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Abstract— Path-planning allows one to steer a camera to
a desired location while taking into account the presence of
constraints such as visibility, workspace, and joint limits. Un-
fortunately, the planned path can be significantly different from
the real path due to the presence of uncertainty on the available
data, with the consequence that some constraints may be not
fulfilled by the real path even if they are satisfied by the planned
path. In this paper we address the problem of performing robust
path-planning, i.e. computing a path that satisfies the required
constraints not only for the nominal model as in traditional
path-planning but rather for a family of admissible models.

Specifically, we consider an uncertain model where the point
correspondences between the initial and desired views and the
camera intrinsic parameters are affected by unknown random
uncertainties with known bounds. The difficulty we have to face
is that traditional path-planning schemes applied to different
models lead to different paths rather than to a common and
robust path. To solve this problem we propose a technique based
on polynomial optimization where the required constraints
are imposed on a number of trajectories corresponding to
admissible camera poses and parameterized by a common
design variable. The planned image trajectory is then followed
by using an IBVS controller. Simulations carried out with
all typical uncertainties that characterize a real experiment
illustrate the proposed strategy and provide promising results.

Index Terms— Visual servoing, Eye-in-hand, Path-planning,
Uncertainty, Robustness.

I. INTRODUCTION

An important task in robotics consists of automatically po-

sitioning a robot by using visual feedback. This task, known

as visual servoing, has received a considerable attention due

to its wide range of applications. In particular, eye-in-hand

visual servoing considers the problem of steering a camera

mounted on the end-effector of a robot from an initial to

a desired location via a closed-loop control based on the

image projections of some object features in the current

and desired views. See [1]–[4] for details and classifications.

Several methods have been proposed for addressing this task,

such as position-based visual servoing (see e.g. [5]), image-

based visual servoing (see e.g. [6]), 2 1/2 D visual servoing

[7]. Other methods have proposed partition of the degrees of

freedoms (see e.g. [8]), global motion plan via navigation

functions (see e.g. [9]), control invariant w.r.t. intrinsic

parameters (see e.g. [10]), use of complex image features

via image moments (see e.g. [11]), switching strategies for

ensuring the visibility constraint (see e.g. [12]), generation of

circular-like trajectories for minimizing the trajectory length
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(see e.g. [13]), and control despite visibility changes (see e.g.

[14]).

In order to take into account constraints, for example on

the field of view of the camera and on the joints of the

robot, path-planning methods have been proposed, see for

instance [15]–[19]. These methods typically compute off-

line a path for reaching the desired location from the initial

one based on the available data of the problem, such as the

image correspondences among initial and desired views and

the camera parameters, and then attempt to control the robot

so that it follows such a path. Unfortunately, the planned

path can be significantly different from the real path due

to the presence of uncertainty on the available data, with

the consequence that some constraints may be not fulfilled

by the real path. See for instance [20] about the effects of

uncertainty.

In this paper we investigate this problem, i.e. perform-

ing robust path-planning in the presence of uncertain data.

Specifically, we consider that the point correspondences

between initial and desired views and the camera intrinsic

parameters are affected by unknown random uncertainties

with known bounds. The difficulty we have to face is

that traditional path-planning schemes applied to different

models lead to different paths rather than to a common

and robust path. In order to address this problem, each

trajectory is parameterized through polynomials by a possible

camera pose and by a design variable which is common

to all trajectories. We hence estimate the set of admissible

camera poses, and impose the required constraints on each

trajectory corresponding to each of these camera poses. This

allows us for the computation of the sought robust trajectory

via the determination of a common design variable that

satisfies all constraints on all trajectories so parameterized.

The found image trajectory is then followed by using an

IBVS controller. The proposed strategy is illustrated through

simulations carried out with all typical uncertainties that

characterize a real experiment, and the obtained results are

satisfactory and promising.

The paper is organized as follows. Section II introduces

the problem formulation. Section III presents the proposed

path-planning scheme for uncertain data. Section IV presents

the simulation results in ideal and in real conditions. Lastly,

Section V concludes the paper with some final remarks.

II. PROBLEM DEFINITION

A. Notation and standard path-planning problem

The notation exploited in this paper is as follows:

- SO(3): set of all rotation matrices of size 3 × 3;
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- 0: null vector/matrix (size specified by the context);

- 1: vector/matrix with all components equal to 1 (size

specified by the context);

- I: identity matrix (size specified by the context);

- ei: ith column of the identity matrix (size specified by

the context);

- XT : transpose of vector/matrix X;

- ‖X‖: euclidean norm of vector/matrix X;

- ‖X‖∞: infinity norm of vector/matrix X;

- [x]
×

: skew-symmetric matrix of a vector x ∈ R
3;

- w.r.t., s.t.: with respect to, subject to.

Let F abs be an absolute frame in the 3D space. We

denote with F = (O, c) the frame of the initial camera of

the visual servo system expressed w.r.t. the absolute frame

F abs, where O ∈ SO(3) is a rotation matrix which defines

the orientation, and c ∈ R
3 is a vector which defines the

translation. Similarly we denote with F ∗ = (O∗, c∗) the

frame of the desired camera of the visual servo system.

Let q1, . . . ,qn ∈ R
3 be a set of 3D points expressed w.r.t.

the absolute frame F abs and lying in the field of view of the

camera in the initial and desired locations. The ith 3D point

qi projects onto the camera frames F and F ∗ at the points

pi = (pi,1, pi,2, 1)T ∈ R
3 and p∗

i = (p∗i,1, p
∗

i,2, 1)T ∈ R
3,

expressed in homogeneous coordinates and given by

dipi = AOT (qi − c) (1)

d∗i p
∗

i = AO∗T (qi − c∗) (2)

where di, d
∗

i are the depths of the point w.r.t. F and F ∗,

and A ∈ R
3×3 is the upper-triangular matrix containing the

camera intrinsic parameters:

A =





A1 A2 A3

0 A4 A5

0 0 1



 , (3)

being A1, A4 ∈ R the focal lengths, A3, A5 ∈ R the

coordinates of the principal point, and A2 ∈ R the aspect

ratio.

Let us gather the available point correspondences between

the initial and desired views into the vectors

p = (p1,1, p1,2, . . . , pn,1, pn,2)
′

p∗ = (p∗1,1, p
∗

1,2, . . . , p
∗

n,1, p
∗

n,2)
′.

(4)

A standard path-planning problem can be formulated as fol-

lows: given an estimate of the vectors p,p∗ and an estimate

of the intrinsic parameters matrix A, compute a trajectory

along which the camera reaches the desired location while

fulfilling a set of constraints such as visibility, workspace,

and joint constraints.

B. Path-planning problem for uncertain systems

In this paper we want to address the path-planning problem

in the presence of uncertainties on the available data. Hence,

we consider the uncertain model where only an estimate of

the image point correspondences p,p∗ is available, that we

denote from now on as p̂, p̂∗. Such an estimate is related to

the true value p,p∗ by the relationship

p̂ = p + n

p̂∗ = p∗ + n∗
(5)

where n,n∗ ∈ R
2n are random variables with uniform

distribution representing the image noise (for instance due to

image quantization, lighting, features extraction, etc...) and

which are bounded by

‖n‖
∞

≤ η
‖n∗‖

∞
≤ η

(6)

where η ∈ R is the image noise intensity. Similarly, we

consider that the only an estimate of the intrinsic parameters

matrix A is available, and we denote such an estimate as Â.

The relationship between Â and A is given by

Â = A + Λ (7)

Λ =





λ1 λ2 λ3

0 λ4 λ5

0 0 0



 (8)

where λ1, . . . , λ5 ∈ R are random variables with uniform

distribution in the intervals

λi ∈ [λ−

i , λ+

i ] (9)

for some limits λ−

1 , λ+
1 , . . . , λ−

5 , λ+
5 ∈ R.

The path-planning problem for the uncertain model (5)–(9)

can be formulated as follows: given

1) an estimate p̂, p̂∗ of the image point correspondences;

2) an estimate Â of the intrinsic parameters matrix;

3) the intensity η of the image noise and the limits

λ−

1 , λ+

1 , . . . , λ−

5 , λ+

5 of the calibration parameters,

then compute a trajectory along which the camera reaches

the desired location while fulfilling a set of constraints such

as visibility, workspace, and joint constraints for all possible

uncertainties, i.e. for all

n,n∗,Λ fulfilling (6) and (9). (10)

In the sequel it will be supposed without loss of generality

that F coincides with F abs, i.e. O = I and c = 0.

III. ROBUST PATH-PLANNING

The difficulty we have to face is that any value of the

uncertainty n,n∗,Λ determines a different camera pose and

hence a different 3D trajectory, with the consequence that

also the image trajectories are different, and hence there

is no a common trajectory to follow. In order to address

this problem, each trajectory is parameterized by a possible

camera pose and by a design variable which is common to

all trajectories. This allows us for the computation of the

sought robust trajectory via a common design variable that

satisfies all constraints on all trajectories so parameterized.

The details of this strategy are explained in the sequel.

A. Parameterizing the trajectory

Any R ∈ SO(3) can be expressed through Euler param-

eters (also known as quaternion) as

R = ‖a‖−2Ω(a) (11)

where a = (a1, . . . , a4)
T ∈ R

4 is a nonzero vector which

represents the Euler parameter of R, and Ω(a) ∈ R
3×3 is a

quadratic function. This parametrization is complete because
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Ω(a) is a rotation matrix in SO(3) for any unit-norm vector

a ∈ R
4, and because for any rotation matrix R ∈ SO(3)

there exists a vector a ∈ R
4 (in particular with unit norm)

such that R = Ω(a). We indicate such a vector as

ξ(R) = a. (12)

Let us introduce now the parametrization of the camera

trajectory. Let w ∈ [0, 1] be the trajectory abscissa, with

w = 0 indicating the initial location and w = 1 the desired

location. Let (S,u) ∈ SO(3)×R
3 be the final camera pose

of the trajectory expressed w.r.t. F . Clearly such a value

should be the camera pose between F and F ∗, which is

S = OTO∗ (13)

u =
OT (c∗ − c)

‖OT (c∗ − c) ‖
. (14)

Due to the presence of uncertainties, (S,u) is unknown, and

for the moment we consider that (S,u) is a generic camera

pose. We will consider its estimation in Section III-B.

Let us denote with F (w,S,u) be the camera frame along

the trajectory parameterized by the trajectory abscissa w and

the final camera pose (S,u). We denote the camera pose of

F (w,S,u) w.r.t. F as

(R(w,S), t(w,u)) ∈ SO(3) × R
3 ∀w ∈ [0, 1] (15)

where R(w,S), t(w,u) are functions to be determined. At

the extreme points of the trajectory this pose must satisfy

{

(R(0,S), t(0,u)) = (I,0)
(R(1,S), t(1,u)) = (S,u)

(16)

Now, we want to parameterize the camera pose

(R(w,S), t(w,u)) via polynomials. In particular we use

polynomials of degree δM for the Euler parameters of the

rotation and degree δN for the translation, according to

a(w,S) = M̃
(

wδM , wδM−1, . . . , w, 1
)T

t(w,u) = Ñ
(

wδN , wδN−1, . . . , w, 1
)T (17)

where M̃ ∈ R
4×δM +1 and Ñ ∈ R

3×δN +1. The pose

boundary conditions (16) are satisfied if and only if M̃ and

Ñ have the form

M̃ = (ξ(S) − M1− e4,M, e4)

Ñ = (u − N1,N,0)
(18)

where M ∈ R
4×δM−1 and N ∈ R

3×δN−1 are free matrices.

Hence, taking into account (18), we have that (17) becomes

a(w,S) = (ξ(S) − M1− e4,M, e4)

·
(

wδM , wδM−1, . . . , w, 1
)T

t(w,u) = (u − N1,N,0)

·
(

wδN , wδN−1, . . . , w, 1
)T

.

(19)

Therefore, the camera pose of F (w,S,u) is parameterized

by the trajectory abscissa w, the final camera pose (S,u),
and the matrices M and N.

B. Estimating the admissible camera poses

The next step consists of estimating the admissible camera

poses in our uncertain model. Before doing this, let us briefly

review how the camera pose is defined and computed for the

nominal value of the data p, p∗ and A.

Let (S,u) be the camera pose between F and F ∗ defined

as in (13)–(14). Given p, p∗ and A, the pair (S,u) can

be estimated through the essential matrix algorithm or the

homography matrix algorithm relative to a virtual plane in

the case of non-coplanar features supposing n ≥ 8. If the

features are known to be coplanar, the camera pose can be

computed through the homography matrix algorithm if n ≥
4. See for instance [21]–[24] and references therein. These

procedures provide a normalized translational component if

no additional information is available but p, p∗ and A

because, in such a case, the translation can be computed

only up to a scale factor which stands for the unknown

distance between the origins of the F and F ∗. We indicate

the estimate of the camera pose returned by any of these

algorithms as

(Er(p,p∗,A), Et(p,p∗,A)) ∈ SO(3) × R
3. (20)

Now, let us consider the computation of the admissible

camera poses in the uncertain model (5)–(9). This is a

difficult problem because one should, first, repeat the camera

pose estimation an infinite number of times for all possible

true values of the image point correspondences and camera

intrinsic parameters, and, second, describe the set of camera

poses so found in order to handle it in the path-planning.

In order to cope with these difficulties, we estimate the

camera pose only for the extreme values of the uncertainty.

The idea behind this choice is that the extreme values of the

uncertainty will estimate reasonably well the extreme values

of the admissible camera poses, which delimit the whole set

of the admissible camera poses and, therefore, can be used

for robust path-planning.

Specifically, let V be the set

V =
{

(n,n∗,Λ) : ni, n
∗

i ∈ {−η, η}, λi ∈ {λ−

i , λ+

i }
}

(21)

which is the set of vertices of the hyper-rectangle describing

the uncertainty. Let v1, . . . , vm ∈ V be a set of triplets

contained in V for some integer m, and let us denote the ith
triplet vi as vi = (ni,n

∗

i ,Λi). Then, we define the camera

pose (Si,ui) ∈ SO(3)×R
3 associated with the triplet vi as

Si = Er(p̂ − n, p̂∗ − n∗, Â − Λ) (22)

ui = Et(p̂ − n, p̂∗ − n∗, Â− Λ). (23)

The camera poses (S1,u1), . . . , (Sm,um) have the role to

bound the set of admissible camera poses in the uncertain

model (5)–(9), and are obtained by computing the camera

pose associated with each triplet v1, . . . , vm.

The triplets v1, . . . , vm are randomly picked up from V
with the constraint that they must be distinct (in order to

avoid useless copies). The number m of these triplets repre-

sents hence a trade-off between accuracy of the estimation
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of the set of admissible camera poses and complexity of the

procedure, and can be arbitrarily selected.

C. Determining the image trajectory

In this section we describe how typical constraints are

imposed on the parameterized trajectory for our uncertain

model.

Let us consider first the visibility constraint. The image

projection of the jth object point onto the camera frame

F (w,Si,ui) of the ith camera pose can be expressed in

terms of a(w,Si) and t(w,ui) as

di,j(w,Si,ui)pi,j(w,Si,ui) =
AΩ(a(w,Si))

T (vi,j(w,Si,ui) − t(w,ui))
(24)

where pi,j(w,Si,ui) ∈ R
3 is the image point,

di,j(w,S,u) ∈ R is the point depth, and vi,j(w,Si,ui) ∈
R

3 is a parameter-dependent reconstruction of the jth 3D

point qj associated with the camera pose (Si,ui) which

ensures the fulfillment of the boundary conditions
{

pi,j(0,Si,ui) = p̂i − ni

pi,j(1,Si,ui) = p̂∗

i − n∗

i

(25)

where ni,n
∗

i are the vectors of image noise who have

determined (Si,ui) in (22)–(23). Such a reconstruction

vi,j(w,Si,ui) has the form

vi,j(w,Si,ui) = vi,j,0 + vi,j,1w (26)

where vi,j,0,vi,j,1 ∈ R
3 are suitable vectors which can be

found in closed formula via standard least-squares for given

Si,ui, p̂i − ni, p̂
∗

i − n∗

i , Â− Λ. Hence, pi,j(w,Si,ui) is

pi,j(w,Si,ui) =
1

bi,j,3(w,Si,ui)





bi,j,1(w,Si,ui)
bi,j,2(w,Si,ui)
bi,j,3(w,Si,ui)





(27)

where

bi,j,k(w,Si,ui) =

eT
k AΩ(a(w,Si))

T (vi,j(w,Si,ui) − t(w,ui)) .
(28)

This point lies in the field of view of the camera if and only

if there exists γ ≥ 0 such that














x−bi,j,3(w,Si,ui) − bi,j,1(w,Si,ui) ≤ −γ
x+bi,j,3(w,Si,ui) − bi,j,1(w,Si,ui) ≥ γ
y−bi,j,3(w,Si,ui) − bi,j,2(w,Si,ui) ≤ −γ
y+bi,j,3(w,Si,ui) − bi,j,2(w,Si,ui) ≥ γ

(29)

where x−, x+, y−, y+ ∈ R are the limits of the image screen,

and γ ∈ R quantifies the feasibility of the constraint.

Let us consider now the workspace constraint. This con-

straint imposes that the camera must always remain in an

allowed region. Let us describe such a region as

G =
{

x ∈ R
3 : gj(x) ≥ 0, j = 1, . . . , nG

}

(30)

where g1, g2, . . . : R
3 → R are polynomials which describe

the region w.r.t. the desired camera frame F ∗ (since this is

typically a reference location). Then, the camera center of

F (w,Si,ui) w.r.t. F ∗ is given by

Ω(a(w,Si))
T (t(w,ui) − ui) (31)

and, hence, one has to impose that

gj

(

Ω(a(w,Si))
T (t(w,ui) − ui)

)

≥ 0. (32)

The robust path-planning problem is hence:

maximize γ w.r.t. M,N such that,

∀i = 1, . . . ,m ∀w ∈ [0, 1],
(29) holds ∀j = 1, 2 and (32) holds ∀j = 1, . . . , nG

(33)

Let us observe that, while each admissible camera pose

(Si,ui) leads to a different constraint, the parameters to

determine in the path-planning problem (i.e., the matrices

M,N) are common to all these constraints. In fact, these

matrices describe the shape of each admissible trajectory,

which is hence the same for all admissible trajectories.

Therefore, the robust path-planning problem (33) defines

a trajectory which satisfies the visibility constraint for all

considered uncertainties.

Problem (33) is solved by maximizing γ w.r.t. M,N
subject to the constraint (29). Clearly one can terminate the

maximization whenever a pair M,N guaranteeing (29) with

any γ ≥ 0 is found. This problem can be solved through

a search where at each iteration one evaluates the roots of

one-variable polynomials.

Also, let us observe that, by considering large uncertainties

in the model (5)–(7), it is possible that all the admissible

constraints cannot be ensured. Nevertheless, the solution

returned by (33) provides the trajectory which fulfills (29)

with the largest γ, i.e. the trajectory that better than any other

one satisfies all the admissible constraints.

Similarly to what done for the visibility and workspace

constraints, one can take into account joint constraints in

the robust path-planning problem (33). This part is omitted

for conciseness, and the reader is referred to [19] where

the construction of such polynomials is described for the

standard path-planning case.

Once the the robust path-planning problem (33) has been

solved, one builds the image trajectories determined by the

found M,N and by the camera pose relative to the nominal

model, i.e. the image trajectories p0,j(w,S0,u0) defined in

(27) where (S0,u0) is the camera pose corresponding to

the available data given by S0 = Er(p̂, p̂∗, Â) and u0 =
Et(p̂, p̂∗, Â). These image trajectories are lastly tracked by

using an IBVS controller.

IV. EXAMPLE

In this section we illustrate the application of the proposed

approach and report some results. Due to lack of time,

we cannot present experimental results yet. To cope with

this deficiency, we report simulation results obtained while

attempting to emulate real situations, i.e. by supposing that

all the considered data and the final IBVS controller used to

track the planned trajectory are affected by uncertainty.

Let us consider the configuration shown in Figure 1a

where the camera in the initial and desired locations is

observing the 9 large dots of three dices. The problem is

to reach the desired location by avoiding collisions with the
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Fig. 1. (a) Camera frames F, F ∗, observed objects, and obstacles. (b)
Some admissible camera poses in the uncertainty model: each camera is an
admissible location of the initial frame w.r.t. F ∗ (the true initial location is
the blue camera).

two spheres, which represent two obstacles, and by avoiding

occlusions due to these two spheres.

In order to emulate as much as possible real situations,

we consider the following uncertainties:

1) (Image noise) The available points p̂, p̂∗ are obtained

by adding random variables with uniform distribution

in the interval [−1, 1] pixels to each component of the

true values p,p∗. The screen size is 640× 480 pixels.

2) (Intrinsic calibration errors) The available estimate of

the intrinsic parameters matrix and its true value are

Â =





843 0 335
0 760 226
0 0 1



 , A =





800 0 320
0 800 240
0 0 1



 .

3) (Uncertain point depth) The available point depth in

the current camera frame needed to define the Jacobian

in the IBVS controller is obtained via an object recon-

struction through the current camera pose provided by

the essential matrix, and it is hence affected by the

supposed image noise and intrinsic calibration errors;

4) (Extrinsic calibration errors) The available estimate of

the extrinsic camera parameters used to apply IBVS is

θE = (−5, 5, 5)T deg, tE = (10,−10, 10)T mm

where θE , tE are rotation (in exponential coordinates)

and translation of the camera w.r.t. the end-effector

directly controlled (true values: θE = 0, tE = 0).

Now, in order to plan a robust camera trajectory we

introduce the uncertain model (5)–(7), for example with

η = 1 pixel, λ−

i = 90%Âi, λ+

i = 110%Âi

hence considering uncertainty up to ±1 pixel on each com-

ponent of each image point, and up to ±10% on each camera

intrinsic parameter.

The next step is to estimate the admissible camera poses.

We select m = 20 and compute the camera poses (Si,ui) in

(22)–(23) by using the essential matrix algorithm without any

CAD model of the object. Figure 1b shows the admissible

locations of the initial frame w.r.t. F ∗ corresponding to some

of these camera poses.

Hence, we build the visibility and workspace constraints

in (29) and (32). In particular, we model the two spheres as

two redundant boxes in order to avoid that the camera may

pass behind them and hence lose the object points due to

occlusions. In order to do this, we assume that the distance

between two object points is known in order to estimate the

norm of the translation.

Then, we solve the robust path-planning in (33) for δM =
δN = 2, hence finding the matrices M,N which determine

the trajectory (the computational time is less than 4 seconds

on a standard PC). We track this trajectory by using the

IBVS controller in [15] implemented with wrong estimates

as described above, and we obtain the results shown in Figure

2 which reports the followed 3D trajectory, camera view,

and camera coordinates along the trajectory. As we can see,

the imposed constraints are satisfactorily fulfilled in spite

of all present uncertainties, in particular the camera reaches

the desired location by satisfying visibility and avoiding

collisions with/occlusions from the two spheres.

It is worthwhile to mention that, by performing the path-

planning by using only the nominal model, we find that the

followed 3D trajectory collides with one of the spheres.

V. CONCLUSION

We have addressed the problem of performing robust path-

planning, i.e. determining a trajectory that satisfies typical

constraints in the presence of bounded random uncertainty

on the point correspondences and camera intrinsic param-

eters. We have hence proposed a technique for computing

a trajectory that satisfies such constraints for a family of

admissible models. This technique is based firstly on the es-

timation of the set of admissible camera poses, and secondly

on the imposition of the required constraints on different

trajectories corresponding to different admissible camera

poses and parameterized by a common design variable. We
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Fig. 2. (a) Followed 3D trajectory. (b) Camera view. (c–d) Camera
coordinates expressed in F ∗.

have illustrated the proposed technique through simulations

carried out with all typical uncertainties that characterize

a real experiment, which have provided satisfactory and

promising results.

We believe that the ideas introduced in this paper to

provide a robust trajectory may find useful applications also

in other visual servoing problems where the available data

are always affected by uncertainty.
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