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Abstract The basement of the North China Craton can be divided into the Eastern and Western
Blocks and the Central Zone (Trans-North China Orogen). The West Block formed by the amal-
gamation of the Ordos Block in the south and the Yinshan Block in the north 1.9�2.0 Ga ago. In

1.8�1.9 Ga, the Eastern and Western Blocks were amalgamated along the Central Zone to form
the North China Craton.
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In the last decade, Chinese geologists have made a remarkable progress in studies on the

lithology, structural style, metamorphic evolution, geochemistry and geochronology of the North

China Craton, including recognition of numerous tonalitic-trondhjemitic-granodioritic (TTG) plu-

tons[1�3], fragments of ancient oceanic crust[4�6], high-pressure granulites and retrograded ec-

logites[7, 8], crustal-scale ductile shear zones and domes[2, 3, 9, 10], near-isobaric cooling anticlock-

wise and near-isothermal decompression clockwise P-T paths[11�15], and 3.8�3.9 Ga metasedi-

mentary and granitoid rocks[16]. These new advances have led to a reevaluation of the basement

tectonic units of the craton and their tectonic evolution, as embodied in a number of new proposals

on the tectonic division of the craton[1�3, 10, 17�19]. Of these new proposals, however, the metamor-

phic evolution of different terrains in the craton has not fully been taken into account. Much of the

recent research in metamorphic petrology has shown that modern field- and thermodynam-

ics-based metamorphic investigations, in combination with lithological, structural and geochro-

nological considerations, can be directed towards understanding of tectonic setting and processes

that were operative during the metamorphic event. For example, clockwise, especially isothermal

decompressional, P-T-t paths are considered to be related to continent-continent collision envi-

ronments[20], whereas anticlockwise, especially isobaric cooling, P-T-t paths are related to the in-

trusion and underplating of mantle magmas, which can occur in continental magmatic arc regions,

hot spots related to mantle plumes and rift environments[21]. However, these new advances on the

relationships between metamorphic evolution and tectonic setting have not been reflected in the

present proposals of the tectonic division of the North China Craton.

Recently, we have summarized the major differences of metamorphic P-T paths between the
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Eastern and Western Blocks and the Central Zone of the North China Craton, and along with

lithological, structural, geochemical and geochronological considerations, we have for the first

time proposed that the basement of the craton can be divided into the Eastern and Western Blocks,

separated by a Central Zone (fig. 1), along which the Eastern and Western Blocks were amalga-

mated to form the North China Craton at ~1.85 Ga[22�26]. On the basis of these studies, this paper

integrates new geological and geochronological data to further characterize these major tectonic

units and expound the tectonic processes of their Paleoproterozoic amalgamation to form the

North China Craton.

Fig. 1. Spatial distribution of the basement rocks and tectonic division of the North China Craton.

1 Eastern Block

The basement rocks of the Eastern Block are exposed as high-grade terrains or low-grade

granite-greenstone belts in Southern Jilin, North Liaoning, Anshan-Benxi, Southern Liaoning,

Western Liaoning, Eastern Hebei, Miyun, Western Shandong and Eastern Shandong. They are
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dominated by a late Archean lithological assemblage, with minor early to middle Archean rocks,

including 3.3�3.8 Ga granitic gneisses and 3.85 Ga fuchsite-bearing quartzites in local areas.

The late Archean basement rocks consist predominantly of 2.8�2.5 Ga tonalitic-trondhje-

mitic-granodioritic (TTG) gneisses, ultramafic to mafic igneous intrusives and dykes and minor

amounts of supracrustal rocks. Of these rocks, TTG gneisses make up 70% of the total exposure

of the late Archean basement[2, 3]; ultramafic rocks have affinities to peridotitic and komatiitic

rocks[27]; and the supracrustal rocks comprise sedimentary and bimodal volcanic rocks[22]. All

these rocks were regionally deformed and metamorphosed from greenschist to granulite facies

during 2.48�2.50 Ga[2, 3], which resulted in the formation of syntectonic charnockites in

high-grade terrains and granites in granite-greenstone belts. The early-to-middle Archean rocks

have been found only in the Anshan and Eastern Hebei areas, including 3.6�3.9 Ga detrital zir-

cons-bearing fuchsite-bearing quartzites and ~3.5 Ga amphibolites in the Caozhuang area of East-

ern Hebei and the 3.3�3.8 Ga granitoids and metasedimentary rocks in the Anshan area[16]. These

early to middle Archean rocks may have experienced multiple episodes of metamorphism and de-

formation between 3.8 Ga and 2.5 Ga, but much of their petrographic and isotopic information on

the early tectonothermal events has been obliterated by the last metamorphic event at ~2.5 Ga.

Therefore, it remains unknown regarding the tectonic setting, spatial distribution and tectonic

evolution of these rocks. The Paleoproterozoic rocks mainly crop out in the Liaoning and Shan-

dong regions, represented by the Liaohe, Jingshan and Fenzishan groups and associated Paleopro-

terozoic granites[28, 29], which are considered to have formed in an intra-continental rift environ-

ment[29].

Structurally, TTG gneiss domes, separated by linear belts of supracrustal rocks, dominate the

late Archean basement in the Eastern Block. The domes are generally circular, elliptical or oval in

plane, 10 �50 km in diameter, and consist of broadly uniform TTG gneisses, locally associated

with ~2.5 Ga syntectonic granites in the cores of the domes. The representative domes include the

Qianan, Chuizhangzi and Taipingzhai-Santunying domes in Eastern Hebei, Qingyuan Dome in

Northern Liaoning, Huadian Dome in Southern Jilin, Jinzhou Dome in Southern Liaoning, etc.

Controversy has surrounded the origins of these domes, with one school of thought believing that

they resulted from the superimposition of multiple folds[30], whereas others argue that they were

related to the diapiric intrusion of granitoid magmas[22].

The metamorphic evolution of the late Archean basement rocks of the Eastern Block, regard-

less of high-grade terrains or low-grade granite-greenstone belts, is characterized by anticlockwise

P-T paths involving near-isobaric cooling (fig. 2(a)). Mafic granulites, amphibolites and pelitic

gneisses in the Eastern Block preserve prograde, peak and post-peak mineral assemblages. The

prograde assemblage is indicated by inclusions within minerals of the peak stage, represented by

the assemblages of hornblende + plagioclase + quartz ± biotite in mafic granulites, chlorite +

actinolite + epidote + plagioclase + quartz in amphibolites and biotite + plagioclase + quartz ± an-
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Fig. 2. Metamorphic P-T paths of the basement rocks of the North China Craton.

dalusite in pelitic gneisses (e.g. the presence of relict andalusites within planar sillimanite crystals

from the Caozhuang pelitic gneiss, Eastern Hebei[22]). The peak assemblage is shown by the as-

semblages of orthopyroxene + clinopyroxene + garnet + plagioclase + quartz in mafic granulites,

hornblende + plagioclase + quartz + garnet in garnetiferous amphibolites and garnet + sillimanite

+ plagioclase + quartz + biotite in pelitic gneisses. The post-peak assemblage is characterized by

garnet + quartz symplectic coronas in mafic granulites (fig. 3(a)), actinolite + garnet retrogressive

rims around garnet or hornblende grains in amphibolites, and kyanite replacing sillimanite or

staurolite replacing sillimanite + garnet in pelitic gneisses[22]. These mineral assemblages and their

P-T estimates define nearly isobaric cooling, anticlockwise, P-T paths, reflecting an origin related

to the intrusion and underplating of large amounts of mantle-derived magmas[31].
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Fig. 3. Back-scattered electron (BSE) images showing representative metamorphic textures and cathodolumine-

scence (CL) images showing internal structures of zircons from the Fuping Complex. (a) Garnet + quartz symplec-

tites surrounding plagioclase + pyroxene in mafic granulites from Eastern Hebei; (b) Na-rich plagioclase + clino-

pyroxene symplectite formed by the breakdown of omphacites; (c) pyroxene + plagioclase coronas surrounding

embayed garnet grains in the Hengshan mafic granulites; (d) hornblende + plagioclase symplectite on embayed

garnet grains in the Hengshan mafic granulites; (e) and (f) metamorphic zircons occurring as overgrowth rims sur-

rounding the magmatic zircon cores in the Archean Fuping tonalitic gneisses; (g) and (h) metamorphic zircons oc-

curring as overgrowth rims surrounding the magmatic zircon cores in the Paleoproterozoic Fuping granitic gneisses;

(i) metamorphic zircons occurring as single grains in the Archean Fuping tonalitic gneisses. Age unit in (e)�(i) is

million years (Ma). Mineral symbols are after the result of R. Kreze: Symbols for rock-forming minerals, Ameri-

can Mineralogist, 1983, 68: 277�279.
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2 Western Block

The basement rocks in the Western Block are mainly exposed in the northern part of the

block, especially in the Jining, Daqingshan-Ulashan, Guyang-Wuchuan, Sheerteng, Helan-

shan-Qianlishan, and Alashan areas, whereas the southern part of the block is covered with the

Ordos basin. Data from sporadic drillings reveal the existence of the late Archean granulite-facies

basement beneath the Ordos basin[32], and some aeromagnetic data also imply the existence of

granulite-facies basement beneath the Donghongsheng area[3]. The exposed basement can be fur-

ther divided into two distinct lithotectonic units: the late Archean TTG + supracrustals and the

Paleoproterozoic Khondalite Belt. The former crops out as granite-greenstone or high-grade ter-

rains in the Guyang, Wuchuan, Sheerteng and Alashan areas in the northern part of the block,

whereas the latter is exposed as a typical linear structural belt along the Jin-

ing-Daqingshan-Ulashan-Qianlishan-Helanshan zone, separating the northern late Archean base-

ment from the Ordos basin.

The late Archean basement of the Western Block has a lithological assemblage, structural

style and metamorphic history similar to those of the Eastern Block, comprising TTG gneiss com-

plexes associated with minor supracrustal rocks (including sedimentary rocks and bimodal vol-

canic rocks). These rocks underwent a greenschist to granulite facies metamorphic event at ~2.5

Ga, in association with the formation of syntectonic charnockites and granites. Moreover, the

metamorphic evolution of these late Archean basement rocks from both high-grade terrains and

low-grade granite-greenstone belts is characterized by anticlockwise P-T paths involving

near-isobaric cooling[11, 13]. For instance, like those in the Eastern Block, mafic granulites in the

Guyang and Wuchuan areas also contain the prograde assemblage of hornblende + plagioclase +

quartz ± biotite as inclusions within garnet and pyroxene grains, peak assemblage of orthopyrox-

ene + clinopyroxene + garnet + plagioclase ± quartz as a porphyroblast or matrix, and post-peak

assemblage of garnet + quartz as symplectic coronas. These mineral assemblages and their P-T

estimates define a nearly isobaric, anticlockwise, P-T path (fig. 2(b)), which suggests that the

metamorphic event was related to the intrusion and underplating of mantle-derived magmas[23].

The Paleoproterozoic Khondalite Belt consists of khondalite series, TTG gneiss with minor

mafic granulites, and syntectonic charnockites and S-type granites. The khondalite series is com-

posed of graphite-bearing sillimanite-garnet gneisses, garnet quartzites, calc-silicate rocks and

marbles, which generally are considered to represent stable continental margin deposits[33]. It has

long been accepted that the khondalite series in the Western Block formed in the Archean [34],

since in most cases it occurs in a close association with the Archean TTG gneisses and mafic

granulites. However, this notion has never been supported by the available isotopic data, which

suggest that the khondalite series formed in the Paleoproterozoic, with depositional ages ranging

from 2.3 to 1.9 Ga and a metamorphic age of 1.9�1.8 Ga[35�38].

Graphite-bearing pelitic gneiss from the khondalite series preserves four distinct mineral as-
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semblages (M1�M4). M1 is represented by mineral inclusions within the M2 garnet porphyro-

blasts and consists of plagioclase + biotite + quartz ± kyanite ± rutile; M2 represents the growth of

garnet porphyroblasts and matrix plagioclase + biotite + quartz + sillimanite ± ilmenite; M3 is

represented by cordierite coronas and cordierite + orthopyroxene or cordierite + spinel symplec-

tites, surrounding garnet porphyroblasts; and M4 represents retrograde minerals biotite + chlorite

replacing garnets, K-feldspar + sericite + chlorite replacing cordierites and andalusite + muscovite

cutting the regional foliation. These mineral assemblages and their thermobarometric estimates

define clockwise P-T paths involving near-isothermal decompression (fig. 2(c)), reflecting a con-

tinent-continent collision environment.

We previously interpreted the clockwise P-T paths of the Khondalite Belt as having resulted

from the Paleoproterozoic collision between the Eastern and Western Blocks[23, 25]. However, this

interpretation cannot well explain the formation of the khondalites occurring far away from the

Central Zone, such as those in the Daqingshan, Ulashan, Qianlishan and Helanshan areas. There-

fore, we propose in this paper that the Khondalite Belt may represent a Paleoproterozoic collision

belt, along which the Yinshan Block represented by the late Archean basement in the north and the

Ordos Block in the south were amalgamated to form the Western Block in the Paleoproterozoic

(fig. 4). This scenario can well explain the spatial distribution of the Khondalite Belt in the West-

ern Block. As most khondalites occur surrounding the borderlands of the Ordos basin, it is rea-

sonably inferred that the khondalite series may represent stable continental margin deposits of the

Ordos Block. The TTG gneisses and mafic granulites coexisting with the khondalites cannot be

assigned to the formation of stable continental margin deposits; they may represent a continental

magmatic arc or island arc bordering the southern margin of the Yinshan Block. The Paleopro-

terozoic collision between the Yinshan and Ordos Blocks resulted in a spatial mixture of the

Fig. 4. Spatial distribution of the Khondalite Belt, Ordos Block and Yinshan Block in the Western Block.
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khondalite series and the TTG gneisses and mafic granulites, forming the Paleoproterozoic Khon-

dalite Belt. The collision between the Yinshan and Ordos Blocks must have occurred earlier than

the collision between the Eastern and Western Blocks, which resulted in the formation of the Cen-

tral Zone. The available data indicate that the khondalites from the Jining Complex near the junc-

tion of the Khondalite Belt and the Central Zone underwent two high-grade metamorphic

events[33]. Moreover, there may have existed a temperature-lowering period between the two

high-grade metamorphic events because some biotite crystals, which formed from the retrograde

breakdown of garnet porphyroblasts during the first metamorphic event, were transferred to fi-

brous sillimanites during the second metamorphic event by the following reaction:

4K(Mg, Fe)3(AlSi3)O10(OH)2 (biotite) → 2Al2SiO5 (sillimanite) + 10 SiO2 (quartz)

+ 12 (Mg, Fe)O + 2K2O +4H2O
[33] (1)

This implies that these two high-grade metamorphic events may represent two independent

tectonothermal events. Metamorphic reaction textures and thermobarometric estimates show that a

clockwise P-T path involving nearly isothermal decompression characterizes the metamorphic

evolution of both the high-grade events. This suggests that the khondalites near the junction of the

Khondalite Belt and the Central Zone encountered two collision events. In contrast, the khon-

dalites from those areas far away from the Central Zone (e.g. those in Daqingshan, Ulashan,

Qianlishan, Helanshan, etc.) only experienced one high-grade metamorphic event, which further

supports the conclusion that the metamorphism of the Khondalite Belt occurred earlier than that of

the Central Zone.

3 Central Zone

The Central Zone is separated from the Western Block by the Huashan-Lishi-Datong-Duolun

(HLDD) Fault and from the Eastern Block by the Xingyang-Kaifeng-Shijiazhuang-Jianping

(XKSJ) Fault (fig. 1). Both faults strike N-S in the central and southern parts and turn to N-E in

the north (fig. 1). The central and southern segments of the XKSJ Fault are also called the Zhuox-

ian-Shijiazhuang Fault and Xingtai-Anyang Fault and constitute part of a major fault system in the

eastern part of China[39]. The presence of voluminous mantle-derived basalts exposed along the

two faults suggests that these faults are deep-seated, possibly reaching into the lower crust or up-

per mantle[39]. Because of the lack of reliable geochronological data, whether these two faults rep-

resent the original fundamental boundaries between the two blocks and the Central Zone remains

unknown.

The basement rocks of the Central Zone are mainly exposed in the Chengde, Dengfeng,

Fuping, Hengshan, Huai’an, Lüliang, Taihua, Wutai, Xuanhua, Zanhuang and Zhongtiao areas,

and consist of late Archean to Paleoproterozoic TTG gneisses, supracrustal rocks (metamorphosed

sedimentary and volcanic rocks), mafic dykes, and syn- or post-syntectonic granites. Geochemical

data suggest that much of the basement formed in continental magmatic arc, island arc or back-arc

basin environments[40, 41]. Minor ultramafic to mafic rocks have been interpreted to be fragments
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of ancient oceanic crust, the prime example of which is the metamorphosed peridotite-

gabbro-diabase-pillow lava assemblage in the Jingangku Formation of the Wutai Group[4�6].

Compared with the late Archean basement of the Eastern Block, the basement of the Central Zone

contains a higher proportion of supracrustals, of which marbles and calc-silicate rocks rarely occur

in the late Archean basement of the Eastern Block. The TTG gneisses and supracrustals of the

Central Zone underwent a multiple deformation and were metamorphosed from greenschist to

granulite facies, and thus the basement of the Central Zone can be further subdivided into

high-grade terrains and low-grade granite-greenstone belts. The former includes the Taihua, Fup-

ing, Hengshan, Huai’an, Xuanhua and Chengde complexes, whereas the latter includes the Deng-

feng, Zhongtiao, Zanhuang, Lüliang, Wutai and Northern Hebei complexes. TTG gneisses and

supracrustal rocks in the high-grade terrains have long been considered to be Archean in age, but

new isotopic data reveal that some of them may have formed in the Paleoproterozoic. For example,

most recent SHIRMP zircon U-Pb analyses have shown that some of protolith rocks of granitic

gneisses from the Fuping Complex formed at ~2.0 Ga[42, 43], whereas the sillimanite gneiss from

the Wanzi supracrustal rocks of the Fuping Complex has the maximum depositional age of 2.1

Ga[43, 44]. Nd isotopic data suggest that no significant amounts of the basement older than 2.6 Ga

exist in the Central Zone[41], although minor amounts of the 2.7 Ga basement rocks may have ex-

isted in some local areas[43, 44]; they may represent the fragments of the reworked Archean crust

forming at some time prior to the formation of magmatic arcs and back-arc basins that were sub-

sequently incorporated into the Central Zone.

The structural style of the late Archean to Paleoproterozoic basement rocks in the Central

Zone is characterized by linear belts which are primarily outlined by a number of NNE-SSW

trending ductile shear zones, in which mineral lineations are ubiquitous and locally there are

sheath folds, which indicate a broadly eastward thrusting[10]. In some areas (e.g. Fuping, Dengfeng,

etc.), small-scale gneiss domes occur, with their long axes parallel to the regional foliation; they

are interpreted to have resulted from a fold superimposition[45, 46]. Recent geological investigations

reveal a high-pressure granulite-retrograded eclogite belt[7, 8, 47], which occur along a northeast-

southwest trending zone that extends from the Hengshan area, through the Huai’an and Xuanhua,

into Chengde, with a distance of ~500 kilometers[47]. The southern part of the Central Zone is oc-

cupied by a high-pressure amphibolite belt along which occur (10 �14)�108 Pa garnet amphibo-

lites and kyanite-staurolite-anthophyllite mafic schist[48, 49]. This high-pressure amphibolite belt

seems to be the tectonic counterpart of the high-pressure granulite belt, and they together consti-

tute a large-scale Paleoproterozoic high-pressure belt that traverses the Central Zone and repre-

sents an important terrane boundary.

The basement rocks of the Central Zone preserve the peak, post-peak decompression and

later cooling mineral assemblages[46, 47, 49, 50]. The representative peak assemblages, which occur as

porphyroblasts or matrix minerals, include garnet + quartz + omphacite pseudomorph (clinopy-

roxene + Na-rich plagioclase) in retrograded eclogites, garnet + quartz + plagioclase + clinopy-
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roxene in high-pressure granulites, garnet + quartz + plagioclase + clinopyroxene + orthopyroxene

in medium-pressure granulites, garnet + hornblende + plagioclase + quartz ± rutile in amphibolites,

and garnet + plagioclase + K-feldspar + quartz + biotite + sillimanite/kyanite in medium-pressure

pelitic gneisses. The post-peak decompressional assemblages occur as coronas or symplectites

surrounding the peak minerals. In retrograded eclogites, the decompression assemblage is repre-

sented by symplectite clinopyroxene + Na-rich plagioclase (fig. 3(b)), which has been found in

many other retrograded eclogite terrains and is considered to have formed from the breakdown of

omphacite during the transformation of eclogites to high-pressure granulites[51]. In high- and me-

dium-pressure granulites, the decompression assemblage is represented by symplectite orthopy-

roxene + Ca-rich plagioclase or corona orthopyroxene + clinopyroxene + Ca-rich plagioclase sur-

rounding the embayed garnet grains (fig. 3(c)). In amphibolites, the decompression assemblage is

the hornblende/cummingtonite + plagioclase symplectite surrounding the embayed garnet grains,

and in pelitic gneisses, the decompression assemblage is represented by cordierite coronas or cor-

dierite + orthopyroxene/spinel symplectites. The later cooling assemblages include the hornblende

+ plagioclase symplectite in high- and medium-pressure granulites, chlorite + biotite replacing

garnet in amphibolites, and biotite + K-feldspar ± muscovite replacing cordierite, garnet or silli-

manite in pelitic gneisses. These mineral assemblages and their thermobarometric estimates define

a clockwise P-T path involving near-isothermal decompression and cooling following the peak

metamorphism (fig. 2(d)), suggesting a continent-continent collision environment for the Central

Zone.

4 Timing of amalgamation of the Eastern and Western blocks

The high-grade gneisses, low- to medium-grade granite-greenstone terrains and very

low-grade metavolcanic and metasedimentary rocks in the Central Zone have long been assigned

to the products of three different tectonothermal events, named the Fuping (~2.5 Ga), Wutai (2.4

�2.3 Ga) and Lüliang (~1.8 Ga) “movements”, respectively[39]. This was built up on a few “un-

conformities”, conventional multigrain U-Pb zircon geochronology, and a misconception that

high-grade metamorphic rocks were older than low-grade ones. However, a recent study has

shown that the so-called “unconformities” between these “movements” are regional-scale ductile

shear zones[9]. Moreover, recent geochronological data do not support the existence of the Fuping

and Wutai “movements” in the Central Zone. In the Fuping, Wutai and Hengshan areas, for exam-

ple, SHRIMP U-Pb zircon ages reveal that the high-grade Fuping and Hengshan gneiss complexes

are not older than the low-grade Wutai granite-greenstone terrain (table 1); they are all character-

ized by the emplacement of major granitoid bodies between 2.55 and 2.45 Ga, deposition of su-

pracrustal rocks from late Archean to Paleoproterozoic Era, and intrusion of granitic bodies at 2.2

�2.0 Ga (table 1). SHRIMP U-Pb zircons studies combined with cathodoluminescence images

and U-Th chemistry confirm the existence of only one phase of metamorphic zircons in nearly all

medium- to high-grade lithologies from these complexes[43]. These metamorphic zircons occur as
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either overgrowth rims surrounding older magmatic zircon cores (fig. 3(e�h)) or single grains

(fig. 3(i)), and are structureless, highly luminescent and very low in Th and U contents. These

features make them distinctly different from the magmatic zircons that are generally characterized

by oscillatory zoning, low luminescence and comparatively high Th and U contents. The meta-

morphic zircons from different rocks of the Fuping and Hengshan Complexes yield similar con-

cordant 207Pb/206Pb ages in the range from 1870 to 1800 Ma (table 1), which are 700 Ma to 150

Ma younger than their magmatic zircon cores. A conclusion from these data is that the main re-

gional metamorphism of the basement rocks in the Central Zone occurred at ~1.85 Ga (Lüliang

“movement”), not at the end of the Archean, as previously considered by most Chinese geologists.

This conclusion is consistent with recent isotopic data obtained by using other dating methods.

These include a garnet-clinopyroxene-orthopyroxene Sm-Nd isochron age of (1824 ± 18) Ma and

a U-Pb zircon age of (1833 ± 23) Ma from high-pressure granulites in the Huai’an Complex[53], a

hornblende Ar/Ar age of (1781 ± 20) Ma from the Jingangku amphibolites of the Wutai Group[6], a

Table 1 SHRIMP zircon U-Pb ages for Hengshan, Wutai and Fuping Complexes

Rock type Age /Ma Zircon type Age interpretation Sourcesa)

Hengshan Complex

Tonalitic gneiss
2520±15

1872±17

magmatic core

metamorphic rim

crystallization age

metamorphic age (1)

Garnet quartzite
2527±10

1872±17

detrital zircon

metamorphic rim

age of source rock

metamorphic age (1)

Mafic granulite 1827±10 metamorphic zircon metamorphic age (1)

Wutai Complex

Granitic gneiss 2546±3 magmatic zircon crystallization age (2)

Granitic gneiss 2531±5 magmatic zircon crystallization age (2)

Granitic gneiss 2520±9 magmatic zircon crystallization age (2)

Metadacite 2533±8 magmatic zircon protolith age (2)

Metadacite 2524±8 magmatic zircon protolith age (2)

Subvolcanics 2516±8 magmatic zircon protolith age (2)

Monzogranite 2117±18 magmatic zircon crystallization age (2)

Porphyric granite 2176±12 magmatic zircon crystallization age (2)

Porphyric granite 2107±15 magmatic zircon crystallization age (2)

Fuping Complex

Tonalitic gneiss
2514±11

1805±48

magmatic core

metamorphic rim

crystallization age

metamorphic age
(3)

Trondhjemitic gneiss
2499±6

1861±20

magmatic core

metamorphic rim

crystallization age

metamorphic age
(3)

Granodioritic gneiss
2485±9

1824±9

magmatic core

metamorphic rim

crystallization age

metamorphic age
(3)

Monzogranitic gneiss
2084±12

1826±18

magmatic core

metamorphic rim

crystallization age

metamorphic age
(3)

Granodioritic gneiss
2023±24

1850±11

magmatic core

metamorphic rim

crystallization age

metamorphic age

(3)

a) (1), From S. A. Wilde, SHRIMP zircon U-Pb ages of the Hengshan Complex, ARC Project Report (unpublished data);

(2) from Wilde et al. (1997)[52]; (3) from Zhao et al. (2001)[43].
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zircon U-Pb lower intercept age of (1817 ± 17) Ma and a metamorphic zircon U-Pb age of

(1831±4) Ma from high-pressure granulites in the Chengde Complex, a zircon U-Pb upper inter-

cept age of (1800±7) Ma from the Luyashan charnockite in the Lüliang Complex[54], a SHRIMP

metamorphic zircon U-Pb age of (1833 ± 53) Ma from the Wanzi pelitic gneiss of the Fuping

Complex[55], garnet-whole Sm-Nd ages of (1842 ± 38) Ma from the Xiwangshan high-pressure

granulites and (1856 ± 26) Ma from the Cicheng high-pressure amphibolites in the Xuanhua

Complex[56], and a garnet Ar/Ar age of (1852 ± 8) Ma from the Xiwangshan high-pressure granu-

lites in the Xuanhua Complex[57]. All these data indicate that the collision between the Eastern and

Western Blocks occurred in the range of ~1.85�1.80 Ga.

5 Assembly of the North China Craton

As discussed above, distinct differences in lithology, structural style, metamorphic evolution

and geochronology exist between the eastern, central and western parts of the North China Craton.

This implies that the North China Craton had no uniform basement in the late Archean. The

available data suggest that during the late Archean to Paleoproterozoic, the North China Craton

consisted of three different cratonic blocks: Eastern Block, Yinshan Block and Ordos Block. The

Yinshan and Eastern blocks have similar late Archaean lithotectonic assemblages, structural styles

and metamorphic P-T paths. They are both composed of 2.6�2.5 Ga TTG gneisses, ultramafic

(komatiitic) to mafic igneous rocks, ~2.5 Ga syntectonic granites, with minor amounts of

2.55—2.50 Ga supracrustal rocks. All these rocks underwent regional metamorphism at ~2.5 Ga,

shortly after their formation. The regional metamorphism is characterized exclusively by IBC-type

anticlockwise P-T paths, and the structural style is dominated by TTG gneiss domes separated by

linear belts of supracrustal rocks. These features do not support a continent-continent collision

model for the formation of the basement rocks in the Yinshan and Eastern blocks. The possible

tectonic environments include continental magmatic arc regions, hot spots driven by mantle

plumes, or continental rift regions. Based on a number of factors such as the existence of a ~800

km wide and similar-aged igneous belt, large voluminous komatiitic rocks and bimodal volcanics,

widespread domiform structures and near-isobaric cooling anticlockwise P-T paths, we favour a

mantle plume model to interpret the formation of the basement rocks in the Yinshan and Eastern

blocks[22, 25, 31].

The lithological compositions and tectonic nature of the Ordos Block remain unknown due to

a thick cover of sediments. However, widespread presence of Paleoproterozoic khondalites on the

periphery of the Ordos Block suggests that the block had a stable and passive continental margin

environment during the Paleoproterozoic. In contrast, the Yinshan Block had an active-type con-

tinental margin environment (continental magmatic arc or island arc), in which TTG plutons and

mafic to felsic volcanics formed during the late Archean to Paleoproterozoic. During ~2.0 �1.9

Ga, the northern margin of the Ordos Block was amalgamated to the southern margin of the Yin-

shan Block, leading to the formation of the Khondalite Belt. The precise timing and detailed tec-
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tonic process of the collision between the Yinshan and Ordos blocks need further investigations.

In the late Archean to Paleoproterozoic Era, the Eastern Block was separated from the Yin-

shan and Ordos blocks and the later Western Block by an ancient ocean. The oceanic crust was

subducted beneath the western margin of the Eastern Block, leading to the formation of continen-

Fig. 5. A model for the Paleoproterozoic evolution of the North China Craton.
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tal margin magmatic arcs, island arcs and back-arc basins that were subsequently incorporated into

the Central Zone (fig. 5(a)). At ~1.85 Ga, the ocean between the two blocks was completely con-

sumed through subduction, and collision between the Eastern and Western blocks occurred (fig.

5(b)). The collision caused crustal-scale folding, thrusting and thickening, and resulted in me-

dium- to high-pressure granulite facies or eclogite facies metamorphism in the lower crust and

greenschist to amphibolite facies metamorphism in the upper crust (fig. 5(c)). Following the peak

metamorphism, the thickened crust underwent exhumation and accompanying decompression,

which resulted in the development of asymmetric folds and widespread symplectic textures in the

rocks (fig. (d)). Finally, retrogressive metamorphism took place when the crust was exhumed to

shallow levels (fig. 5(e)). These tectonic processes led to the final assembly of the North China

Craton at ~1.80 Ga.
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