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Introduction

Microstrip structures are planar or quasi-planar metallic structures that reside on
or straddle across thin-stratified medium. Thin-stratified medium fast-multipole
Algorithm (TSMFMA) [1] has been proposed for this type of stuctures and has
greatly reduced the cost of microstrip structures’ analysis. However, the previous
algorithm is limited to the analysis of planar structures only. In order to apply it to
the structures that straddle across substrates, such as microstrip patch with vertical
coaxial feed or planar inverted-F antennas (PIFA), we need to modify the algorithm
and improve the flexibility of it.

In this paper, we started with a newly developed formula of layered medium Green’s
function, which is naturally decomposed into TEz and TMz parts. By detouring the
integration path of the Green’s function from Sommerfeld integration path (SIP) to
the vertical branch cut and including the contribution from any pertinent poles, the
original integration can be reduced to the summation of a finite number of terms,
involving only the zeroth order Hankel function. Then we decompose the propa-
gation factor to functions of z or z′ only, and apply TSMFMA to the decomposed
form. In this manner, the structures with z-variations could be analyzed without
much additional complexity.

Formulation

Recently, our group has proposed an alternative and elegant way of deriving layered
medium Green’s function[2]. The dyadic Green’s function for layered medium can
be expressed as

G(r, r′) = (∇× ẑ)(∇′ × ẑ)gTE
(
r, r′

)
+

1
k2

nm

(∇×∇× ẑ)(∇′ ×∇′ × ẑ)gTM
(
r, r′

)
, (1)

where k2
nm = ω2εnµm (m and n are indexes of the layers which contain the source

point r′ and field point r respectively). And

gTE
(
r, r′

)
=

i

4π

∫ ∞

0

dkρ

kmzkρ

[
J0(kρrs)FTE(kρ, z, z′)

]
, (2)

gTM
(
r, r′

)
=

i

4π

∫ ∞

0

dkρ

kmzkρ

[
J0(kρrs)FTM(kρ, z, z′)

]
. (3)

FTM and FTE describe the propagation of Bz or Dz fields for TE and TM fields in
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an inhomogeneous layer. This formulation contains only two basic integrals for TE
and TM waves and involves only zeroth order Bessel function. We have presented
the five-term matrix element representation derived from this form in [2]. However,
for the application of thin-stratified medium fast-multipole algorithm (TSMFMA),
it is better to start with Equation (1).

By using the fact that J0(kρρ) = 1/2[H(1)
0 (kρρ) + H

(2)
0 (kρρ)] and the reflection

formula that H
(1)
0 (−x) = −H

(2)
0 (x), we get

ga(r, r′) =
i

8π

∫ ∞

−∞

dkρ

kmzkρ

[
H

(1)
0 (kρrs)F a(kρ, z, z′)

]
(4)
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Figure 1: Deformation of the Sommerfeld integration path to the vertical branch
cut

From reference [1], we can detour the integration path to the vertical branch cut as
in Fig. 1. The original integration is decomposed into the contribution from the
vertical branch cut and the enclosed poles. By performing a numerical integration
along the vertical branch cut, the integration becomes

ga(r, r′) =
i

8π

Nq∑
p=1

wp
δkρ,p

kmz,pkρ,p

[
H

(1)
0 (kρ,prs)F a(kρ,p, z, z′)

]

+
i

8π

Np∑
p=1

2πiRes
[
F a(kρ,p, z, z′)

] 1
kmz,pkρ,p

H
(1)
0 (kρ,prs) (5)

where the Nq is the number of quadrature points and Np is the number of poles.

Decomposing the Hankel function by the same techniques as in 2D MLFMA,

GTE(r, r′) = (∇× ẑ)(∇′ × ẑ)gTE(r, r′)

=
i

16π2
(∇× ẑ)(∇′ × ẑ)

Nr∑
p=1

vp

kmz,pkρ,p

∫ 2π

0
dαβ̃jl′(α)α̃l′l(α)β̃li(α)F TE

rev (z)F TE
rad (z′)

=
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8πNa
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rev (z)
]

︸ ︷︷ ︸
receiving pattern
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F TE
rad (z′)
kmz,p

]
︸ ︷︷ ︸

radiation pattern



where vp = wpδkρ,p for quadrature points and vp = 2πiRes[Fα] for poles.

Similarly, the TM part of the dyadic Green’s function can be decomposed as

GTM (r, r′) = (
1

εr,n
∇×∇× ẑ)(∇′ ×∇′ × ẑ)gTM (r, r′)

=
i

8πNa

Na∑
k=1

Nr∑
p=1

vp

kρ,p

[
(∇×∇× ẑ)

εr,n
β̃jl′(αk)F TM

rev (z)
]
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receiving pattern

·α̃l′l(αk)
[
(∇′ ×∇′ × ẑ)β̃li(αk)

F TM
rad (z′)
kmz,p

]
︸ ︷︷ ︸

radiation pattern

If the field point and source point lie in different layers, only two pairs of radiation
patterns and receiving patterns are needed, one for TM wave and the other for TE
wave. For example, if the field point is above the source point (z > z′, n > m) ,

ITE
rad,m =

1
kmz

∫
dr′ [(kρ,pk × ẑ) · Ji(r′)] e−ikρ,pk·(ρl−ρi) ·

Cm

[
eikmz(dm+1−z′) + Gm,m−1e

ikmz(dm+1+z′−2dm)
]

ITE
rev,n =

∫
dr [(kρ,pk × ẑ) · JTj(r)] e−ikρ,pk·(ρj−ρl)

Dmn

[
eiknz(z−dn) + Gn,n+1e

iknz(2dn+1−z−dn)
]

(6)

where Gm,n is the generalized reflection coefficient for TE wave, Cm, Dm,n are func-
tions of the reflection coefficients (see [3] for detailed expressions). The radiation
and receiving patterns for TM wave or other cases can be derived similarly. When
the field and source point belong to the same layer, three pairs of radiation and
receiving patterns for each wave mode are needed, two of which represent the re-
flected terms and one for the direct term. Moreover, the treatment of the direct
term needs some extra manipulation. The propagation factor represents the direct
term is exp(ik0|r− r′|) which cannot be decomposed into F (z)F (z′) simply, thus it
is improper to use in the fast algorithm. In order to remove the modulus function,
we transform the integral to the kz space.

gd(r, r′) =
i

8π

∫ ∞

−∞

dkρ

kmzkρ
H

(1)
0 (kρrs)eikmz |z−z′|, dkz = −kρ

kz
dkρ

=
i

8π

∫ ∞

−∞
dkmz

k2
ρ

H
(1)
0 (kρrs)eikmz(z−z′) (7)

Then we can apply the same technique of detouring the integral and decompose the
integrand to implement the TSMFMA to the direct term.

In the derivation of the algorithm, there exists a problem that the two integrals in
Equations (2) and (3) are not well defined, because there is a pole at kρ = 0. This



would lead to questions about the legitimacy of the following steps. Here is our
argument for this question: first, the pole at kρ = 0 is a pseudo pole because when
we add contribution from TE and TM wave together, the pole will be cancelled.
This can be verified from the matrix element expression in [1]. In another word, in
our manipulation of gTE and gTM , we have deliberately left the pole alone, because
we know the two singularities will cancel each other. Our numerical tests support
this argument.

Numerical Results

A microstrip patch anntenna printed on a dielectric substrate with a vertical coaxial
feed connecting to the ground is analyzed. We apply TSMFMA to this structure
and compared the results with that obtained from the method of moments using
the same Green’s function. The two results agree very well.
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Figure 2: Input impedance of a microstrip patch antenna. d = 0.16cm, a = 1.88cm,
b = 0.84cm, εr = 2.6.

Conclusion

With the enhanced TSMFMA, we can apply this fast algorithm to quasi-3D objects
in layered medium. It improves the flexibility of the original algorithm and uses
only a small set of radiation and receiving pattern pairs.
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