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In the design of unbonded partially prestressed concrete (UPPC) members, it is necessary to estimate the stresses in

steel and concrete in order to satisfy the requirements of the serviceability limit state. A numerical method has been

developed to predict the response of UPPC beams under service load, and the results agree well with experimental

results reported in the technical literature. A parametric study has been undertaken to evaluate the variation of stress

in prestressed steel under service load as well as the ratio of length of equivalent deformation region to the neutral

axis depth at critical section. Results show that this ratio is not sensitive to the variation of the combined reinforce-

ment index. From the moment of application of load to the cracking of the beam, and until the yielding of non-

prestressed steel, this ratio is fairly stable and it can be taken as a constant. With the determination of this ratio, an

approximate cubic equation similar to that used for cracked section analysis of bonded partially prestressed members

is established. Predictions of stresses under service load are in good agreement with available test data.

Notation

Ap, As cross-sectional areas of prestressed and

non-prestressed steel respectively

A0, A0k transformed sectional area and that of

element k respectively

b, bw widths of flange and web respectively

c neutral axis depth at critical section

cik neutral axis depth in element k at loading

step i

C1, C2 concrete compression in flange outside

web and web respectively

dp, ds depths to centroid of prestressed and non-

prestressed steel respectively

Ec modulus of elasticity of concrete

Ep, Es moduli of elasticity of prestressed and

non-prestressed steel respectively

e, ek eccentricity of prestressed steel with

respect to centroid of transformed section

and that in element k respectively

e0 distance between decompression F and

resultant force R (¼ M /R)

F decompression

f c concrete stress in top fibre under service

load

f 9c cylinder compressive strength of concrete

f p stress in prestressed steel under service

load

f pe effective prestress in prestressed tendon

f pe(i) stress in prestressed steel at loading step i

f ps ultimate stress in prestressed steel at

failure of member

f py, f pu yield and ultimate stresses of prestressed

steel respectively

˜f p increase in tendon stress

f r modulus of rupture of concrete

f s stress in non-prestressed steel under

service load

f y yield stress of non-prestressed steel

h, hf height of cross-section and thickness of

flange respectively

h1, h2 distances from action line of C 1 and C2 to

the top fibre respectively

I0, I0k transformed sectional moment of inertia

and that of element k respectively

I cr moment of inertia of cracked section

Ig gross moment of inertia of section

L distance between end anchorages

L0 distance between two point loads

Le length of equivalent deformation region

Ln span length of beam
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M total applied moment

M cr cracking moment

M k,cr cracking moment of element k

M i
k applied moment in element k at loading

step i

Mu ultimate flexural moment of member

m total number of elements in numerical

analysis

P0, Pi effective prestressing force before loading

and at loading step i respectively

q0 combined reinforcement index

R resultant force

Tp, Ts tensions in prestressed and non-prestressed

steel, respectively, under service load

˜Tp, ˜Ts increases in tension in prestressed and

non-prestressed steel respectively

ybk, y
t
k distances from the centroidal axis of the

transformed section to the bottom and top

fibres of cross-section in element k

y depth from top fibre to centroid of cracked

section

˜� ‘fictitious’ increase in strain above

decompressive strain in concrete at the

level of prestressing tendons

�c concrete compressive strain in the top

fibre

�ce precompressive strain in concrete at the

level of prestressing tendons

�cu ultimate concrete compressive strain in top

fibre and is taken as 0.003.

�b,ik , �t,ik concrete strains in the bottom and top

fibres of element k at loading step i

�p, �s strains in prestressed and non-prestressed

steel respectively

�pe effective prestrain of prestressing tendons

�pu ultimate strain of prestressed steel

º, ºi ratio of length of equivalent deformation

region Le to the neutral axis depth c at

critical section, and that at loading step i

respectively

ºav average of all ºi obtained at each loading

step from the cracking of the beam to the

yielding of non-prestressed steel

º10 ratio of length of equivalent deformation

region Le to the neutral axis depth c at

critical section for members with span–

depth ratio equal to 10

�c stress of concrete

�ps, �s stresses of prestressed and non-prestressed

steel respectively

�, �cr bond reduction coefficient at uncracked

and cracked states respectively

Introduction

Partial prestressing as defined by the Joint ACI-

ASCE Committee 4231 is ‘an approach in design and

construction in which prestressed reinforcement or a

combination of prestressed and non-prestressed reinfor-

cement is used such that tension and cracking in con-

crete due to flexure are allowed under service dead and

live loads, while serviceability and strength require-

ments are satisfied.’ Compared with fully prestressed

concrete structures, adoption of partial prestressing

may result in increased ductility and energy absorption

capability, improved economy, as well as reduction of

the camber and creep deformation due to prestress. The

use of unbonded tendons not only leads to economical

and simple designs, but also enables fast installation

and easy replacement of defective tendons. The un-

bonded tendons can also provide an economic solution

for strengthening and repairing existing structures.

Tests have shown that fully prestressed concrete beams

with unbonded tendons and without non-prestressed

steel behave as shallow tied arches after cracking rather

than as flexural members. As the load increases, only

one or two wide cracks develop and propagate towards

the compression zone of the members, and the failure

of specimen is brittle. However unbonded partially pre-

stressed concrete (UPPC) beams normally develop

cracks well distributed along their span under loading

because of the presence of non-prestressed steel. The

crack widths increase steadily as the load increases.

The specimens behave as flexural members under over-

loads, rather than as tied arches. Therefore in practical

use, unbonded prestressed concrete members usually

contain some non-prestressed steel.2–6

Previous studies of unbonded prestressed and partially

prestressed concrete members have mainly been on the

ultimate limit state in bending, but very few have ad-

dressed the behaviour at service load conditions.7 As

pointed out by Nilson for bonded partially prestressed

concrete members,8 evaluation of the service stresses in

UPPC members is also necessary for evaluation of stress

compliance, crack widths, elastic and creep deflections,

and fatigue effects at service load.

This paper describes a method for evaluation of

service load stresses at cracked sections in UPPC mem-

bers. A parametric study is also undertaken to evaluate

the variation of stress in prestressed steel under service

loads. The predicted responses are compared with

available experimental results. To consider the influ-

ence of the relative slip between the unbonded tendon

and its surrounding concrete under service load, the

ratio of the length of equivalent deformation region to

the neutral axis depth is studied. With the determina-

tion of this ratio, a cubic equation similar to that used

for cracked section analysis of bonded partially pre-

stressed members is established.

Review of previous work

Balaguru9 proposed a method to predict the stress

changes of unbonded tendon for the complete loading
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range. The formula was developed using the basic

theory of flexure to obtain the equation for the elastic

curve, and numerical integration to obtain the curve

lengths. Using the calculated results of the increase in

tendon strain for various span lengths, eccentricities

and maximum deflections, a regression equation was

developed, which predicted the increase in tendon

strains as a function of the span–eccentricity and

eccentricity–maximum deflection ratios.

Naaman and Alkhairi10 later proposed a method for

analysis of unbonded prestressed concrete members

under service load using the bond reduction coefficient.

The approach was essentially to reduce the beams with

unbonded tendons to the equivalent case with bonded

tendons through the use of a bond reduction coeffi-

cient. Thus the previous analytical solutions for beams

prestressed or partially prestressed with bonded tendons

could be used. The computation of bond reduction co-

efficients � before cracking from basic principles of

mechanics is simple. Exact values of � derived10 for

simply supported beams with different tendon profiles

and different types of load applications are summarised

in Table 1. However, the computation of ‘exact’ bond

reduction coefficient �cr in the cracked state for differ-

ent types of loading and tendon profiles is a very

difficult analytical task, and can be regarded as vir-

tually impossible.5

For a simply supported beam with two symmetrically

disposed point loads separated by a distance L0, the

following approximate expression of �cr was derived

by Harajli and Kanj5

�cr ¼ �� 0:5 1� L0

L

� �

3
M cr

M
� 1

�
M

M cr

� 1

� �
Ig

I cr
þ 1

� �( )
(1)

where the bond reduction coefficient � before cracking

is given in Table 1, M is the total applied moment,

M cr is the cracking moment, I cr is the moment of

inertia of the cracked section, Ig is the gross section

moment of inertia, and L is the distance between the

end anchorages. Harajli and Kanj4 analysed the varia-

tion of �cr versus M=M cr for beams with straight

tendons for different ranges of Icr=Ig, observed that �cr

did not differ significantly from its value before crack-

ing, and assumed �cr ¼ � for practical analysis of the

cracked section. On the other hand, Naaman and Al-

khairi10 suggested the following equation for �cr

�cr ¼ �
I cr

Ig
(2)

Obviously the major problem here lies in the estimation

of the value of �cr. Note that the neutral axis location

for cracked prestressed concrete beams depends not

only on the geometry of the cross-section and the

material properties, but also on the prestressing force

and the external loading. Therefore the exact value of

I cr in equations (1) and (2) is not known until the

cracked section is analysed.

To account for the relative slip between the un-

bonded tendons and the surrounding concrete, and for

the determination of ultimate tendon stress at flexural

failure, Pannell11 introduced the coefficient º, which is

the ratio of length of equivalent deformation region Le
to the neutral axis depth c at the critical section. He

found that º was a constant value for unbonded pre-

stressed concrete beams even for different span–depth

ratios and suggested taking º as 10 for design purposes.

Pannell’s method subsequently formed the basis of

the British Code BS 811012 and the Canadian Code

A23.3-9413 for determination of the stress of an un-

bonded tendon at ultimate. After analysis of available

test results obtained by different investigators, Au and

Du14 concluded that Pannell’s coefficient º could in-

deed be taken as a constant for unbonded prestressed

concrete members at ultimate. This paper attempts to

extend the use of coefficient º to the cracked section

analysis of UPPC members under service load.

Formulation of the problem

It is assumed that the increase in tendon elongation

between end anchorages and therefore the correspond-

ing tendon stress increment is mainly due to the defor-

mation within the equivalent deformation region of

length Le ¼ º3 c. Consider a simply supported beam

with cross-section as shown in Fig. 1(a) with flange

width b, web width bw, height of section h and thick-

ness of flange hf . The prestressed steel of cross-

sectional area Ap and modulus of elasticity Ep is

provided at a depth of dp. The non-prestressed steel of

cross-sectional area As, modulus of elasticity Es and

yield stress f y is provided at a depth of ds. Under the

Table 1. Values of bond reduction coefficient � for uncracked

state.10

Type of loading and tendon profile Bond reduction coefficient

(uncracked state)

Uniform load and straight tendons � ¼ 2=3

Uniform load and parabolic tendons � ¼ 8=15þ (2=15)(es=ec)

Uniform load and harped tendons � ¼ 5=12þ (1=4)(es=ee)

Third-point load and straight

tendons

� ¼ 2=3

Third-point load and parabolic

tendons

� ¼ 44=81þ (10=81)(es=ec)

Third-point load and harped tendons � ¼ 23=54þ (13=54)(es=ec)

Central-point load and straight

tendons

� ¼ 1=2

Central-point load and parabolic

tendons

� ¼ 5=12þ (1=12)(es=ec)

Central-point load and harped

tendons

� ¼ 1=3þ (1=6)(es=ec)

Notes: es is eccentricity at end supports; ec is eccentricity at mid-

span; positive below neutral axis.

Service load analysis of UPPC
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action of a total applied moment M , the strain distribu-

tion across the depth of the critical section is shown in

Fig. 1(b). Let ˜� be the ‘fictitious’ increase in strain

above decompressive strain in concrete at the level of

prestressed steel, �pe be the effective prestrain of the

prestressed steel, �ce be the precompressive strain in

concrete at the level of prestressed steel, and �c be the

concrete compressive strain in the top fibre. Therefore

the increase in strain ˜�p in prestressed steel can be

worked out through the ‘fictitious’ strain increment ˜�
as

˜�p ¼ ˜�þ �ceð Þ Le

L

� �

¼ dp � c

c

� �
�c þ �ce

� �
Le

L

� �
(3)

where L is the distance between end anchorages. Not-

ing that Le ¼ º3 c, the strain �p in prestressed steel

under service load can be written as

�p ¼ �pe þ ˜�p ¼ �pe þ �ce
ºc

L

� �

þ �c
dp � c

c

� �
ºc

L

� �
(4)

The unbonded prestressing tendons usually remain elas-

tic and therefore the stress in prestressed steel, f p, can

be expressed in terms of the modulus of elasticity of

prestressed steel, Ep, and the effective prestress, f pe, as

f p ¼ Ep�p ¼ Ep�pe þ Ep˜�p

¼ f pe þ Ep�ce
ºc

L

� �
þ Ep�c dp � cð Þ

º

L

� �
(5)

Generally the value of �ce is negligible compared to the

other terms. Thus neglecting �ce, equation (5) can be

written in terms of the stress increment ˜f p caused by

external loading as

f p ¼ f pe þ ˜f p ¼ f pe þ Ep�cº dp � cð Þ=L (6)

from which º can be solved as

º ¼
L f p � f pe
� �

Ep�c dp � cð Þ
(7)

For the beam with cross-section shown in Fig. 1(a),

the tension carried by the unbonded tendons Tp and that

by the non-prestressed steel Ts are respectively

Tp ¼ Apf p ¼ Apf pe þ ApEp�cº dp � cð Þ=L (8)

Ts ¼ AsEs�c ds � cð Þ=c < Asf y (9)

Under service loading when concrete still remains

elastic, the compression carried by the flange outside

the web C 1 and that by the web C2 are respectively

C1 ¼ Ec�chf 2c� hfð Þ b� bwð Þ=2c

¼ f chf 2c� hfð Þ b� bwð Þ=2c (10)

C2 ¼ Ec�cbwc=2 ¼ f cbwc=2 (11)

where Ec is the modulus of elasticity of concrete and

f c is the concrete stress in the top fibre.

The distances h1 and h2 from the action lines of C 1

and C2 to the top fibre are respectively

h1 ¼
hf

3

3c� 2hf

2c� hf

� �
(12)

h2 ¼
c

3
(13)

The equilibrium equations of force and moment can

be written as

C1 þ C2 � Tp � Ts ¼ 0

C1h2 þ C2h2 � Tpdp � Tsds ¼ M

(
(14)

For test specimens, the total applied moment M and

stress in unbonded tendons f p are known or measured

values. Substituting equations (8)–(13) into equation

(14) results in a set of two simultaneous equations with

only two unknowns, namely the neutral axis depth c

and the concrete strain �c in the top fibre. Once they

are solved, the value of º can be obtained from equa-

tion (7). The variation of º can therefore be studied in

detail.

Numerical analysis of coefficient º

The numerical analysis of coefficient º is based on

the incremental deformation method to evaluate the

non-linear response of concrete flexural members.15,16

Using the stress–strain curves of the constituent materi-

als, an iteration procedure is followed to satisfy com-

patibility and equilibrium at every loading step in the

response history of the member. The present study

concentrates on the variation of tendon stress as well as

the coefficient º under service load.

The following assumptions are adopted in the analy-

sis: (a) plane sections remain plane after bending; (b)

the constitutive relations for prestressed steel, non-

prestressed steel and concrete are known; (c) the post-

cracking tensile strength of concrete is negligible; (d)

(b)(a)

b

h f

Ap

As

bw

d pd s

εc

c

∆ε εce � εpe

Fig. 1. Diagrammatic representation of: (a)T–section; and

(b) strain distribution

Au et al.
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the friction along the unbonded tendons is negligible;

(e) the member has adequate shear strength to prevent

premature shear failure. The ultimate flexural moment

is reached either when the moment capacity shows a

drop in the loading history analysis, or when the con-

crete compressive strain in the top fibre of the critical

section reaches 0.003. As usual, compressive stresses

and strains in concrete are taken as positive and vice

versa. For steel, tensile stresses and strains are taken as

positive and vice versa. Downward eccentricities of

tendons are taken as positive.

The stress–strain relationship for unconfined con-

crete in compression proposed by Hognestad,17 which

comprises a parabolic ascending branch and linear des-

cending branch, is used in this study. The stress �c is

related to the strain �c of concrete as

�c ¼ f 9c
2�c
0:002

� �c
0:002

� �2
" #

for �c < 0:002

�c ¼ f 9c 1� 0:15
�c � 0:002

�cu � 0:002

� �� �
for 0:002 , �c < �cu

8>>>>>>>>>><
>>>>>>>>>>:

(15)

where f 9c is the cylinder strength of concrete and the

ultimate concrete compressive strain in the top fibre is

taken as �cu ¼ 0:003. The stress–strain relationship for

concrete in tension is assumed to be linear with a slope

equal to the elastic modulus in compression at zero

stress. The contribution from concrete in tension after

cracking is ignored.

The non-prestressed steel is assumed to be elastic-

perfectly plastic, and the stress �s is related to the

strain �s as

�s ¼ Es�s for �s < f y=Es

�s ¼ f y for �s . f y=Es

�
(16)

The stress–strain formula for prestressed steel pro-

posed by Menegotto and Pinto18 was shown by

Naaman19 to be realistic, and it is adopted here. The

stress �ps is related to the strain �p by

�ps ¼ Ep�p(Qþ (1� Q)=f1þ [Ep�p=(Kf py)]
Ng1=N )

(17a)

Q ¼ f pu � Kf py
� �

= Ep�pu � Kf py
� �

(17b)

where f py is the yield stress of prestressed steel; f pu
and �pu are the ultimate stress and strain of prestressed

steel, respectively; and N, K and Q are empirical para-

meters whose values are respectively 7.344, 1.0618 and

0.01174 for 7-wire strands of Grade 270 with ultimate

tensile strength of 1863 MPa.

In the numerical analysis, the UPPC member is di-

vided into m beam elements (k ¼ 1, 2, . . . m) with the

control element (k ¼ 1) located at the critical section.

For example, in a simply supported beam with a cen-

tral-point load, the control element is located at the

centre and it is only necessary to consider one half

because of symmetry. The concrete strain in the top

fibre of the control element is increased in increments

to simulate the applied loading. After each increment

in concrete strain in the control element, a three-level

iteration procedure is carried out to ensure (a) the

equilibrium of forces across the depth of all beam

elements, (b) the equilibrium between the applied load

and the bending moment at each element, and (c)

compatibility of the average strain and elongation be-

tween the anchorages of the unbonded tendons. Fig. 2

shows a summary of the algorithm particularly in re-

spect of the convergence criterion (c) above. The con-

vergence criteria (a) and (b) can be satisfied at the

section considered as follows.

In the first loading step (i ¼ 1), the control element

(k ¼ 1) is loaded to its cracking moment M1,cr given

by

M1,cr ¼ P0e1 þ
P0I01

A01 y
b
1

þ f rI01

yb1
(18)

with the concrete strain �t,11 in the top fibre being

�t,11 ¼ P0

EcA01

� P0e1 y
t
1

EcI01
þM1,cr y

t
1

EcI01
(19)

START
Divide the beam into

m elements

Assume an effective prestress: fpe(i ) � fpe(i � 1); and
assume a concrete strain in the top fibre of control

element: ε i
1 � ε i�1

1 � ∆ε

Calculate the neutral axis depth, curvature and
moment at control element

Calculate the applied moment at the remaining
elements from the applied loading

Calculate concrete strain in top fibre and neutral axis
depth at the remaining elements to satisfy force and

moment equilibrium

Calculate the elongation of unbonded tendons from
the increase in concrete strain at the level of the

unbonded tendons; and obtain fpe0(i )

NoLet
fpe(i ) � fpe0(i )

fpe(i ) � fpe0(i )?

Yes

ε i
1 � 0·003 or M i

1 � M i�1
1 ?

No

STOP

Yes

Fig. 2. Flow chart of numerical analysis of unbonded pre-

stressed concrete beams

Service load analysis of UPPC
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where P0 is the effective prestressing force before load-

ing; f r is the modulus of rupture of concrete; e1 is the

eccentricity of prestressed steel with respect to the

centroid of the transformed section of the control ele-

ment; A01 and I01 are respectively the area and moment

of inertia of the transformed section of the control

element; yb1 and yt1 are the distances from the centroi-

dal axis to the bottom and top fibres of the transformed

section of the control element, respectively. In the sub-

sequent analysis, the increment of concrete strain in the

top fibre of the control element after cracking is set to

any small arbitrary value such as 0.0001. Note that the

control element should remain cracked hereafter. With

the concrete strain in the top fibre known, the neutral

axis depth ci1 under loading step i can be obtained by

iteration until the force equilibrium is satisfied. The

bending moment in the control element M i
1 can be

worked out accordingly. The applied moments M i
k

(k ¼ 2 � m) in the remaining elements can be com-

puted from the equilibrium of the beam.

If the applied moment M i
k is less than or equal to its

corresponding cracking moment M k,cr, the concrete

strain in the top fibre �t,ik and that in the bottom fibre

�b,ik of element k at loading step i can be computed as

�t,ik ¼ Pi

EcA0k

� Piek y
t
k

EcI0k
þM i

k y
t
k

EcI0k
(20a)

�b,ik ¼ Pi

EcA0k

þ Piek y
b
k

EcI0k
þM i

k y
b
k

EcI0k
(20b)

where Pi is the effective prestressing force at step i; ek
is the eccentricity of prestressed steel with respect to

the centroid of the transformed section of element k;

A0k and I0k are respectively the area and moment of

inertia of the transformed section of element k; and ybk
and ytk are the distances from the centroidal axis to the

bottom and top fibres of the transformed section of

element k, respectively. If the applied moment M i
k

exceeds its corresponding cracking moment M k,cr—that

is, M k,cr , M i
k < M i

1—the concrete strain in the top

fibre �t,ik and the neutral axis depth cik can be obtained

by iteration until the equilibrium conditions of force

and moment are satisfied. Once the tendon stress f pe(i)

at loading step i is available, the coefficient ºi at load-
ing step i can be worked out similar to equation (7) as

ºi ¼
L(f pe(i)� f pe)

Ep�i1(dp � ci1)
(21)

Verification of numerical analysis

When a UPPC beam is loaded, the load–deflection

curve normally exhibits three stages as shown in Fig. 3,

namely (a) elastic, (b) cracked-elastic and (c) plastic.

The transition from the first to the second stage is

caused by the development of cracks at the bottom of

the beam, while the transition from the second to the

third stage is caused by yielding of the non-prestressed

steel. The numerical results are then verified by com-

parison with available experimental results.

In the experiment by Du and Tao,2 22 UPPC beams

were tested to investigate the ultimate tendon stress at

different levels of reinforcement. All the test beams

were 160 3 280 mm (6.4 3 11 in) in cross-section and

4400 mm (173.2 in) in length, and were tested with

third-point loading over a span Ln of 4200 mm (165.4

in). The span–depth ratio Ln/dp was 19.1. The beams

were divided into three categories and each beam was

designed for the non-prestressed steel to carry about

30%, 50% and 70% of the total ultimate load. The

reinforcement was characterised by the combined rein-

forcement index q0 defined as

q0 ¼
Apf pe þ Asf y

bdpf 9c
(22)

The index q0 fell into three categories: low (beam A-

1, q0 , 0.15), medium (beam A-2, 0.15 , q0 , 0.25)

and high (beam A-3, q0 . 0.25). The numerical and

experimental load–deflection curves for three represen-

tative beams are plotted in Fig. 4, and they are stag-

gered horizontally for clarity. Similarly, the increase in

tendon stress ˜f p is plotted against the mid-span de-

flection for each beam in Fig. 5. It can be seen that the

numerical results agree well with the experimental re-

sults, showing the three stages clearly. For beams with

low and medium levels of combined reinforcement

index q0, Fig. 5 shows initial straight segments gradu-

ally becoming curved with significant deformation in

the prestressed steel. However, for the beam with high

combined reinforcement index q0, the increase in ten-

don stress remains linear with mid-span deflection until

its failure.

In the study by Campbell and Chouinard,3 six UPPC

beams with section of 160 3 280 mm (6.4 3 11 in)

and overall length of 3600 mm (141.7 in) were tested

Deflection

Cracking of concrete

Yielding of
non-prestressed
steel

Stage 3 (plastic)

Stage 2 (cracked-elastic)Stage 1
(elastic)

Lo
ad

Fig. 3. Simplified load–deflection curve for unbonded par-

tially prestressed concrete beams

Au et al.
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under third-point loading. The span length was 3300

mm (129.9 in), and the span–depth ratio was 15. The

study focused on the influence of non-prestressed steel

on the strength of UPPC members. Table 2 shows the

experimental and computed results of ultimate tendon

stress f ps and ultimate flexural moment Mu. Very good

agreement is observed for the six beams tested. The

ratio of the measured to computed values of ultimate

tendon stress has a mean value of 0.993 and a standard

deviation of 0.026. In the case of ultimate flexural

strength, the mean value of the ratio is 1.053 and the

standard deviation is 0.053.

Parametric study

In order to pave the way for a simplified design

method, a parametric study is conducted on simply

supported UPPC beams with section details as shown

in Fig. 6. The amounts of prestressed and non-

prestressed steel are so provided that Apf pe=
Apf pe þ Asf y

� �
¼ 0:6. Emphasis is placed on para-

meters that may influence the increase in tendon stress

˜f p before the yielding of non-prestressed steel and the

coefficient º under service load as defined previously.

These parameters include the span–depth ratio Ln/dp,

combined reinforcement index q0 and type of loading.

In the parametric study, three different span–depth

ratios Ln/dp are used, namely 10, 20 and 30, while three

different values of combined reinforcement index q0
are adopted, namely 0.1, 0.2 and 0.3. The types of

loading considered include central-point load, third-

A-3 A-2

A-1

Calculated

Experimental

0 50 100 150 200 250

Mid-span deflection: mm

90

80

70

60

50

40

30

20

10

0

Lo
ad

: k
N

Fig. 4. Relationship between applied load and mid-span de-

flection for beams from Reference 2

Calculated

Experimental

A-1
A-2

A-3

0 50 100 150 200

Mid-span deflection: mm

700

600

500

400

300

200

100

0

In
cr

ea
se

 in
 te

nd
on

 s
tr

es
s:

 M
P

a

Fig. 5. Relationship between increase in tendon stress and

mid-span deflection for beams from Reference 2

Table 2. Comparison of experimental and calculated values of ultimate tendon stress fps, and ultimate flexural moment Mu.

Beam No. f ps (exp.):
3

MPa

(1)

f ps (cal.):

MPa

(2)

(1)/(2) Mu (exp.):
3

kNm

(3)

Mu (cal.):

kNm

(4)

(3)/(4)

1 1476 1517 0.970 45.5 46.1 0.990

2 1467 1459 1.010 63.3 59.3 1.070

3 1381 1332 1.040 81.1 72.0 1.130

4 1348 1380 0.980 98.0 91.0 1.080

5 1274 1317 0.970 105.5 103.0 1.020

6 1269 1270 1.000 120.0 116.0 1.030

Average value 0.993 1.053

Standard deviation 0.026 0.048

300 mm

60
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m
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m
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m
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Fig. 6. Cross-sectional dimensions and steel layout of beams

for parametric study
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point loading and uniform loading. In this study, the

increase in tendon stress under service load ˜f p refers

to the stress variation from the stage of no loading to

that when the non-prestressed steel begins to yield. The

average value ºav of the coefficient º is defined as that

within the cracked-elastic stage shown in Fig. 3 — that

is, the average of all values of ºi obtained at each

loading step from the cracking of the beam to the

yielding of non-prestressed steel.

Numerical analysis indicates that under service load,

all else being equal, the span–depth ratio has no sig-

nificant effect on the increase in tendon stress ˜f p
before the yielding of non-prestressed steel as shown in

Table 3. However Table 4 shows that the average coef-

ficient ºav is roughly proportional to the span–depth

ratio of the member. Fig. 7 shows the variation of

increase in tendon stress ˜f p before the yielding of

non-prestressed steel with the combined reinforcement

index q0 and loading type. It is observed that signifi-

cantly lower values of ˜f p are predicted for the case of

central-point load, and so are the values of ºav as listed

in Table 4. On the other hand, the results of ˜f p and

ºav for third-point loading are close to those for uni-

form loading. These phenomena are caused by the

smaller length of equivalent deformation region Le for

the case of central-point load. Fig. 7 also shows that

increase in tendon stress ˜f p before the yielding of

non-prestressed steel increases with the combined rein-

forcement index q0. This is because with the increase

in steel content, a larger applied moment is necessary

to cause yielding in the non-prestressed steel. However

it should be noted that, under the same applied loading

and therefore moment, the increase in tendon stress

should decrease with the increase of q0. On the other

hand, there are variations in ºav with the combined

reinforcement index q0 as shown in Table 4 but they

are secondary in nature. The proportion of prestressed

steel Apf pe= Apf pe þ Asf y
� �

has been varied from 0.3 to

Table 3. Increase in tendon stress ˜fp (MPa) before yielding of non-prestressed

steel

Span–depth ratio Type of loading Combined reinforcement index q0

0.1 0.2 0.3

10 Central-point load 68.6 131.5 144.7

Third-point loading 199.9 216.0 226.2

Uniform loading 137.9 203.6 214.3

20 Central-point load 66.2 130.4 144.2

Third-point loading 198.9 215.3 225.6

Uniform load 136.9 203.4 214.0

30 Central-point load 67.1 130.6 144.4

Third-point loading 198.9 215.5 225.7

Uniform load 137.1 203.3 214.1

Table 4. Values of ºav at cracked-elastic stage under service load

Span–depth ratio Type of loading Combined reinforcement index q0

0.1 0.2 0.3

10 Central-point load 6.2 8.5 8.7

Third-point loading 14.8 14.3 14.8

Uniform loading 11.4 13.5 12.9

20 Central-point load 12.1 17.0 17.4

Third-point loading 29.6 28.5 26.5

Uniform loading 22.8 27.1 25.8

30 Central-point load 18.2 25.5 26.1

Third-point loading 44.3 42.7 39.7

Uniform loading 34.1 40.6 38.8
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Fig. 7. Variation of increase in tendon stress with combined

reinforcement index and loading type
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0.7 while keeping the index q0 unchanged, but the

corresponding values of ºav are reasonably stable.

Proposed design method for calculation of

service stresses

A simplified design method for calculation of ser-

vice stresses before the yielding of non-prestressed

steel is then proposed. It is observed from the numer-

ical analysis that, for a given beam, the variation of º is

not large before the yielding of non-prestressed steel,

as can be seen in Fig. 8 for a beam with span–depth

ratio of 10 and q0 of 0.2. Fig. 8 shows that after the

yielding of non-prestressed steel, the value of º for the

beams loaded with central-point load or uniform load

decreases with the increase of concrete compressive

strain in the top fibre. However it has no effect on the

calculation of service stresses, which is the main con-

cern of the present paper. The major factors governing

the magnitude of ºav are the span–depth ratio and

loading type, while the combined reinforcement index

q0 has much less effect. Noting that the value of ºav is

roughly proportional to the span–depth ratio and taking

members with span–depth ratio Ln/dp of 10 as refer-

ence, it is reasonable in practical analysis of UPPC

beams under service load to take º as

º ¼ Ln=dp
� �

º10=10 (23)

for which it is reasonable to take º10 ¼ 5 for central-

point load and º10 ¼ 10 for third-point loading and

uniform load. Once º is determined, the stress analysis

after cracking in a UPPC beam can be treated in a

similar way as a bonded partially prestressed beam.

The strains and stresses of the components can be

worked out by considering the section as an equivalent

reinforced concrete section subjected to an eccentric

compression force.6 Under the effective prestressing

force P0 alone, the UPPC beam is compressed. The

fictitious scenario of decompression of the concrete, at

which there is zero concrete strain through the entire

depth, can be achieved by pulling the prestressed steel

with a pair of fictitious forces F shown in Fig. 9(a) and

given by

F ¼ P0 þ EpAp�
P0

EcA0

þ P0e
2

EcI0

� �
(24)

where � is the bond reduction coefficient in Table 1, e

is the eccentricity of prestressed steel with respect to

the centroid of the transformed section, and A0 and I0
are the area and moment of inertia of the transformed

section respectively. Note that the second term is the

extra amount over the effective prestressing force P0 to

decompress the concrete. The effect of this fictitious

decompression can be cancelled by applying an equal

and opposite force F as shown in Fig. 9(b). This force,

together with the applied moment M due to dead and

imposed loads, can be represented by a resultant force

R ¼ F applied at a distance e0 ¼ M=R above the cen-

troid of the prestressed steel.

Taking a T-section as an example, the compression

carried by the flange outside the web C 1 and that by

the web C 2 and their corresponding distances h1 and h2
from the top fibre are given by equations (10) to (13).

The increases in tension in prestressed steel ˜Tp and

the tension in non-prestressed steel Ts can be written

similarly in terms of the concrete stress in the top fibre

f c as

˜Tp ¼ ApEpf cº dp � cð Þ=EcL (25)

Ts ¼ AsEsf c ds � cð Þ=Ecc (26)

From force equilibrium, the resultant force R can be

written as

R ¼ C 1 þ C2 � ˜Tp � Ts (27)

The concrete stress in the top fibre f c can thus be

obtained as

f c ¼ 2Rc

��
bwc

2 þ (2c� hf )(b� bw)hf

� 2AsEs(ds � c)

Ec

� 2ApEpº(dp � c)c

EcL

�
(28)

Taking moment about the resultant force R results in

a cubic equation for neutral axis depth c, that is
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Fig. 8. Variation of º with concrete strain in top fibre (span–

depth ratio ¼ 10; q0 ¼ 0.2)

fc

d s
d p

c

Apfp
AsfsF

M e 0

R

F

(a) (b) (c)

Fig. 9. Basis for analysis of cracked cross-section;8 (a) de-

compression; (b) forces on cracked section; (c) resulting
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c3 þ g1c
2 þ g2cþ g3 ¼ 0 (29a)

where the coefficients are given as

g1 ¼ 3 e0 � dpð Þ þ
6ºApEpe0

EcLbw
(29b)

g2 ¼
6

bw

�
hf b� bwð Þ e0 � dp þ 0:5hfð Þ

� ºApEpe0dp

EpL
þ AsEs e0 � dp þ dsð Þ

Ec

� (29c)

g3 ¼ � 6

bw

"
h2f
2

b� bwð Þ e0 � dp þ
2hf

3

� �

þ EsAsds

Ec

e0 � dp þ dsð Þ
# (29d)

The neutral axis depth c can be solved from equation

(29a) by iterations. The depth of the centroid of the

cracked section below the top fibre y is given by

y ¼ (b� bw)h
2
f =2þ bwc

2=2þ EsAsds=Ec

(b� bw)hf þ bwcþ EsAs=Ec

(30)

while the moment of inertia of the cracked section I cr
is

I cr ¼
bw y

3

3
þ bw(c� y)3

3
þ hf (b� bw)(y� 0:5hf )

2

þ (b� bw)h
3
f

12
þ EsAs(ds � y)2

Ec

(31)

The stresses of various components can then be

worked out accordingly.

Comparison of theoretical results with test

results

To demonstrate the validity of the proposed design

method, the computed results are compared with avail-

able experimental results. Fig. 10 shows the relation-

ship between the total applied load and the increase in

tendon stress ˜f p for beams A-1, A-2 and A-3 in the

experiments of Du and Tao.2 As before, the curves are

staggered horizontally for clarity. Good agreement be-

tween the calculated and experimental results is ob-

served.

In the study by Harajli and Kanj,5 a total of 26

simply supported beam specimens with rectangular

cross-section were tested. The main input parameters

included three different amounts of prestressed steel,

two different ratios of amounts of non-prestressed to

prestressed steel, and three different member span–

depth ratios. For each set of input parameters, one

beam was tested under a central-point load, while an-

other was tested under third-point loading. Fig. 11

shows the relationship between the applied mid-span

bending moment and the increase in tendon stress ˜f p
for four specimens, in which PP3R3-0 and PP2R3-0

were under central-point load, while PP3R-3 and

PP2R3-3 were under third-point loading. It can be seen

that the proposed method gives satisfactory predictions

of service stresses for different loading types.

Conclusions

This paper has extended the capability of Pannell’s

coefficient º, which is the ratio of length of equivalent

deformation region Le to the neutral axis depth c at

critical section, to the cracked section analysis of un-

bonded partially prestressed concrete members under

service load. The variations of tendon stress and the

coefficient º under service load have been studied by

numerical analysis. The following conclusions have

been drawn.

(a) Numerical analysis indicates that under service

load, all else being equal, the span–depth ratio has

no significant effect on the increase in tendon
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Fig. 10. Relationship between applied load and increase in

tendon stress for beams from Reference 2
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stress ˜f p. The average value ºav of the coefficient

º is almost proportional to the span–depth ratio of

a member.

(b) Significantly lower values of ˜f p and ºav are pre-

dicted for the beams subjected to central-point

load, as opposed to similar beams subjected to

third-point loading or uniform loading. On the

other hand, the values of ˜f p and ºav for third-

point loading are close to those for uniform load-

ing.

(c) Under service load, º is not sensitive to the varia-

tion of the combined reinforcement index q0. After

cracking of the beam and until the yielding of non-

prestressed steel, the value of º is fairly stable.

(d) In practical stress analysis of cracked sections of

unbonded partially prestressed concrete beams, º
can be approximated by equation (23).

(e) A method has been proposed for the calculation

of stresses in concrete, prestressed steel and non-

prestressed steel in unbonded partially prestressed

beams after cracking, permitting a more satisfac-

tory assessment of serviceability.
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