Multicast Scheduling in Feedback-based Two-
stage Switch

Bing Hu and Kwan L. Yeung

Department of Electrical and Electronic Engineering
The University of Hong Kong
Hong Kong, PRC
E-mail: {binghu, kyeung}@eee.hku.hk

Abstract — Scalability is of paramount importance in high-speed
switch design. Two limiting factors are the complexity of switch
fabric and the need for a sophisticated central scheduler. In this
paper, we focus on designing a scalable multicast switch. Given the
fact that the majority traffic on the Internet is unicast, a cost-
effective solution is to adopt a unicast switch fabric for handling
both unicast and multicast traffic. Unlike existing approaches, we
choose to base our multicast switch design on the load-balanced
two-stage switch architecture because it does not require a central
scheduler, and its unicast switch fabric only needs to realize N
switch configurations. Specifically, we adopt the feedback-based
two-stage switch architecture [10], because it elegantly solves the
notorious packet mis-sequencing problem, and yet renders an
excellent throughput-delay performance. By slightly modifying the
operation of the original feedback-based two-stage switch, a simple
distributed multicast scheduling algorithm is proposed. Simulation
results show that with packet duplication at both input ports and
middle-stage ports, the proposed multicast scheduling algorithm
significantly cuts down the average packet delay and delay
variation among different copies of the same multicast packet.

Keywords—Feedback-based two-stage switch, scalable multicast
switch, load-balanced switch

I. INTRODUCTION

The migration of broadcasting and multicasting services,
such as cable TV and multimedia-on-demand to packet oriented
networks, will play a dominant role in the near future. These
highly popular applications have the potential of loading up the
Internet. To keep up with the bandwidth demand of such
applications, the next generation of packet switches/routers
need to provide efficient multicast switching and packet
replication.

When a multicast packet arrives at a switch, the set of output
ports the packet destined for, i.e. the packet’s fan-out set, is
retrieved from the local forwarding table (like IP multicast).
The cardinality of the fan-out set, i.e. its fan-out, denotes the
number of copies that the packet should be cloned. Packets
arrived at the same input port and destined for the same fan-out
set belong to the same multicast flow. The total number of
possible multicast (and unicast) flows at an input port is 2"-1.
An admissible multicast traffic pattern requires no over-
subscribed input and output ports. That means the packet arrival
rate at each input port should be less than or equal to its
capacity, or 1 packet/slot. Similarly, the aggregated packet
arrival rate at each output port (after packet duplication) must
also be smaller than or equal to 1 packet/slot. A multicast

This work was supported in part by Cisco Research Center.

switch aims at providing 100% throughput for any admissible
multicast traffic pattern with minimum possible packet delay.

For the sake of scalability, multicast switches are mainly
designed based on input-queued switch architecture, where a
centralized scheduler is responsible for scheduling. Switch
fabrics used can be bufferless [1-5] or buffered [6-9]. For
multicast switches based on bufferless switch fabrics [1-5], in-
switch multicast capability (i.e. in-switch packet duplication
and forwarding) is usually assumed, where an input port can
send a (multicast) packet to multiple output ports in a single
time slot. Such multicast fabrics are more expensive than their
unicast counterparts. Besides, the centralized scheduling
algorithms are usually derived from their unicast counterparts.
Note that even for (simpler) unicast switches, a major
bottleneck is the implementation of the centralized scheduler.

For multicast switches with buffered switch fabrics, they
mainly adopt the buffered crossbar [6-9] as their switch fabrics.
A crossbar switch has N? crosspoints. Each crosspoint requires
a dedicated/expensive in-switch buffer for temporarily storing
packets coming from an input. Nevertheless, the centralized
scheduler is simpler than those with bufferless fabrics, and it
operates in two phases: input arbitration (for dispatching a
packet from an input to a crosspoint buffer), and output
arbitration (for sending a packet from a crosspoint buffer to an
output port). Both arbitration processes rely on the occupancy
of the distributed queues (one at each crosspoint buffer). The
communication overheads for gathering the queue occupancy
are significant.

In short, two limiting factors for high-speed multicast switch
design are the switch fabric complexity and the need for a
sophisticated central scheduler. Given the fact that the majority
traffic on the Internet is unicast, a cost-effective solution is to
use a unicast switch fabric to carry both unicast and multicast
traffic. To this end, we propose to base our multicast switch
design on the load-balanced two-stage switch architecture [11]
because it does not require a central scheduler, and its switch
fabric is only required to realize N switch configurations (as
compared to N! switch configurations for an input-queued
switch). Specifically, we adopt the feedback-based two-stage
switch architecture [10], because it elegantly solves the
notorious packet mis-sequencing problem associated with the
load-balanced switch, and yet renders an excellent throughput-
delay performance. By slightly modifying the operation of the
feedback-based two-stage unicast switch, a simple distributed

978-1-4244-5174-6/09/$26.00 ©2009 IEEE

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 20,2010 at 05:06:27 UTC from IEEE Xplore. Restrictions apply.

multicast scheduling algorithm is proposed. Simulation results
show that with packet duplication at both input ports and
middle-stage ports, our proposed multicast scheduling
algorithm is effective in cutting down both average packet
delay and delay variation among different copies of the same
multicast packet.

The rest of the paper is organized as follows. In the next
section, we review some related work on multicast switch
design. The feedback-based two-stage switch [10] is recapped
in Section IIl. The new multicast scheduling algorithm is
introduced in Section IV and simulation results are presented in
Section V. We conclude the paper in Section VI.

II. RELATED WORK ON MULTICAST SWICTH DESIGN

A. Multicast switches based on bufferless switch fabrics

Multicast switches based on bufferless switch fabrics [1-5]
usually assume in-fabric multicast capability (i.e. in-fabric
packet duplication and forwarding), and require a rather
sophisticated central scheduler. In [1], each switch input port
maintains N+1 virtual queues, N for unicast and one for
multicast. Priority is given to schedule multicast traffic. If there
are still idle inputs/outputs after scheduling multicast packets,
unicast packets are considered to increase switch utilization.
Although a multicast packet can be “split” to send in multiple
time slots, multicast traffic suffers from severe head-of-line
(HOL) blocking due to the single multicast queue.

In [2], the number of multicast queues is increased to m to
reduce HOL blocking. When a multicast packet arrives, it
selects a multicast queue to join in order to balance the loading
among different multicast queues. But packets assigned to
different queues generally have overlapped fan-out sets.
Priority is given to schedule a unicast packet first or a multicast
packet first depending on the service ratio between the two
classes. An iterative algorithm is also adopted to maximize the
throughput in each time slot.

In [3], packet splitting is allowed to further cut down the
HOL blocking. Specifically, each input maintains £
unicast/multicast shared queues, one for each non-overlapped
set of outputs. When a multicast packet arrives and if its fan-out
set intersects with the fan-out sets of multiple queues, packet-
splitting “breaks” the original packet into “smaller” ones, each
with a modified fan-out set (such that no intersection with the
fan-out set of the queue it joins). An iterative algorithm is then
used to maximize the switch throughput. Simulation results
show that high throughput can only be achieved with a large
number of iterations. But a large number of iterations is not
suitable for high-speed implementation.

In [4], the number of unicast/multicast shared pointer queues
increases to k = N, one for each output port (like the classic
VOQs for unicast traffic). When a multicast/unicast packet
arrives, it is time-stamped and stored in a shared memory. Then
its memory address (i.e. a pointer) is stored in all pointer queues
that overlap with the packet’s fan-out set. An iterative
scheduling algorithm based on the timestamps of buffered

packets is designed for maximizing throughput. The major
problem with this approach, again, is its high communication
overheads.

In [5], dynamic queuing policies are studied, where packet
splitting upon arrival is not allowed. The switch needs to
identify active flows and then assign them to different shared
multicast queues based on the current switch load.

B. Buffered crossbar based multicast switches

Buffered crossbar switch architecture [12] is touted for its
technology feasibility and simpler central scheduler. The
scheduling consists of input arbitration (for dispatching a
packet from an input to a crosspoint buffer), and output
arbitration (for sending a packet from a crosspoint buffer to an
output port). Both arbitration processes rely on accurate
knowledge of distributed queues (one at each crosspoint buffer).
But collecting queue occupancy may incur high communication
overheads.

Buffered crossbar has been extended to support multicast
traffic [6-9]. MURS [6] gives priority to schedule unicast and
multicast traffic in a round robin fashion. Specifically, if unicast
gets priority in time slot ¢, unicast traffic will be scheduled first.
If there are still idle outputs after scheduling unicast traffic,
multicast traffic is considered. Then in slot #+1, multicast traffic
gets the scheduling priority.

To reduce the hardware cost, I-SMCB [7] and O-SMCB [8]
aim at cutting down the crosspoint buffers from N to N*/2. The
key idea is to share one crosspoint buffer by two adjacent input
ports [7] or two adjacent output ports [8]. But such a hardware
cost reduction is offset by its throughput degradation. In [9], the
theoretical relationship between throughput performance and
crosspoint buffer size is studied under a special multicast traffic
pattern. It is concluded that to avoid throughput degradation,
the amount of buffer to be deployed at every crosspoint must
scale logarithmically with the switch size N.

III.

A load-balanced two-stage unicast switch [11] does not
require a central scheduler, yields close to 100% throughput,
and has very simple switch fabric. But it faces the problem of
packet mis-sequencing due to the variable delay a packet can
experience at middle-stage ports. Among various efforts in
solving the packet mis-sequencing problem, the feedback-based
two-stage switch architecture [10] provides an elegant solution
while not sacrificing the switch’s throughput-delay
performance. Before extending the feedback-based two-stage
switch to effectively support multicast traffic, we summarize its
basic operations in this section.

An NxN feedback-based two-stage switch [10] is shown in
Fig. 1, where VOQ,(i,k) represents the Virtual Output Queue
(VOQ) at input port i with packets destined for output &, and
VOQ,(j,k) denotes the VOQ at middle-stage port j with packets
destined for output k. Each VOQ,(j,k) only requires a single
packet buffer. In a load-balanced two-stage switch [11], each of
the two switch fabrics is configured by a pre-determined and

FEEDBACK-BASED TWO-STAGE SWITCH

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 20,2010 at 05:06:27 UTC from IEEE Xplore. Restrictions apply.

periodic sequence of N switch configurations. The only
requirement is that each input visits each output (of the same
switch fabric) exactly once in the sequence. Accordingly, the
switch fabric only needs to realize N switch configurations
instead of V! for an input-queued switch.

Input Port Middle-Stage Port

Output Port
VOQOO || VOQ;(OQO) . .

B e Bl iy [ESRALY

VOQ,(0,N-1), VOQ,(0,N-1)
VOQ,(N-1,0) Nl VOQ;(N—I,O) Nl o
-5 — > —

VOQ,(N-1,N-1) VOQ;(N—I.N—l)

First-stage Switch PRPROS Second-stage Switch

Fig. 1: Feedback-based two-stage switch.

Input Middle-stage Output

0O-—- o\\ / O\\ / Q\ /,O—O

10--- O\\L/(% Q))(),% O’(\(,O——O

20--- o\/[\\ o/)(\‘ o//\(o——o

30--- o @ o’ ‘o—o
t=1 t=2 t=3

t=0
Fig. 2: Two sequences of configurations for a 4 x 4 feedback-based two-stage
switch

/

The feedback-based two-stage switch [10] has some
additional requirements on the two sequences of configurations
to be used by the two switch fabrics in Fig. 1. An example is
shown in Fig. 2, where the dashed lines show the configurations
used by the first fabric and the solid lines show the
configurations used by the second fabric. The first
configuration sequence is constructed such that input port i is
connected to middle-stage port j at time slot #, where j = (i +1¢)
mod N. The second configuration sequence is constructed based
on the property of staggered symmetry, which refers to the fact
that for any middle-stage port j, if it is connected to output & at
time slot ¢, then at next slot (#+1) input k& is connected to the
same middle-stage port ;.

Further note that each VOQ,(j,k) in the feedback-based two-
stage switch (Fig. 1) only has a single packet buffer. As such,
an N-bit vector is sufficient to denote the occupancy of the N
VOQy(j,k)’s at each middle-stage port. This vector is
piggybacked onto the data packet sent to output %, and is then
made available to input k at negligible cost, because both input
k and output £ reside on the same switch linecard. Due to the
staggered symmetry property of the two sequences of
configurations used, input £ will connect to middle port j in the
next time slot. Therefore, the received occupancy vector
provides the just-in-time feedback to the local packet scheduler
at input k. Without loss of generality, the local packet scheduler
at each input port is based on longest queue first (LQF), where
a packet from the longest VOQ,(i,k) is selected for sending if
the corresponding middle-stage VOQ,(j,k) is empty. The timing
diagram in Fig. 3 further shows the pipelined packet
transmission in the two switch fabrics. Note that the occupancy

vector is generated by taking the in-flight packet in the first
fabric into account.

In each time slot, the (pre-determined) configuration in the
second stage switch fabric allows up to N packets to be
delivered to their respective outputs. The in-order packet
delivery is guaranteed because every packet belonging to the
same flow will experience the same amount of middle-stage
port delay, no matter which middle-stage port it passes through.
For details, please refer to [10,13].

Input port Middle-stage Output port

\L Propagafio: »

Transmission Delay

Time

Packet

Occup. vector

Fig. 3: The timing diagram for feedback-based two-stage switch

1101

Switch reconfiguration

IV. MULTICAST SCHEDULING USING FEEDBACK-BASED TWO-
STAGE SWITCH

A. Multicast scheduling

We extend the feedback-based two-stage switch in Fig. 1 to
effectively support multicast traffic. At each input port, in
addition to the N unicast VOQ(i,k)’s, we add another m shared
queues for multicast (not shown). We adopt a simple queuing
policy that divides the outputs into 7 equal and non-overlapped
sets (assuming N/m is an integer), where set x (1<x<m)
contains outputs {(x-1)N/m, (x-1)N/m+1,...x-N/m-1}. Packet
splitting is used to “split” multicast packets to join different
queues. So when a multicast packet arrives and if its fan-out set
intersects with the fan-out sets of multiple queues, then the
original packet is “split” into “smaller” ones, each with a
modified fan-out set (which will not intersect with the fan-out
set of the target queue). Note that the packet after splitting
usually remains as a multicast packet but with a smaller fan-out
set. It is worth to note that when m=1, all multicast packets
share the same multicast queue; and when m=N, packet splitting
converts all multicast packets into unicast.

Without loss of generality, we assume the two stages of
switch fabrics are configured using the two sequences of
configurations shown in Fig. 2. In each time slot, based on the
received occupancy vector of middle-stage port k, input i
selects a packet for sending among its N+m local queues.
Priority is given to schedule multicast traffic by examining the
m multicast queues first. Specifically, the HOL packet whose
fan-out set has the largest overlap with the set of empty queues
at middle-port £ is selected. (If no overlap, a unicast packet is
selected instead.) A copy of the selected packet is sent to the
middle-port together with an N-bit duplication vector, which
identifies the overlap between the empty VOQ,(j,k)’s and the
packet fan-out set. Then, the fan-out set of the selected
multicast packet is updated to exclude those in the duplication
vector. If the updated fan-out set is empty, the selected
multicast packet is removed from the multicast queue. When a

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 20,2010 at 05:06:27 UTC from IEEE Xplore. Restrictions apply.

packet arrives at the middle-stage port, it will be cloned and
stored at the corresponding empty (unicast) VOQ,(j,k)’s based
on the duplication vector.

If there are no backlogged multicast packets or none of them
can be selected (due to zero-overlap between the empty
VOQ,(j,k)’s and any multicast packet’s fan-out set), we select a
unicast packet for sending using the LQF scheduler. In this case,
the duplication vector is set to all 0’s. Note that the packet
transmission in the second-stage switch fabric is the same as in
a unicast switch [10]. Following the pre-determined sequence
of configurations, when middle-stage port j connects to output &,
the packet (if any) at VOQ(j,k) is sent together with the
occupancy vector of middle-port ;.

B. Discussions

In our proposed multicast scheduling algorithm, packet
duplication takes place at both input ports and middle-stage
ports. Packet duplication at input ports “breaks” a multicast
packet into smaller ones. Since multicast packets in different
multicast queues have non-overlapped fan-out sets, both HOL
blocking and output contention can be eased. Besides, storing
multicast packets at inputs reduces the input port buffer
requirement. Since both two switch fabrics in Fig. 1 are unicast,
a multicast packet is sent in the first fabric as a unicast packet.
In-fabric duplication (as [1-5]) is not required. When a split
multicast packet arrives a middle-stage port, the second stage
packet duplication occurs, which converts all multicast packets
into unicast for delivering by the second switch fabric.

When there is only a single multicast queue (m = 1), all
packet duplication is carried out at middle-stage ports. Under
light traffic, input port queue size can be minimized. But for
heavy traffic, the switch will experience severe HOL blocking
because a multicast packet will not be removed (from the only
queue) until all its copies are sent. With m > 1, packet splitting
ensures that packet duplication occurs partially at input ports
and packets in different queues have non-overlapped
destinations. This reduces the HOL blocking. Let the switch
size be N. When m=N, all packet duplication is carried out at
input ports. In this case, there is no need for “multicast” queues
because they only store unicast packets. In other words, each
input port only needs to maintain N unicast queues. The HOL
blocking is also completely eliminated.

Unlike the feedback-based two-stage unicast switch [10], the
load-balancing in the first stage switch is based on multicast
packets. Extensive simulation results show that the final unicast

traffic presented to the second stage switch is generally uniform.

This accredits to the use of the single-packet-buffer per middle-
stage VOQ,(j,k), and the efficient feedback mechanism for
reporting the middle-stage port occupancy. To further increase
the buffer utilization, we can use pointer queues [4] to
separately store a packet and its memory address. So a multicast
packet is only required to store once at an input port, and an
entry in VOQ(i,k) only contains the memory address of the
packet. Likewise, this can be applied to buffers at middle-stage
ports.

The proposed multicast scheduling algorithm inherits the in-
order packet delivery property from its unicast counterpart [10].
This is because we can treat each distributary of a multicast
flow as a unicast flow. In [10], it has been shown that packets
belonging to the same unicast flow always experience the same
middle-stage port delay. Therefore, when they arrive at the
output port, they will be in order. If packets belonging to every
distributary flow orderly arrive at their respective outputs, the
corresponding multicast flow will not experience packet mis-
sequencing problem.

V. PERFORMANCE EVALUATIONS

To the best of our knowledge, our proposed multicast
scheduling is the only one that does not rely on a central
scheduler, and its switch fabric only needs to realize N switch
configurations (instead of N!). To study its performance, we
vary the number of multicast queues (m) at each input port. In
our simulations, we try to distinguish between the overall
average delay experienced by all copies (7.) of a multicast
packet and the average delay experienced by the last-copy (T,)
of all multicast packets. T, corresponds to the worst-case delay
and provides us some insight on the delay variation among
different copies of a multicast packet. For multicast packets
with fan-out £, T(k) and T,(k) denote their average delay and
average last-copy delay respectively. They show the fairness
performance in handling packets with different fan-outs.
Although we only present simulation results for switch with
size N=32 below, the same conclusions and observations apply
for other switch sizes.

A. Bernoulli uniform mixing traffic

300
—&— Tcfor m=32
—8— Tp for m=32
*— Tc for m=1
Tp for m=1]
20| Tc for m=2 “‘ a
Tp for m=2 (
9
[
200} / / _
: 7
g e
o |
w f
o /
£ 150 / B
g Dg,/
a '/
[1$
/i
100 / m'/ 3
A8
/?/'f‘/ f
- f
i
s0f % i
g [
a5 =
¥ —e———
0 1 1 i 1 Il 1 1 1 1
0 0.1 02 03 04 05 06 07 08 09 1

Output Load A

Fig. 4: Delay vs output load, with uniform mixing traffic

At every time slot for each input, a packet arrives with
probability p (i.e. input load is p). If a packet arrives, it has
equal probability of being unicast or multicast, i.e »=0.5. If the
packet is unicast, it destines to each output with equal

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 20,2010 at 05:06:27 UTC from IEEE Xplore. Restrictions apply.

probability. If the packet is multicast, its fan-out size & is
randomly selected between [2, 32], and the identity of each
output in the fan-out set is also randomly selected from all
output ports. Fig. 4 shows the switch delay performance against
switch output load A, where

A = p[0.5+0.5(2+32)/2] = 9p. €))
To ensure the traffic in our simulations is always admissible,
we must have A <1 (or p <1/9).

From the delay-throughput performance in Fig. 4, we can see
that for output load A < 0.85, m=1 and m=2 provide a lower
average packet delay than m=32. At A = 0.7, m=2 cuts down the
overall average delay (7;) by 58.8% and the average last-copy
delay T, by 51%. When A >0.85, m=32 (packet duplication at
input ports only) yields a better/lower delay performance
because there is no HOL blocking, while the HOL in m=1
(packet duplication at middle-stage ports only) is intensified
with the traffic load. This also explains why m=2 (packet
duplication at both input and middle-stage ports) is better than
m=1.

Fig. 5 shows the delay performance against different fan-outs,
while fixing A = 0.7. When m=2, we can see that 7.(k), the
average delay for packets with fan-out %, is the lowest, and
remains almost constant at 20 slots as fan-out £ increases. Even
T,(k), the average last-copy delay for packets with fan-out £,
increases rather slowly with k. This shows that m=2 is fair in
handling packets with different fan-outs. On the contrary, with
m=32, both T,(k) and T,(k) increase more rapidly with fan-out
size.

110

100

90

80
701
60 - L

50} =4

Delay(time slots)
|

a0l

30} =

20

15
Fan-outk

Fig. 5: Delay vs fan-out, with uniform mixing traffic at A=0.7

B. Bursty mixing traffic

We use the same traffic generator except that bursty arrivals
are modeled by the ON/OFF traffic model. In the OFF state, no
packet arrives. In the ON state, a packet arrival is generated in
every time slot, which has equal probability of being unicast or
multicast. Given the average input port load p and average burst

size s, the state transition probability from OFF to ON is p/[s(1-
p)], and from ON to OFF is 1/s. Simulation results in Figs. 6 &
7 are based on s=30 packets. Again, we can express the
aggregated load at each output port by (1).

1400
—&—Tcfor m=32

—8— Tp for m=32
Tc for m=1
Tp for m=1
—+—Tcfor m=2
Tp for m=2

1200

1000

800 |-

600 |-

Delay(time slots)

==
k™
— 77%1_:?)_;%
02 03 04 05
Output Load A

) =
0 0.1

! 1 1 1

06 07

Fig. 6: Delay vs output load, with bursty mixing traffic

Delay(time slots)

20

10 s

0 1 I I I I
15 20 25

Fan-out k

30

Fig. 7: Delay vs fan-out, with bursty mixing traffic at A=0.7

From Fig. 6, the performance gap between m=2 and m=32 is
much wider than that in Fig. 4. This is because bursty traffic
causes more unevenly distributed queue sizes in the input ports
when m=32. With m=2, packet duplication mainly occurs at
middle-stage ports. In this case, both input port queue size and
input port delay are reduced. With m=1, packet duplication only
occurs at middle-stage ports. The throughput is suffered from
the severe HOL blocking. From Fig. 7, we can again see that
m=2 is fair in handling packets with different fan-outs.
Although m=32 also gives improved fairness performance, this

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 20,2010 at 05:06:27 UTC from IEEE Xplore. Restrictions apply.

is at the cost of very high average delay (7.(k)> 750 slots).

C. Binomial mixing traffic

300 T T
—&—Tcfor m=32

—8— Tp for m=32
*— Tc for m=1
Tp for m=1
—+—Tcform=2
Tp for m=2

250

[

o

=]
T

Delay(time slots)
o
o
T

o
S
T

50

1
0 0.1 02 03 04 05 06 07 08 09 1
Output Load A

Fig. 8: Delay vs output load, with non-uniform binomial mixing traffic

Binomial mixing traffic [5] is the same as the Bernoulli
uniform mixing traffic model except in generating the fan-out
size of a multicast packet. Let P, be the probability of
generating a fan-out set with size k. The k destinations are
uniformly distributed over all output ports. The value of % is
chosen according to a non-uniform binomial distribution, with
mean fan-out A:

P =Cha) -2y
In our simulations, we set mean fan-out # = 17. Then the output
load A is:

A =p[0.5+0.5x17]1=9p

The delay performance shown in Fig. 8 is comparable with
that in Fig. 4. This is because the two traffic models are quite
similar. Specifically, they have the same Bernoulli packet
arrival, same average fan-out size of 17, and their fan-out sets
are all uniformly selected from all outputs. We skip the figure
of delay vs fan-out because it has a similar trend as that in Fig.
5.

From the simulation results above, we can see that setting
m=2 is sensible as it ensures sufficiently low packet delay and
high throughput. Besides, the extra complexity involved in
maintaining two multicast queues is marginal.

VI. CONCLUSIONS

In this paper, we focused on designing a scalable multicast
switch based on the feedback-based two-stage switch
architecture. The feedback-based switch is selected because it
does not require a central scheduler, its switch fabric is very
simple, and it elegantly solves the notorious packet mis-
sequencing problem without sacrificing the switch throughput-
delay performance. By slightly modifying the operation of the

feedback-based two-stage unicast switch, a simple distributed
multicast scheduling algorithm was proposed. Simulation
results showed that with packet duplication at both input ports
and middle-stage ports, the proposed multicast scheduling
algorithm is effective in cutting down both average packet
delay and delay variation among different copies of the same
multicast packet.

REFERENCES

[11 M. Andrews, S. Khanna and K. Kumaran, ‘Integrated scheduling of
unicast and multicast traffic in an input-queued switch, INFOCOM, pp.
1144-1151, March 1999, New York, USA.

[2] W.Y.Zhu and M. Song, ‘Integration of unicast and multicast scheduling
in input-queued packet switches,” Computer networks, Vol. 50, pp. 667-
687, 2006.

[3] S. Gupta and A. Aziz, “Multicast scheduling for switches with multiple
queues”, [EEE Hot Interconnects’02, August 2002, Stanford, CA, USA

[4] D.Panand Y.Y. Yang, “FIFO-based multicast scheduling algorithm for
virtual output queued packet switches,” IEEE Tran. on Computers, Vol.
54, pp. 1283 — 1297, Oct. 2005.

[S] A. Bianco, P. Giaccone, C. Piglione and S. Sessa, “Practical algorithms
for multicast support in input queued switches” IEEE Workshop on High
Performance Switching and Routing, June 2006, Poznan, Poland.

[6] L.Mhamdi and S. Vassiliadis, “Integrating uni- and multicast scheduling
in buffered crossbar switches,” I[EEE Workshop on High Performance
Switching and Routing, June 2006, Poznan, Poland.

[77 Z. Q. Dong and R. R. Cessa, “Packet switching and replication of
multicast traffic by crosspoint buffered packet switches,” IEEE Workshop
on High Performance Switching and Routing, May 2007, New York, USA.

[8] Z. Q. Dong and R. R. Cessa, “Input- and output-based shared-memory
crosspoint-buffered packet switches for multicast traffic switching and
replication,” ICC 2008, May 2008, Beijing, China.

[9] P. Giaccone and E. Leonardi, “Asymptotic performance limits of switches
with buffered crossbars supporting multicast traffic,” /EEE Tran. on
Information theory, Vol. 54, No. 2, Feb. 2008

[10] K. L. Yeung, B. Hu and N.H. Liu, “A novel feedback mechanism for load
balanced two-stage switches,” ICC 2007, June 2007, Glasgow, Scotland.

[11] C. S. Chang, D. S. Lee and Y. S. Jou, “Load balanced Birkhoff-von
Neumann switches, part I: one-stage buffering,” Computer
Communications, Vol. 25, pp. 611 — 622, 2002.

[12] K. Yoshigoe and K. J. Christensen, “An evolution to crossbar switches
with virtual output queueing and buffered crosspoint,” I[EEE Network, vol.
17, no. 5, pp. 48-56, Sep. 2003.

[13] B.Huand K. L. Yeung, “On joint sequence design for load-balanced two-
stage switch architecture,” IEEE Workshop on High Performance
Switching and Routing, May 2008, Shanghai, China.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on July 20,2010 at 05:06:27 UTC from IEEE Xplore. Restrictions apply.

