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Abstract—This paper addresses the static output feedback
(SOF) H∞ control for continuous-time linear systems with an
unknown input delay from a novel perspective. New equiva-
lent characterizations on the stability and H∞ performance of
the closed-loop system are established in terms of nonlinear
matrix inequalities with free parametrization matrices. These
delay-dependent characterizations possess a special monotonic
structure, which leads to linearized iterative computation. The
effectiveness and merits of the proposed approach are shown
through numerical examples.

I. INTRODUCTION

It is well known that even a simple linear system with
a single delay imposes difficulties and restrictions on the
design of a stabilization controller. The stabilization problem
of linear systems with an unknown delay in the input signal
is still under great attention as shown in [2], [13], [16]
(and the references therein). For this type of systems, many
stabilization methods have been developed via state feedback
controllers. An easy way to deal with this problem is to
reduce it to an ordinary delay-free system by the Artstein
model reduction method in [1], [10]. However, the complete
transformation in Artstein model reduction is valid only for a
fully known system, and to implement a stabilizing controller
with distributed system state seems to be much difficult. The
bounded state feedback controllers, designed both in [5] and
[11], that globally stabilize an oscillator system involve a
saturation function also require an explicit knowledge of the
size of the input delay. It is unfortunate that full access to the
state vector is not always possible, while a controller based on
available output measurements has to be used in such cases.

Another difficulty is that the conditions for the delay-
dependent output feedback stabilization and controller design
cannot be expressed in terms of strict linear matrix inequalities
(LMIs). Geromel et al. in [9] modified the cone complemen-
tarity linearization (CCL) algorithm to solve inversely cou-
pled Lyapunov inequality problems under certain additional
assumptions, and Moon et al. [12] devised an LMI-based
iterative algorithm to solve the problem of designing a delay-
dependent state feedback stabilization controller. Recently,
Gao et al. tried to employ this method to deal with the output
feedback stabilization of discrete-time systems with a time-
varying state delay in [8]. However, as far as we know, there

are no effective methods to resolve the coupling of controller
gain with not only the state matrix but also the input matrix
while the delay term appearing in the input signal, unless
introducing extra restrictions on the Lyapunov matrix (for
example ([6], [7]) referring to state feedback control of linear
systems with state delays).

Related to the background mentioned above, a natural
question to ask is how to design a static output feedback
controller to stabilize an unknown input-delayed system. It
is also expected that the controller can guarantee certain
performance requirements. This paper discusses in detail the
output feedback stabilization problem for linear input-delayed
systems using a new approach in the state space. In Section
2, a new characterization of static output feedback (SOF)
stabilization is established in terms of matrix inequalities. The
advantage of such a characterization is twofold. First, the
decoupling of the input and the gain-output matrix enables
us to parameterize the controller matrix by a free matrix
parameter. Second, the separation of the Lyapunov matrix and
the controller matrix avoids imposing any constraint on the
Lyapunov matrix when the controller matrix is parametrized.
Besides, on that basis, no coupling terms of controller gain and
the redundant matrices introduced in the free-weighting matrix
method appear, due to the use of Finsler’s Lemma. Based on
the new characterization for SOF control, H∞ performance
analysis is obtained in Section 3. To obtain the controller gain
matrices, an iterative algorithm is given in Section 4 to solve
the nonlinear matrix inequalities. The effectiveness and merits
of the proposed approach are illustrated in Section 5 through
numerical examples.
Notation: Throughout this paper, let R be the set of real
numbers; Rn denotes the n-dimensional Euclidean space;
Rm×n is the set of m×n matrices for which all entries belong
to R. The space of functions in Rq that are square Lebesgue
integrable over [0 ∞) is denoted by Lq

2[0, ∞) with the norm
‖ · ‖L2 .

For real symmetric matrices X and Y , the notation X ≥ Y
(respectively, X > Y ) means that the matrix X−Y is positive
semi-definite (respectively, positive definite). 0 is a null matrix
and I is the identity matrix with an appropriate dimension in a
matrix inequality. The superscript “T ” represents the transpose
of the matrix and the asterisk “∗” in a matrix stands the term
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which is induced by symmetry. col{·} denotes a matrix column
with blocks given by the matrices in {·}. A block diagonal
matrix with diagonal blocks A1, A2, . . ., Ar will be denoted
by diag{A1, A2, . . . , Ar}. Matrices, if their dimensions are not
explicitly stated, are assumed to have compatible dimensions
for algebraic operations.

II. NEW CLOSED-LOOP STABILITY CHARACTERIZATION

Consider the following linear time-invariant system with
delayed and non-delayed inputs,

(Σ0) : ẋ(t) = Ax(t) + B0u(t) + B1u(t− d)
y(t) = Cx(t)

where x(t) ∈ Rn is the state with the initial function φ(t)
when t ∈ [−d, 0], and y(t) is the measurement output. Here,
A, B0, B1, C are the system state, the control input and
the measured output matrices, respectively, and d > 0 is
an unknown constant input delay. An SOF controller under
consideration is of the form

(C1) : u(t) = Ky(t)

where K is the controller gain to be designed. When SOF
controller (C1) is applied to (Σ0), the closed-loop system is
given by

(Σ0c1) : ẋ(t) = Acx(t) + B1KCx(t− d)

where Ac = A + B0KC. We provide a theorem which
will be used in the sequel. Construct a Lyapunov-Krasovskii
functional with matrices P1 > 0, R > 0, and Q > 0,

V (xt) = xT (t)P1x(t) +
∫ 0

−d

∫ t

t+θ

ẋT (s)Rẋ(s) dsdθ

+
∫ t

t−d

xT (s)Qx(s) ds (1)

where xt is defined by xt(θ) = x(t + θ) with −d ≤ θ ≤ 0.
Theorem 1: Closed-loop system (Σ0c1) is asymptotically

stable if there exist matrices P > 0, R > 0, Q > 0 and a
scalar µ ∈ R satisfying




PT A + AT P + T1 + dAT RA + µ
[

I 0
]

∗
∗

PB1 + dAT RB1 − µ
[

I 0
] −µI

T2 + dBT
1 RB1 + µ

[
I 0

]
µI

∗ µI − d−1R


 < 0 (2)

where P =
[

P1 0
−P2KC P2

]
, A =

[
A B0

KC −I

]
, B1 =

[
0 B1

0 0

]
, R =

[
R 0
0 1

4dP2

]
, I =

[
I
0

]
, T1 =

[
Q 0
0 0

]
, and T2 =

[ −Q− CT KT P2KC CT KT P2

∗ −P2

]
.

Proof: The derivative of V (xt) in (1) along the solution of
system (Σ0c1) with respect to t is given by

V̇ (xt)
= xT (t)[P1Ac + AT

c P1]x(t) + 2xT (t)P1B1KCx(t− d)

+dẋT (t)Rẋ(t)−
∫ t

t−d

ẋT (s)Rẋ(s) ds

+xT (t)Qx(t)− xT (t− d)Qx(t− d)
≤ xT (t)[P1Ac + AT

c P1]x(t)
+2xT (t)P1B1KCx(t− d) + dẋT (t)Rẋ(t)

−d−1

[(∫ t

t−d

ẋ(s) ds

)T

R

(∫ t

t−d

ẋ(s) ds

)]

+xT (t)Qx(t)− xT (t− d)Qx(t− d) (3)

Note that, Jensen’s integral inequality [4] has been used to
obtain (3). Thus, V̇ (xt) < 0 if

ξT (t)
[

Ω1 + dΩT
2 RΩ2 0

0 −d−1R

]
ξ(t) < 0 (4)

where ξ(t) = col{x(t), x(t− d),
∫ t

t−d
ẋ(s) ds}, and

Ω1 =
[

P1Ac + AT
c P1 + Q P1B1KC
∗ −Q

]

Ω2 =
[

Ac B1KC
]

By the Newton-Leibniz formula we have x(t) − x(t − d) −∫ t

t−d
ẋ(s) ds = 0, that is,

[
I −I −I

]
ξ(t) = 0. By

Finsler’s Lemma [14], this equality and (4) hold together if
and only if there exists a scalar µ ∈ R such that

[
Ω1 + dΩT

2 RΩ2 + µJT J −µJT

∗ µI − d−1R

]
< 0 (5)

where J =
[

I −I
]
. This implies that system (Σ0c1) is

asymptotically stable. Then comes the proof of the equivalence
of (2) and (5) by defining B = [ B0 B1 ] and two nonsin-

gular matrices G1 = diag{S̄, S̄} with S̄ =
[

I 0
KC I

]
, and

G2 =




I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I




Pre- and post-multiplying (2) with diag{GT
2 GT

1 , I} and
diag{G1G2, I}, respectively, by algebraic manipulation, we
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have

GT
2

[
S̄T (PT A + AT P + T1)S̄ S̄T PB1S̄

∗ S̄T T2S̄

]
G2

= GT
2




P1Ac + AT
c P1 + Q P1B0

∗ −2P2

∗
P1B1KC P1B1

0 0
−Q 0
∗ −P2


G2

=




Ω1

[
BT P1 0

]T

∗ −2P2 0
0 −P2




GT
2

[
S̄T AT

S̄T BT
1

] [
R 0
0 1

4dP2

] [
AS̄ B1S̄

]
G2

= GT
2




AT
c 0

BT
0 −I

CT KT BT
1 0

BT
1 0




[
R 0
0 1

4dP2

]

[
Ac B0 B1KC B1

0 −I 0 0

]
G2

=




ΩT
2 0

BT

[ −I
0

]



[
R 0
0 1

4dP2

]

×



Ω2 B

0
[ −I

0

]T




=




ΩT
2 RΩ2 ΩT

2 RB

∗ BT RB +
[

1
4dP2 0

0 0

]



and
[

IT −IT
]
G1G2 =

[
J 0 0

]
. That is to say,

inequality (2) is equivalent to



Ω1 + dΩT
2 RΩ2 + µJT J

[
BT P1 0

]T + dΩT
2 RB

∗ dBT RB +
[ − 7

4P2 0
0 −P2

]

∗ ∗
−µJT

0
µI − d−1R


 < 0

which, with congruent transformation, is equivalent to



Ω1 + dΩT
2 RΩ2 + µJT J −µJT

∗ µI − d−1R
∗ ∗

[
BT P1 0

]T + dΩT
2 RB

0

dBT RB +
[ − 7

4P2 0
0 −P2

]


 < 0

Notice that only the lower diagonal block matrix in the left
hand side of the above inequality is dependent on the matrix

P2 > 0. There exists a sufficiently large P2 > 0 such that (2)
is equivalent to (5). That completes the proof. ¤

Remark 1: The advantage of Theorem 1 lies in not only
the separation of B0, B1 and KC, but also in the separation
of the Lyapunov matrix P1 > 0 and the controller matrix
K. This feature enables us to parametrize K by a free
matrix P2 > 0, independent of the Lyapunov matrix P1

used for checking stability or performances directly. Therefore,
less conservative results will be obtained since no additional
constraints have been introduced to deal with the nonconvex
terms of the Lyapunov matrix and the controller matrix when
it is parametrized.

III. H∞ CONTROL

Consider the following continuous-time systems with input
delay:

(Σ1) : ẋ(t) = Ax(t) + B0u(t) + B1u(t− d) + Eω(t)
z(t) = Czx(t) + Du(t)
y(t) = Cx(t)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, z(t) ∈ Rl and
ω(t) ∈ Rq are the system state, exogenous input, measured
output, regulated output and disturbance input, respectively,
and A, B0, B1, E, Cz , D, C are constant system matrices with
appropriate dimensions. When t ∈ [−d, 0], x(t) = φ(t), where
d > 0 is a constant lumped delay. A detailed discussion on
how to apply the proposed output feedback characterization on
H∞ performance control will be conducted for the following
closed-loop system (Σ1c1), which is derived from (Σ1) via the
SOF controller (C1):

(Σ1c1) : ẋ(t) = Acx(t) + B1KCx(t− d) + Eω(t)
z(t) = Ccx(t)

where Ac = A + B0KC, and Cc = Cz + DKC. Define
ς(t) = col

{
x(t), x(t− d), ω(t),

∫ t

t−d
ẋ(s) ds

}
.

For the closed-loop system (Σ1c1) and a prescribed scalar
γ∞ > 0, we define the performance index

J(ω) =
∫ ∞

0

(γ−1
∞ zT (s)z(s)− γ∞ωT (s)ω(s))ds

for all nonzero ω ∈ Lq
2[0, ∞).

Theorem 2: Consider the closed-loop system (Σ1c1). For a
prescribed scalar γ∞ > 0, the cost function J(ω) < 0 for all
nonzero ω ∈ Lq

2[0, ∞), if there exist P1 > 0, P2 > 0, R > 0,
Q > 0, and a scalar µ ∈ R satisfying

ΓS
∞ =

[
Λ1∞ + dΛT

2 RΛ2 + µJT J −µJT

∗ µI − d−1R

]
< 0

(6)
where

Λ1∞ =




PT A + AT P
+T1 + γ−1

∞ CT
c Cc

PT B1 PT E

∗ T2 0
∗ ∗ −γ∞I




Λ2 =
[

A B1 E
]
, J =

[
I −I 0

]
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with Cc = [ Cz D ], E = [ ET 0 ]T , and P, A, B1, T1,
T2, I and R are defined as in Theorem 1.
Proof: Using the arguments in the previous subsec-
tion, we apply the Lyapunov-Krasovskii functional V (xt)
defined in (1) and require V̇ (xt) + γ−1

∞ zT (t)z(t) −
γ∞ωT (t)ω(t) ≤ ςT (t)ΓS

∞ς(t) < 0 for all ς(t) such that[
I −I 0 −I

]
ς(t) = 0, where

ΓS
∞ ,

[
Λ1∞ + dΛT

2 RΛ2 + µJT J −µJT

∗ µI − d−1R

]

Λ1∞ =




P1Ac + AT
c P1

+Q + γ−1
∞ CT

c Cc
P1B1KC P1E

∗ −Q 0
∗ ∗ −γ∞I




Λ2 =
[

Ac B1KC E
]
, J =

[
I −I 0

]
.

We will establish that ΓS
∞ < 0 is equivalent to ΓS

∞ < 0 by
defining two nonsingular matrices G1 = diag{S̄, S̄, I} with

S̄ =
[

I 0
KC I

]
, and

G2 =




I 0 0 0 0
0 0 0 I 0
0 I 0 0 0
0 0 0 0 I
0 0 I 0 0




A similar process as that in the proof of Theorem 1, by
pre- and post-multiplying (6) with diag{GT

2 GT
1 , I} and

diag{G1G2, I}, respectively,

ΓS
∞ < 0 is changed to

[
ΓS
∞ Υ1

∗ Υ2

]
< 0 where

Υ1 =




P1B0 + γ−1
∞ CT

c D P1B1

0 0
0 0




+dΛT
2 R

[
B1 B2

]

Υ2 = d

[
BT

1

BT
2

]
R

[
B1 B2

]

+
[ − 7

4P2 + γ−1
∞ DT D 0

0 −P2

]

As only the lower diagonal block matrix Υ2 is dependent on
the matrix P2 > 0, there exists a sufficiently large matrix
P2 > 0 such that ΓS

∞ < 0 is equivalent to ΓS
∞ < 0. That

completes the proof. ¤

IV. CONTROLLER PARAMETRIZATION AND COMPUTATION

In this section, we are now in a position to establish a new
sufficient condition for SOF H∞ control of system (Σ1) and
to compute controller gains via an effective algorithm.

Theorem 3: Closed-loop system (Σ1c1) is asymptotically
stable, if there exist matrices P1 > 0, P2 > 0, R > 0, Q > 0,
L, N and a scalar µ ∈ R such that

Φ ,




Φ1 + µJT J −µJT ΦT
2

∗ µI − d−1R 0
∗ ∗ Φ3


 < 0 (7)

where

Φ1 =




Φ11 Φ12 Φ13

∗ Φ22 0
∗ ∗ −γ∞I




Φ11 =




P1A + AT P1 + Q
+2M + γ−1

∞ CT
z Cz

P1B0 + 2CT LT

+γ−1
∞ CT

z D
∗ −2P2 + γ−1

∞ DT D




Φ12 =
[

0 P1B1

0 0

]
, Φ13 =

[
P1E

0

]

Φ22 =
[ −Q + M CT LT

∗ −P2

]

Φ2 =
[

RA RB0 0 RB1 RE
LC −P2 0 0 0

]

Φ3 = diag
{−d−1R,−4P2

}

M = −NT LC − CT LT N + NT P2N

and J is defined in Theorem 2. Under such a condition, the
matrices of an SOF H∞ controller (C1) can be parameterized
as K = P−1

2 L.
Proof: Expanding inequality (6) yields that

[
Φ̄1 + dΛT

2 RΛ2 + µJT J −µJT

∗ µI − d−1R

]
< 0

where

Φ̄1 =




Φ̄11 Φ12 Φ13

∗ T2 0
∗ ∗ −γ∞I




Φ̄11 =




P1A + AT P1

+Q + γ−1
∞ CT

z Cz

−2CT KT P2KC

P1B0 + γ−1
∞ CT

z D
+2CT KT P2

∗ −2P2 + γ−1
∞ DT D




Define

Φ̄2 =
[

RA RB0 0 RB1 RE
P2KC −P2 0 0 0

]

it follows

ΛT
2 RΛ2 =

[
A B1 E

]T
R

[
A B1 E

]

=




AT

BT
1

ET




[
R 0
0 P2

] [
R−1 0

0 1
4dP−1

2

]

×
[

R 0
0 P2

] [
A B1 E

]

= Φ̄T
2

[
R−1 0

0 1
4dP−1

2

]
Φ̄2

Thus, (6) is equivalent to



Φ̄1 + µJT J −µJT Φ̄T
2

∗ µI − d−1R 0
∗ ∗ Φ3


 < 0 (8)

Now comes the validation that (8) is equivalent to (7).
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(Sufficiency) It follows that P2 > 0, which implies that
K = P−1

2 L is meaningful, and L = P2K. Substituting it to (7)
and noting, for any real matrix N with appropriate dimension,

(N −KC)T P2(N −KC) ≥ 0

we have (8) holds with the following property of all the terms
−CT KT P2KC just in the diagonal blocks.

−CT KT P2KC ≤ −NT LC − CT LT N + NT P2N = M

(Necessity) Assume inequality (8) holds. Then, by setting
N = KC, we obtain

−CT KT P2KC

= −CT KT P2KC +
(
N −KC)T P2(N −KC

)

= −NT P2KC − CT KT P2N + NT P2N

Substituting it into (8), and denoting L = P2K, (7) is
obtained. This completes the proof. ¤

Remark 2: It is worth pointing out that the parametrization
of the controller matrices by our approach is flexible. Indeed,
P2 can be set to be any sufficiently large positive definite
matrix, and thus more synthesis problems such as simultaneous
stabilization, structural controller synthesis can be treated
readily in this framework.

To facilitate exposition, Φ(N, d) ≡ Φ in (7) is taken in
the sequel. When d and N are fixed, (7) becomes a strict
LMI problem to search an optimal performance index γ∞,
which can be verified easily by conventional LMI solver. The
remaining problem is how to select the matrix N . It can be
seen from the proof of Theorem 2 that the left hand side of (7),
Φ(N, d) achieves its minimum when N = P−1

2 LC, which can
be used to construct an iteration rule. We summarize briefly
our analysis on N in the following proposition.

When P1 > 0, P2 > 0, Q > 0, L, d and µ are fixed, the
following relationship holds for any real matrix N ,

Φ(P−1
2 LC, d) ≤ Φ(N, d)

It follows that the scalar ε ∈ R satisfying Φ(N, d) < εI
achieves its global minimum only if N = P−1

2 LC = KC.
Therefore, the following iteration algorithm is constructed to
solve the condition of Theorem 2.

Algorithm SOF-HC (SOF H∞ Control):
• Step 1. Set m = 1, and ε∗0 > 0, c > 0 be two prescribed

initial values. Select an initial matrix N1 and a delay
upper bound d̄ such that the closed-loop system (Σ1c1),
when KC is substituted by N1, is H∞ stable with a γ∞.

• Step 2. For the fixed Nm, solve the following convex
optimization problem with respect to Lm, µm, P1m > 0,
P2m > 0, Qm > 0:

min εm

s.t. Φ(Nm, d̄) < εmI
εm > −c

(9)

Denote ε∗m as the minimized value of εm satisfying
(9). If ε∗m ≤ 0, the system (Σ1) is stabilizable via the

SOF controller (C1). The gain matrix K of (C1) can be
obtained as K = P−1

2mLm, STOP, else, go to Step 3.
• Step 3. If |ε∗m − ε∗m−1| ≤ δ, a prescribed tolerance, then

go to Step 4, else update Nm+1 as

Nm+1 = (P2m)−1LmC

and set m = m + 1, then go to Step 2.
Remark 3: It follows from that the sequence ε∗m is mono-

tonic decreasing with respect to m for a fixed d and has a
lower bound c. Therefore, the convergence of the iteration is
guaranteed which leads to stabilization of system (Σ1) under
a performance level γ∞.

Remark 4: The initial matrix N1 can be considered as a
state feedback stabilizing controller matrix, which can be
found by existing approaches for stabilizability analysis. If no
such matrices are found, we will conclude immediately that the
system is not stabilizable via (C1). Like many other iteration
algorithms, the sequence of iterates depends on the selection
of initial values, and an appropriate selection will improve
the solvability. Here, we attempt to utilize a state feedback
controller as the initial value N1 which satisfies A + B0N
or A + (B0 + B1)N being Hurwitz stable for system (Σ1c1).
There is some conservatism since it is only a approximate
solution obtained from a delay-independent stability condition.
If it fails, Zhang et al. in [17] gives a method to obtain a new
state- and input-delay-dependent state feedback controller to
ensure the stability of the closed-loop system.

The initial performance level γ∞ in Step 1 of Algorithm
SOF-HC can be chosen as an appropriate value for system
(Σ1) stabilized by a state feedback controller. If this fails and
no negative ε∗m can be found, increase it to γ∞ = γ∞+ k for
some k > 0 until (9) is feasible, else STOP (i.e. the system
may not be H∞ stabilizable via the SOF controller (C1)).

V. NUMERICAL EXAMPLE

This section presents two numerical examples to illustrate
the design approach for SOF controllers described in this
paper.

Example 1

An application example presented here is the system pro-
posed in [15], where a ‘T-shape’ inverted pendulum is con-
trolled through a simulated TCP network. The pendulum
dynamics is 4th order, nonminimum phase, open-loop unstable
and with coupled nonlinearities. Its linearized model is given
in [3] with the parameters as follows:

A =




0 1 0 0
−21.54 0 14.96 0

0 0 0 1
65.28 0 −15.59 0


 , B1 =




0
8.10
0

−10.31




The input delay τ is constant and the corresponding (Σ0)
has a particular form with B0 = 0 and C = I . Suppose
the disturbance input matrix E = [ 0.1 0 0.1 0 ]T , and
Cz = [ 1 1 1 1 ]T , D = −1.0340.
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We now apply the proposed approach to find an SOF
controller to stabilize this pendulum. An initial matrix N1 =
[−11.1384 − 2.1632 − 3.3258 − 0.9217] is chosen
for (C1) which is obtained directly by solving a system
pair (A,B1) state stabilization conditions AX + B1Y +
(AX + B1Y )T < 0 and X > 0, with N1 = Y X−1.
A desired SOF H∞ controller is obtained as u(t) =
[ −11.1342 −2.1651 −3.3257 −0.9226 ]y(t) to satisfy
a performance level γ∞ = 4.6268 after 3 iterations, corre-
sponding to a delay interval (0, 0.07].

Example 2

A second order input-delayed system in [2] is considered
with the following parameters:

A =
[

0 0
1 −5

]
, B0 =

[
0
0

]
, B1 =

[
1
0

]

Other system matrices in (Σ1) are selected as E =
[−0.230 0.190]T , Cz = [0.1462 − 0.2361], D = −0.034
and C = [1 −1] to evaluate the H∞ performance. Choose an
initial matrix N1 = [−0.6149 −1.3964] to make (A+B1N1)
stable for SOF controller (C1), the numerical results are listed
in Table I.

Furthermore, consider the same model with a different
output matrix C = [1 0]. It shows clearly in this example
that neither (A,B0) is stabilizable, nor (A,C) is detectable.
With the same initial matrix N1, the desired SOF controller
and the corresponding system performance are given in Table I
by applying Algorithm SOF-HC again.

TABLE I
NUMERICAL RESULTS FOR EXAMPLE 2 WITH DELAY INTERVAL (0, 1.7]

γ∞ Controller gain K Iteration No.
C = [ 1 −1 ] 0.3101 −0.8621 2
C = [ 1 0 ] 0.6041 −0.7739 2

VI. CONCLUSION

This paper has studied the SOF H∞ control problem for
input-delayed systems from a new perspective. Input-delay-
dependent H∞ criteria via a SOF controller is derived from
a new equivalent characterization on the stabilizability of the
system in terms of matrix inequalities by introducing a slack
positive definite matrix, and an iterative algorithm is developed
to solve the condition. Although the proposed approach is not
guaranteed to find a solution even it exists, it is very effective
since there is no need to introduce additional constraints to
linearize the product term of Lyapunov matrix and controller
gain during the parametrization.
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