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Abstract: A rapid incoherent control scheme for driving a simple qubit system from an initial mixed state to an arbitrary target
pure state is proposed. This scheme consists of two main steps: rapid purification of the initial mixed state and time optimal
transition from the conditional state to the target state. The first step rapidly purifies the initial mixed state into an almost-pure
state of the simple qubit system through continuous measurements and feedback control by the protocol proposed in Jacobs 2003
Physical Review A 67 030301(R). The second step finds a set of suitable time optimal controls to drive the simple qubit system
from the conditional state to the target state. The switching time between the first step and the second step is determined by
the expected purity and the resultant state is an almost-pure state with a high fidelity with the target state. This rapid incoherent
control scheme provides an alternative quantum engineering strategy for the rapid preparation of arbitrary pure states of a simple
qubit system.
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1 INTRODUCTION

Quantum information processing technology has drawn
much attention of many scientists [1] due to its more powerful
ability than classical information processing in some aspects
such as factorizing large numbers [2], searching unsorted
databases [3] and teleporting unknown quantum states [4]. To
accomplish some quantum information processing tasks, the
quantum systems as the information carrier must be prepared
in pure states [5]. However, quantum systems often exist nat-
urally in mixed states due to the environmental noise, and de-
coherence becomes one main obstacle to the practical quan-
tum information processing. One solution is to develop the
general principles of quantum control theory to drive quan-
tum systems from an initial state (mixed state or pure state)
to a pre-determined target pure state [6, 7]. In this paper we
will consider the preparation of the pure states of quantum
systems through a control strategy via a two-step optimiza-
tion and only focus on the simple qubit system.
In quantum control theory, an important task is the design of
control strategies [8]. Coherent control strategy is a widely
used control method where one manipulates the state of a
quantum system by applying semiclassical potentials in a
fashion that preserves quantum coherence [9]. In fact, the
early paradigm of quantum control is mainly open loop co-
herent control [10, 11], which has successfully been used to the
quantum control of chemical reaction [12, 13]. Quantum co-
herence is a dominant effect in quantum domain, however,
quantum measurements usually destroy the coherent charac-
teristics and are often taken as a nuisance for accomplishing
some quantum control tasks. Fortunately recent results have
shown that quantum measurements can be combined with
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unitary operators to complete some quantum manipulating
tasks and enhance the capability of quantum control[14-25].
For example, Jacobs [25] used continuous measurements and
feedback control to increase the speed of the preparation of
the pure states and Pechen et al. [16] investigated nonselective
von Neumann measurements for the control of a two-level
system. Since quantum measurements destroy quantum co-
herence, we call this class of control schemes “incoherent
control” [22]. In this paper, we will focus on the incoher-
ent control strategy and propose a rapid incoherent control
scheme based on continuous measurements and feedback
control. Our goal is to drive a single qubit from a completely
mixed state to an arbitrary target pure state in a time optimal
manner. Firstly we rapidly purify the initial mixed state into
an almost-pure state (conditional state) through continuous
measurements and feedback control using the rapid purifi-
cation protocol proposed by Jacobs [23]. If we select σz as
the measurement basis, ideally the conditional state will be
an eigenstate of σz . However the time required may be too
long. Since we expect to rapidly prepare the target state, it
may be necessary to select an appropriate time to turn to the
second step with the cost of some purity. The second step
finds a set of suitable time optimal controls to drive the sin-
gle qubit from the conditional state to the near-target state.
The switching time between the first step and the second step
is determined by the expected purity. As an example, this
scheme is used to the control design of a spin 1/2 particle
driven by a magnetic field.
This paper is organized as follows. Section 2 introduces the
rapid purification protocol of a single qubit by weak mea-
surements and Hamiltonian feedback as the first step of the
proposed scheme. In Section 3, the time optimal control
from the conditional state to the near-target state is designed
for a two-level system via a corresponding relation and the
analytical expression of minimal time is given. Section 4
discusses some related problems and conclusions are given
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in Section 5.

2 RAPID PURIFICATION OF A QUBIT SYS-
TEM BY CONTINUOUS MEASUREMENTS
AND FEEDBACK CONTROL

The goal of our rapid incoherent control scheme is to drive
a simple qubit system from a completely mixed state ρ0 to
a given pure state ρT = |ψT 〉〈ψT |. To accomplish this task,
we firstly select a suitable observable and project the qubit
into an eigenstate. This process is called as the purification
of ρ0 and can be realized by von Neumann measurements
or continuous measurements. Von Neumann measurements
are treated as instantaneous and are reasonable when the
strength of measurements is large enough and the measure-
ment time-scale is much shorter than all other related time-
scales for a given task [25]. Recent results have shown that
the continuous measurements of individual quantum systems
become possible [26] and the evolution of a quantum system
under continuous measurements can be described by a mas-
ter equation [27]. Here we use continuous measurements to
purify the initial mixed state. Since the purification process
of a quantum system commonly takes some time, the infor-
mation in the measurement record can be used to change the
process of purification via feedback control [28]. Jacobs [23]

has shown that the use of Hamiltonian feedback control can
increase the speed of purification with a factor of two over
the no-feedback protocol for the purification of a completely
mixed qubit state. Besides the interest of quantum phenom-
ena, this discovery is also helpful for rapid state prepara-
tion since the rapid initialization of quantum logic units is
very significant for practical quantum information process-
ing. Hence we adopt Jacobs’ rapid purification protocol as
the first step of the present control strategy.
In the first step, if we do not consider the Hamiltonian ac-
tion, the evolution equation of the density matrix ρ of the
qubit system under the continuous measurement of σz can
be described as follows [23]:

dρ = −κ[σz, [σz , ρ]]dt+
√

2κ(σzρ+ρσz−2〈σz〉ρ)dW (1)

where κ is a positive constant called measurement strength,
and dW is a Wiener increment with zero mean and variance
equal to dt. We set � = 1 and do not consider the Hamil-
tonian evolution of systems. Equation (1) is called as the
stochastic master equation (SME). The continuous measure-
ment will eventually project the qubit onto one (ρ0

e = |0〉〈0|
or ρ1

e = |1〉〈1|) of the eigenstates of σz .
For the state ρ of a qubit system, we can represent
it in terms of the Bloch vector r = (x, y, z) =
(Tr{ρσx},Tr{ρσy},Tr{ρσz})

ρ =
1

2
(I + r · σ) (2)

where I is 2×2 identical matrix, σ denotes the Pauli matrices
σ = (σx, σy, σz) and

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

(3)
The SME equation can be rewritten as [25]

dx = −(4κdt+ z
√

8κdW )x (4)

dy = −(4κdt+ z
√

8κdW )y (5)

dz = (1 − z2)
√

8κdW (6)

Therefore, the state space of a qubit system corresponds to
the Bloch sphere, where pure states lie on the surface of the
sphere (ρ0

e corresponding to the North pole and ρ1

e to the
South pole) and mixed states are in the interior of the sphere.
The purity of a state ρ corresponds to the squared length of
the Bloch vector. The impurity of the qubit state can be quan-
tified by the following equation [23]:

L = 1 − Tr[ρ2] =
1

2
(1 − x2 − y2 − z2) (7)

L = 0 for all pure states and L = 0.5 for the completely
mixed state. The goal of the first step is to pull an interior
state ρ0 towards one (ρ0

e = |0〉〈0| or ρ1

e = |1〉〈1|) of the
poles, i.e. purification of ρ0. Assume we expect to purify ρ0

into ρ0

e and this can be accomplished by Jacobs’ protocol [23].
To rapidly purify a mixed state, the Bloch vector of the qubit
is rotated onto the x-y plane (perpendicular to the measure-
ment axis z) based on the measurement record after each
measurement step. In fact, the protocol is optimal in the
sense of maximizing the fidelity of the qubit with some fixed
pure state at a given time [28], which has been rigorously
proven by Wiseman and Bouten [31] by applying simple con-
cepts from optimal control theory. The detailed protocol for
rapid state purification can be found in [23, 25]. It should be
pointed out that usually we can rapidly pull the initial com-
pletely mixed state into an almost-pure state by Jacobs’ pro-
tocol. However, the goal of the first step in our incoherent
control scheme is to drive the initial state into the eigenstate
ρ0

e. In some practical applications, the almost-pure state may
be enough, so we can select ρ0

e as the estimation of the con-
ditional state for the control design of the second step. The
start time of the second step can be determined through the
expected purity. Assume the expected purity is 1− ε (ε� 1)
and the measurement strength is set as κ = 1/2, the time
required is [24]

t = −1

4
ln 2ε (8)

Since Jacob’s rapid purification protocol is a deterministic
scheme [23], the switching time can be precisely determined
according to equation (8) in principle.

3 TIME OPTIMAL TRANSITION OF THE
CONDITIONAL STATE

After the initial mixed state is rapidly projected using Jacob’s
rapid purification protocol, the conditional state becomes an
almost-pure state which has a high fidelity 1 − ε with the
eigenstate ρ0

e. Since we take ρ0

e as an estimation of the con-
ditional state, the control design for rapidly transferring the
conditional state into the target state ρT can approximately
be accomplished by the time optimal control design from
ρ0

e to ρT = |ψT 〉〈ψT |. In quantum control, the transition
from the pure state ρ(0) = |ψ(0)〉〈ψ(0)| to the pure state
ρ(t) = |ψ(t)〉〈ψ(t)| can be accomplished through a unitary
transformation U(t) whose time evolution is determined by
the time-dependent Schrödinger equation (setting � = 1)

iU̇(t) = H(t)U(t), U(0) = I (9)
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where H(t) is the Hamiltonian of the quantum system. In
this paper we only concentrate on two-dimensional quantum
systems, i.e. simple qubit systems, andH(t), U(t) are 2× 2
matrices. Obviously

ρ(t) = U(t)ρ(0)U †(t) (10)

Therefore the control of pure states can be converted into the
design problem of U(t). To actively accomplish the task, we
should introduce external control {uj(t)} into H(t) and in
many situations it can be expressed as

H(t) = H0(t) +HI(t) = H0(t) +

n∑
j=1

uj(t)Hj (11)

where H0 is the internal Hamiltonian and HI(t) is the con-
trol Hamiltonian.
Some researchers have studied the time optimal control
problem of the above model (9)–(11). For example, Khaneja
et al [32] present the time optimal control with unbounded
control. Boscain and his co-workers [33, 34] studied the time
optimal control of population transfer of two- and three-level
quantum systems with bounded control. It is difficult to de-
rive the general results for the time optimal control of quan-
tum systems. To demonstrate our incoherent control scheme
in this paper, we will only concentrate on a two-level quan-
tum system driven by a real unbounded control used in [32].
This system describes the evolution of the z-component of
the spin of a spin 1/2 particle driven by a magnetic field. The
field is constant along the z axis and can produce a rapid
x rotation on the spin by radio-frequency (rf) pulses. The
unitary evolution of this single-spin system can be given

iU̇(t) = [Iz + uIx]U(t), U(0) = I (12)

where the control u ∈ R and

Ix =
1

2
σx =

1

2

(
0 1
1 0

)
(13)

Iz =
1

2
σz =

1

2

(
1 0
0 −1

)
(14)

It is easy to check the controllability condition of the model
(12) and this two-level system is completely controllable on
the Bloch sphere [7].
If we ignore the global phase, any two pure states ρ1 =
|ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2| of a qubit system can be de-
scribed as

ρ1 =

(
cos2 θ1

2
e−iϕ1 cos θ1

2
sin θ1

2

eiϕ1 cos θ1

2
sin θ1

2
sin2 θ1

2

)
(15)

ρ2 =

(
cos2 θ2

2
e−iϕ2 cos θ2

2
sin θ2

2

eiϕ2 cos θ2

2
sin θ2

2
sin2 θ2

2

)
(16)

where θ1, θ2 ∈ [0, π] and ϕ1, ϕ2 ∈ [0, 2π]. Denote UF as
the unitary transformation that can accomplish the control
task in the second step and let ρ1 = ρ0

e, ρ2 = ρT , thus
ρT = UFρ

0

e .
For the time optimal control of the spin 1/2 system, if the
control may be unbounded, we can easily obtain the follow-
ing theorem.

Theorem 1 For the system (12), given any target unitary
transformationUF ∈ SU(2), there exists a uniqueβ ∈ [0, π]
such that UF = exp(−iαIx) exp(−iβIz) exp(−iγIx),
where α, γ ∈ R, and the minimum time for accomplish-
ing UF is β and satisfies β = (arccos(sin θ2 cosϕ2) −
arccos(sin θ1 cosϕ1)) mod (π).

In Theorem 1 SU(2) denotes the two-dimensional special
unitary group and UF consists of three rotations Ux(α) =
exp(−iαIx), Uz(β) = exp(−iβIz), Ux(γ) = exp(−iγIx).
Since the control u may be unbounded, the time required to
generate Ux(α) = exp(−iαIx) and Ux(γ) = exp(−iγIx)
is zero. Hence all points in the corresponding circle of
Ux(α) = exp(−iαIx) (or Ux(γ) = exp(−iγIx)) are equiv-
alent from the time optimization perspective. So it is slightly
different from Theorem 1 in [32], where they argue that there
exists a unique β ∈ [0, 2π]. We can easily give the analytical
expression of β according to the geometrical relations:

β =

(arccos(sin θ2 cosϕ2) − arccos(sin θ1 cosϕ1)) mod (π)

Since the specific values of α and γ are not unique, we only
consider the value β for two special cases. Obviously ϕ1 =
0 and θ1 = 0. When the target state is

ρT1 =
1

2

(
1 −i
i 1

)
(17)

the minimal time is
β1 = 0

When the target state is

ρT2 =
1

4

(
3

√
3√

3 1

)
(18)

the minimal time is
β2 =

π

3

Hence we can give the sketch as shown in Fig.1 for the evolu-
tion of the qubit under this incoherent control strategy. From
the above results, we can find that the minimal time required
from ρ0

e to ρT1 is zero because the task can be accomplished
only using the rotation Ux which need no time under the un-
bounded assumption of u. Moreover it is obvious that the
different conditional states do not effect the minimal time
since the transition between two eigenstates can be accom-
plished only using the rotation Ux. Here we assume that we
rapidly purify the initial state into an almost-pure state near
to ρ0

e in the first step. For the case ρ1

e, we can also obtain
analogous results.

4 DISCUSSIONS

In quantum control, the quantum measurement is regarded
as a nuisance in some situations to accomplish some quan-
tum control tasks since it destroys the coherence of mea-
sured quantum systems. However, some recent results have
shown that the quantum measurement on the controlled sys-
tem or the ancillary system can improve the controllability
of quantum systems[14-22] or enhance the capability of quan-
tum control [15, 16, 36]. For example, Roa et al. [17] applied se-
quential measurements of two noncommuting observables to
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Fig. 1 The sketch for the evolution process of a simple qubit
system under the rapid incoherent control strategy. (a)
The target state is ρT1; (b) The target state is ρT2.

drive an unknown mixed quantum state to a known pure state
without the use of unitary transformation. Pechen et al. [16]

explored nonselective von Neumann measurements to con-
trol quantum dynamics. Romano and D’Alessandro [22] in-
vestigated accessibility and controllability of a quantum sys-
tem coupled to a quantum probe under the hypothesis that
the external control affects only the probe. In the cited work,
quantum measurements commonly are von Neumann mea-
surements. In this paper we explore the role of continuous
measurements combined with unitary transformations to the
control of quantum systems. In the present control scheme,
the continuous measurement is regarded as a kind of effec-
tive control and it rapidly projects the initial mixed state into
an almost-pure state with the help of Hamiltonian feedback.
Our scheme includes two main steps: the purification of the
initial mixed state and the transition from the conditional
state to the target state. Since the aim of the first step is to
project the initial state to an eigenstate, we can select a gen-
eral continuous measurement without the following of feed-
back control. The Jacob’s rapid purification protocol is not
necessary for our scheme and we use the protocol only for
the rapid control. Besides the protocol proposed by Jacobs,
Wiseman and Ralph [24] have also proposed another rapid pu-
rification protocol to minimize the average time required for
a qubit to reach a given purity [24], which can also be used
to the present incoherent control scheme without intrinsic
change. ForN dimensional systems, Combes and Jacobs [37]

have shown that there exists an analogous feedback algo-
rithm which will speed up the rate of state purification by
at least a factor of 2(N + 1)/3. Hence the combination of
continuous measurements and Hamiltonian feedback will be
more attractive for complex quantum systems. Moreover,
these strategies have been used to some specific quantum
systems such as Cooper pair boxes [28] and entangled bipar-
tite quantum systems [38], which provides a supportive evi-
dence for the realizability of our incoherent control scheme.

In the general quantum control problems, one commonly as-
sumes that the initial state is known. However this is not
practical for many actual tasks. In this paper we can also as-
sume that the initial state is unknown which is a more natural
assumption. Different from the measurement-driven evolu-
tion scheme [17] by sequential measurements of two noncom-
muting observables, the present strategy needs only the mea-

surements of an observable. Moreover we also consider the
optimality of control time. It is worth noting that the two
steps in our scheme are time optimal, respectively, however,
it does not mean that our rapid incoherent control scheme
is necessarily the globally time optimal strategy for accom-
plishing this class of control tasks. More optimal strate-
gies such as energy optimal problem and globally optimal
scheme should be further explored, and the present scheme
can also be extended to some more complex systems. More-
over, the present incoherent control scheme is a theoretical
design strategy and it is realizable in principle. The experi-
mental implementations maybe need some slight changes as
that of Cooper pair boxes [28].

5 CONCLUSION

With the development of quantum technology, the control of
quantum systems has become an important task in quantum
information science, cold atom physics and quantum optics.
The early work mainly focuses on the coherent control strat-
egy. Recently the incoherent control has drawn the attention
of some researchers. In this paper we propose a rapid inco-
herent control scheme to accomplish some quantum control
tasks. This scheme mainly consists of two steps: rapid purifi-
cation of the initial mixed state and time optimal transition
from the conditional state to the target state. The first step is
accomplished by weak measurements and feedback control,
and the second step is realized through coherent manipula-
tions. This incoherent control scheme provides an alternative
quantum engineering strategy for the rapid preparation of ar-
bitrary pure states of a simple qubit system and can also be
extended to multi-qubit systems.
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