underlying network, from a node’s perspective, is
characterized by contact time and inter-contact time between
entities, which are, respectively, the durations that two entities
stay within and beyond their connection range. To study a
more macroscopic characteristic of opportunistic networks, the

authors in [15] present a community detection approach for
opportunistic networks by adapting several classic community
finding algorithms. Through simulation on several human
mobility traces, they find that the adapted algorithm could
give satisfactory performance by adjusting certain parameters.
However, human mobile networks are dynamic in nature, and
two general problems for finding communities in opportunistic
network require further considerations:

• Continual change. Opportunistic network is by nature
non-static, in which the communities are dynamically
evolving over time. These dynamics involve community
growth, contraction, merging, splitting, etc. For rout-
ing in opportunstic netoworks, the recently proposed
schemes [9] [14] explicitly utilize the notion of com-
munity of contacts, by aggregating all the contacts in
the past (or considering there is an edge between two
entities if at least one contact between them has occurred
in the past). But this may not properly reflect the existing
and changing community structure [29]. Since certain
contacts in history would become irrelevant in the current
network, taking into consideration the aging of contacts
is necessary. Hence, it is important to study the evolution
of communities in opportunistic networks.

• Weighted interaction. In opportunistic networks, contact
and inter-contact duration could be transformed as the
weights of interactions between entities, which play an
important role in forming and dividing communities. A
common approach [15] to simplify the weight is to con-
vert a weighted graph to an unweighted one by utilizing
certain threshold to discard edges with weights below
it. This approach inevitably incurs inaccuracies since
it does not differentiate the strengths of the remaining
contacts and omits the importance of those discarded
weak links [13]. Hence an effective approach to capture
all the weighted contacts is necessary.

In this paper, we focus on the dynamics of communities,
presenting a community detection algorithm for opportunistic
networks. We formulate message forwarding in opportunistic
networks as random walks on weighted finite graphs, based
on which we utilize the normalized commute time as the
criterion to extract communities from its underlying network.
This approach takes into consideration the weighted contacts
(we also refer to them as interactions in the rest of this paper)
between mobile entities. To account for the temporal attribute,
namely, the time-varying nature, of opportunistic networks,
we propose a method that ages interactions between entities
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over time. The performance of this method can be adjusted by
the introduced aging coefficient τ . We evaluate our proposed
algorithm on both computer-generated mobile social networks
and real-world human mobility traces gathered in two research
projects (i.e. Haggle 1 and Reality Mining 2). The result shows
that our proposed algorithm can find the expected communities
and detect the changes in their structures over time.

We proceed in this paper as follows. In Section II we
review the work related to the dynamics and evolution of
communities. Then we describe our community detection
algorithm in Section III. The evaluation of our algorithm and
discussion of results are presented in Section IV. Finally we
conclude this paper and discuss the potential future work in
Section V.

II. RELATED WORK

Dynamics of communities have been studied in the litera-
ture. For example, the authors in [19] infer interactions within
a university network from the email headers recorded over
time, and find that network evolution is mainly affected by the
network topology and its organizational structure. By utilizing
temporal information on interactions, the authors in [4] [29]
propose a framework to identify communities and analyze
their evolutions in dynamic social networks. They formulate
the problem of finding developing communities from the
observed interactions as a combinatorial optimization problem.
The above work provides an insightful investigation on the
dynamic communities in social networks, but our work differs
from it since we focus on the clustering behavior of objects
in opportunistic networks. By utilizing weighted contacts
between mobile entities, we aim at uncovering time-varying
communities that would facilitate information dissemination
[14] in human social life. Community dynamics have also
been studied in online social networks. In [5] [7], communities
are identified within some time windows and then merged
to reflect their evolution, and heuristics are proposed to ap-
proximate the optimal solution. The authors in [3] resort to
several large on-line datasets that embed explicit user-defined
communities, finding that the underlying structure is the key
that affects whether an individual would join a community.
We do not focus on how the structural feature influences
the development of communities, but study the continually
changing communities in human mobile networks, accounting
for the aging of interactions. The work in [27] accounts for
time variability of the information from mobile networks, as in
[2], regarding a community as a densely connected subgraph
over time, and a node as its member only when it attaches
to it in a series of time steps. Our study is motivated by
message forwarding in opportunistic networks, developing a
community detection algorithm that takes into account the
aging and weight of contacts between mobile entities.

III. COMMUNITY DETECTION ALGORITHM

We seek to develop an algorithm that can, based on
contacts/interaction patterns between entities in opportunistic

1http://www.haggleproject.org.
2http://reality.media.mit.edu/.

networks, detect their communities and the change in their
structures over time. The framework comprises two major
procedures:

1) Transform contacts/interactions between mobile entities
into weights of edges in a graph, to account for their
temporal connections. To achieve this, we develop a
mechanism that takes into consideration the aging of
contacts between entities.

2) Apply a node-grouping mechanism to the obtained
weighted graph. We propose a mechanism that is moti-
vated by random walk on finite graphs. We will show
that this mechanism can be easily realized by resorting
to the Laplacian eigensystem of a graph.

For a better presentation of this algorithm, in the following
we first introduce how we group mobile entities into com-
munities (Section III-A), and then present how we transform
contacts between mobile entities into a weighted graph while
maintaining their temporal properties (Section III-B).

A. Nodes grouping

In this section, we first formulate message forwarding in
opportunistic networks as random walk on finite graphs, based
on which we elaborate how certain property from random walk
can be utilized to study the structure of communities of mobile
entities in opportunistic networks. Then we introduce a general
technique (resistance distance on electrical networks), which
utilizes the Laplacian eigensystem of a graph, to realize this
algorithm. To present this technique properly, we also briefly
review the basics of spectral analysis of Laplacian matrix.

Consider a finite connected graph G = (V, E), where V is
the set of nodes (i.e. mobile entities that forward messages)
and E is the set of edges. An edge means that message-
forwarding operation is possible between the pair of nodes (i.e.
by short range radio transmission). Let n = |V| and m = |E|
be the size of V and E , respectively. We also denote by Nu

the set of neighbors of node u, and ku = |Nu|. Note that
Nu ⊆ V . In random walk based forwarding, a message stays
at a node for certain time before opportunities arise to travel to
the next neighboring node. The message-forwarding operation
at the current hop is independent of those in previous hops.
For each pair of neighboring nodes u, v ∈ V , we denote suv

the expected sojourn time of a message forwarded from u to
v. For each edge (u, v), we assign a weight wuv to represent
the availability of message-forwarding operations between u
and v. In this paper we consider undirected graphs such that
wuv = wvu. We define the probability that a message will be
forwarded from node u to its neighbor v ∈ Nu as:

puv 
wuv

v∈Nu
wuv

In opportunistic networks, the contact/interaction between
mobile entities are characterized by their contact time and
inter-contact time. Apparently, the longer two mobile entities
stay together (i.e. within radio transmission range) or the
more frequently they meet each other, the more opportunities
for message-forwarding operations between them. Hence, we
assume that the chance of message-forwarding between two
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neighboring nodes is in proportion to their contact duration or
contact frequency, such that:





wuv =
1
suv

suv =
1

c · luv

(1)

where suv denotes the expected sojourn time to forward a
message from u to v, and luv > 0 is obtained from a series of
contacts, accounting for the temporal attribute of interactions
between mobile entities. We will introduce luv in Section III-
B. c in the above equation is a normalization factor.

A random walk on a weighted undirected graph is actually
a finite Markov chain that is time-reversible [20]. The hitting
time Huv is the expected number of hops a message takes to
traverse to v, starting from u. It can be expressed recursively
by 3:

Huv =







w∈Nu

puw(suw + Hwv)

= su +


w∈Nu

puwHwv, u = v,

0, u = v.

(2)

where su 


w∈Nu
puw · suw is the expected sojourn time at

node u. Note that normally Huv = Hvu. The commute time

Cuv = Huv + Hvu (3)

is the round-trip time between node u and node v (i.e. expected
number of hops a message travels from u to v and then
get back to u). Then for a network with a finite number of
entities, we can obtain a commute time matrix C. In this paper,
we use the normalized commute time matrix C  to identify
communities of mobile entities, in such a way that the shorter
the commute time between two entities, the more confidently
we can group them into the same community. Intuitively, the
shorter the round-trip time between two entities, the closer
they tend to stay with each other, with more possibilities for
messaging forwarding between them. We will show later that
since we consider a connected graph, the commute time of a
message from any given node u to any other node v is positive.
However, obtaining C  from Eqns. (2) and (3) is non-trivial.
In the following we present an approach to obtain C  in terms
of resistance distance [32] on electrical networks, which is
related to the Laplacian eigensystem of a graph. We first give
a brief review of the basics of Laplacian spectral theory.

Consider the above obtained weighted graph G. Its corre-
sponding Laplacian matrix, denoted by L, is a square matrix
of order n with entry (u, v) defined by:

Luv =





du, u = v,

−wuv, u and v are adjacent,
0, otherwise.

(4)

3We consider a slotted system such that one hop takes place in one slot
time.

where du =


v∈Nu
wuv is the weighted degree of node u

(total weight of the edges adjacent to u). The Laplacian matrix
L of the graph G is a positive semi-definite singular matrix
that has no inverse. It has n eigenvalues i and eigenvectors

i, referred to as Laplacian eigenvalues and Laplacian eigen-
vectors of G. We label the Laplacian eigenvalues in decreasing
order

1 ≥ 2 ≥ · · · ≥ n,

then we have n = 0 and the corresponding eigenvectors n =
(1, 1, · · ·, 1)/

√
n. The second smallest Laplacian eigenvalue

n represents the connectivity [21] of graph G. n−1 = 0 if
and only if G is connected. In this paper we only consider
connected graph (for a graph that is not connected, we focus
on its largest connected component). The resistance distance
rij in an electrical network, constructed so as to correspond to
G, is defined as the voltage difference between i and j when
a unit current is injected at i and removed from j. Note that
i, j ∈ V may not be adjacent. For a connected graph, rij can
be expressed as a function of its Laplacian eigenvalues and
Laplacian eigenvectors [18]:

rij =
n−1

k=1

1
k
( ki − kj)

2
. (5)

In this paper, we use the above technique to obtain the
normalized commute time matrix C . We assign each edge
(u, v) ∈ E a conductance of value wuv . For the commute time
Cuv between any two vertices u and v in the graph G, Chandra
et al. [6] has shown that it is precisely characterized by the
resistance distance between them:

Cuv = ruv



(u,v)∈E
wuv(suv + svu). (6)

Eqns. (1), (5) and (6) provide a direct and simple way to
compute the matrix C  of any connected weighted graph,
which is expressed in terms of the Laplacian eigensystem of
a graph:

C uv =
ruv

max(u,v)∈E Cuv
·


(u,v)∈E
wuv(suv + svu)

=
1

Cmax
·

n−1

k=1

1
k
( ki − kj)

2


(u,v)∈E
wuv(suv + svu)

=
2m
Cmax

n−1

k=1

1
k
( ki − kj)

2

(7)

In other words, C  is expressed solely in terms of the matrix
l that describes the interaction patterns of mobile entities in
opportunistic networks. Based on Eqn. (7), we utilize weighted
pair group method with arithmetic mean (WPGMA) [28] to
create a hierarchical cluster tree, which uses the average
distance between all pairs of nodes in any two clusters,
according to the following distance function:

d(R,S) =
1

|R| · |S|


u∈R



v∈S

Cuv ,
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where R and S are two different clusters. Finally, we hori-
zontally cut through the tree at certain height that leaves the
well-formed communities.

B. Contacts transformation

In opportunistic networks, communities of mobile entities
are evolving, and community membership will be broken
or newly formed over time. To account for these dynamics
of interactions between mobile entities, we introduce the
interaction matrix l to capture the temporal attribute of
contacts between entities, which functions as the input of the
procedure in Section III-A. The matrix l is obtained from
contact duration and/or contact frequency of mobile entities.
Since certain contacts in history would become irrelevant in
the current network, it is necessary to account for their aging.
In this section, we propose a formula that transforms contacts
into the interaction matrix l.

Let us still consider the graph G in Section III-A, abstracted
so as to correspond to an opportunistic network. For each pair
of nodes u, v ∈ V , we denote by ltuv the interaction weight
between u and v at time t. ltuv constitutes the interaction
matrix l (luv could be initialized to zero). We also assign two
variables to the node pair: a contact recorder σt that records the
contacts between them at time step t, and an aging coefficient
τ > 0 that indicates the aging granularity of contacts. At
each time step, the contacts (i.e contact duration or frequency)
between u and v are recorded as σt, and inserted into the
interaction weight function at the next time step according to
the following formula:

ltuv =
τ · lt−1

uv + qσt−1

τ + 1
, (8)

where q is a normalization factor. ltuv takes into account all
the contact histories up to t. The algorithm needs to be able to
forget old associations between nodes when they fade away,
yet have to be resilient to the temporal fluctuation. Consider
after time te that there is no further contact between node
u and v, then the interaction weight luv ages exponentially
according to:

ltuv = lt−1
uv · τ/(τ + 1)

= lteuv · (τ/τ + 1)(t−te)

= lteuv · e−γ(t−te),
(9)

and the half-life of the decay is thus ln 2
γ + te.

When the aging coefficient τ is less than 1, the interaction
history ages rapidly since for each new stage, the influence of
the entire contact history is less than that of the new contact
statistic. On the other hand, if τ is set greater than 1, the
resulting interaction weight will be more resilient to temporal
fluctuation as more emphases are put on the history than the
new contact statistic, yet the influence of past contacts will still
fade away over time. The algorithm allows each pair of nodes
to have their own aging coefficient τ , which can be updated
in response to the change in the interaction pattern. For ease
of study, in this paper we assume all pairs of nodes have the
same τ , and study the effect of τ with different values.
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Fig. 1. Similarity between extracted communities and well-defined ones at
different times for the computer-generated networks

IV. RESULT AND EVALUATION

The computational complexity of the algorithm is in general
O(n3+n2) ≈ O(n3), which scales well with the network size
n. To evaluate our algorithm, we first construct a simple social
mobile network with well-defined community structure that
also changes over time, to see if the algorithm could extract
these clusters at different times.

Consider a network with N nodes, initially divided into K
communities. During each time interval t, contacts between
nodes are placed independently at random with probability
pin for a contact to fall between nodes in the same community
and pout to fall between nodes in different communities. Each
intra-contact (between nodes of the same community) and
inter-contact (between nodes from two different communities)
lasts for a period of αt and βt, respectively. Note that 0 ≤
β < α ≤ 1. The assumption is that entities from the same
community are more likely to contact each other than entities
from different communities, and each intra-contact will last
longer than an inter-contact. To have the community structure
change over time, we adjust the community composition after
each time period T = κt.

To measure the similarity of the original and detected com-
munities of a network at different stages, we utilize normalized
mutual information (NMI) [1] [10] measure, which is based
on the confusing matrix M(t). The entry Mij(t) denotes the
number of nodes in the original community i(t) appearing in
the detected community j(t), such that:

S(A,B,t) =
−2

cA
i=1

cB
j=1 Mij log( MijN

Mi.M.j
)

cA
i=1 Mi. log(Mi.

N ) +
cB

j=1 M.j log(M.j

N )
,

where cA and cB represent the number of original and detected
communities in the network at time t, respectively, and

Mi.(t) =
cB

j=1

Mij(t) , M.j(t) =
cA

i=1

Mij(t) .

S(A,B,t) takes its maximum value of 1 when the detected
communities and the original ones are identical, and 0 if they
are totally independent of each other.
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Figure 1 shows the similarity between extracted commu-
nities and well-defined ones for the computer-generated net-
works. We sample the networks at the middle of each time
period T . The results are averaged over 10 realizations of
N = 2 × 102 networks with K = 10 communities that are
equal in size. Error bars are measured standard deviations.
We set pin = 0.7 and pout = 2 × 10−4 for the contact
probabilities in the networks. In addition, for each pair of
nodes that are in contact at each time step t, α and β are chosen
uniformly from the range [0.7 , 1] and [0 , 0.3], respectively.
We also set the aging coefficient τ to 0.1. As we can see
from the plot, the algorithm performs well on the network
with communities restructured over time. The accuracies of
extracted communities are above 92.6% and 88.3% of the
original ones for κ = 10 and κ = 30, respectively. For
either case, the similarity at the first points (i.e. T/2) is
notably higher (up to 100% for κ = 10) since there is no
community-restructuring operations before that time. The first
change of community structure results in a slight dip of the
accuracies but they keep stable for the subsequent time points.
This can be accounted for by the small aging coefficient τ ,
which makes previous contacts less influential on the current
community structures. We can conclude from the graph that
our algorithm is more sensitive to the connectivity than the
strength of each connection, and in particular, the algorithm
is more sensitive to connections between communities than
those within a community.

We further evaluate the algorithms on real human mobility
traces. We utilize two experimental datasets gathered by the
Haggle project at Infocom2005 conference and the Reality
Mining project at MIT campus. In these experiments, the
Bluetooth-enabled mobile devices ran software logging con-
tacts with each other by doing Bluetooth device discovery
periodically. Table I summarizes the two experiments4. The
characteristics of these datasets, such as contact pattern and
clustering behavior, have been explored in several other stud-
ies [11] [14] [27]. They cover a period from several days
(Infocom05) to nine months (Reality). Since we do not have
a priori information of communities at different times, we
compare the extracted communities at certain time with those
extracted at the previous step, and investigate the effect of dif-
ferent values of the aging coefficient τ . To study the dynamics
of well-formed communities rather than trivial ones such as
singletons, we only focus on certain largest communities. We
utilize the classic Jaccard index as the similarity measure:

Sab =
|Ca

 Cb|
|Ca

 Cb| ,

where Ca represents the set of members of community a and
|Ca| is the number of members in community a.

Figure 2 shows the result of our algorithm with different
values of τ on the Infocom05 dataset. For a clearer presenta-
tion of the result in the graph, we sample the network every
two hours. We can clearly observe that (for example the plot
at time = 40 and time = 64) with smaller aging coefficient

4These datasets are available from CRAWDAD at Dartmouth
http://crawdad.cs.dartmouth.edu/index.php.

Experimental dataset Infocom05 Reality
Device iMote Phone

Duration (days) 3 246
Granularity (seconds) 120 300

No. of experimental devices 41 97
No. of internal contacts 22,459 54,667

Average no. of contacts/pair/day 4.6 0.024

TABLE I
CHARACTERISTICS OF THE TWO MOBILITY TRACES DATASETS
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Fig. 2. Similarity between communities extracted at the current and the
previous step on Infocom05 data

τ , the detected communities at current time appear less similar
to those at previous time. This conveys that the algorithm with
greater τ is more resilient to temporal fluctuations. The graph
also shows the same periodicity of the results with different
values of τ . This periodicity comes from the social patterns in
the activities of participants during the conference (attending
the same sessions, having lunch together, etc.) But we can see
that the algorithm with smaller τ adapts faster to the structural
changes in communities over time.

Figure 3 presents the result of our algorithm on the Reality
dataset. We can see from Table I that this network is quite
sparse (since many participants switched off their Bluetooth
transceivers during the experiment), hence we plot the result
with a sampling every four weeks. As in Figure 2, we can see
there are more variabilities with the result of smaller aging
coefficient τ (if we draw a linear regression line for each curve,
apparently, the square line is at the top and the asterisk line
is at the bottom). In addition, we also observe the same trend
(ascending) of all the resulting curves with different values of
τ .

V. CONCLUSION AND FUTURE WORK

Motivated by message forwarding in opportunistic net-
works, in this paper we develop a community detection
algorithm that takes into account the aging and weight of con-
tacts between mobile entities in opportunistic networks. The
evaluation result shows that our proposed algorithm can find
the communities and detect the change in their structures over
time. This centralized algorithm has computational complexity
O(n3) which scales well with the network size n. However,
in reality, a mobile device is unable to have a global view of

163



6

3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Time (week)

S
im

ila
rit

y 
(R

ea
lit

y)

τ = 0.1
τ = 1
τ = 10

× 4

Fig. 3. Similarity between communities extracted at the current and the
previous step on Reality data

the network and only has limited battery and computational
resources. In the future, we would like to develop a distributed
version of the algorithm and with fewer resource requirements.
In addition, it would be interesting to see how the dynamic
communities affect opportunistic communications over time.
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