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Fundamentals and Application
Youfei Liu, Student Member, IEEE, and Felix F. Wu, Fellow, IEEE

Abstract—In this paper, optimal control is applied to study gen-
erator bidding in an oligopolistic electricity market. The repeated
bidding process in (hourly-based) real-time electricity markets
is modeled as a dynamic feedback system; an optimal control
problem is then formulated to explore individual generator’s
long-term/multiperiod optimization behavior. Particularly in
our formulation, the periodic property of the system demand is
considered. Several lemmas are included for concerning system
stability. Based on the necessary conditions for optimality from the
Pontryagin maximum principle, a sweeping method is proposed,
and an optimal state-feedback control rule is then obtained via
backward induction. Numerical results suggest that the generator
who unilaterally applies optimal control for generation decisions
will obtain more profits. A sensitivity analysis is also performed,
identifying these market factors that affect the performance of
optimal control.

Index Terms—Generator bidding, linear periodic system,
oligopolistic electricity markets, optimal control, sensitivity anal-
ysis.

I. NOMENCLATURE

Generator ’s generation at time .

Sum of generations from generator ’s rivals at
time .
Vector of generations from all generators except
generator (for generator who applies the optimal
control, is the system control variable,
is the vector of system state variables).
Generator ’s profit/payoff at time .

Market-clearing price at time .

System aggregated demand at time .

Coefficients of system linear demand function.

Coefficients of system inverse demand function.

Factor representing the speed of generator ’s
adjustment.
Exogenous variable in generator ’s dynamic
model.
Vector of exogenous variables of all generators
except generator .
Generator ’s state-feedback gain w.r.t. generator
’s output in the dynamic model. For above

discrete variables, the corresponding continuous
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variables are given as

Number of generators in the market.

Period of periodic demand function.

Planning time horizon in long-term optimization.

Quadratic production cost function of generator .

Coefficients of production cost function .

Matrix formed by estimated elements
.

Vector formed by estimated elements
.

Vector formed by exogenous variables of generator
1’s rivals, .
Generator ’ s aggregated profit over a planning
time horizon.
Co-state variable in Hamilton function.

II. INTRODUCTION

POWER industry has been viewed as a natural monopoly for
a long time. Now, the traditionally regulated power industry

has undergone a restructuring process to the deregulated one. It is
agreed that the aim of power industry deregulation is to establish
a competitive electricity market and thus improve the production
efficiency. It is also known that the deregulated electricity market
is more akin to an oligopoly, because usually, there are a few
dominated generators (market suppliers). In such an oligopolistic
electricity market, an individual generator has market power and
can manipulate market price via its strategic bidding behavior
[1]. To maximize its profits when participating in an electricity
market, a generator needs to build an optimal bidding strategy.
Many optimal algorithms have been applied to address this issue,
such as discrete stochastic optimization through a Markov deci-
sion process [2], stochastic optimization with a genetic algorithm
and MonteCarlo simulation [3], ordinal optimization [4], andLa-
grangianrelaxationandstochasticdynamicprogramming[5].On
the other hand, generator bidding can also be modeled as a sup-
pliergame.Game-theory-basedmethodsare thusapplied tostudy
generators’ strategic behavior and analyze the Nash equilibrium
in deregulated electricity markets [6]–[8].

As far as we know, most of the above reported works re-
gard the hourly markets as independent, i.e., the optimal bidding
strategy is based on generator’s short-term/single-period max-
imization behavior (or the static optimization based on some
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static models). Actually, the system demand has more or less
predictable daily variation. Such temporal effect of system de-
mand makes the market dynamic. Therefore, viewing the com-
petition process as a dynamic feedback system may provide a
superior model. Dynamic modeling of electricity markets might
provide insights about their efficiency and stability that are not
available through those static models.

Recently, several papers have studied the dynamics and
stability of oligopolistic electricity markets [9]–[11]. Alvarado
[9] studies the stability of electricity markets by means of
eigenvalues technique. It is shown that if all generators’ supply
function slopes are positive and all consumers’ benefit function
slopes are negative, market stability is assured. In [10], the
market bidding process is modeled as a closed-loop dynamic
system in which previous and current market states are used
as feedback signals. Simulation with the proposed model in-
dicates these factors that determine the level of market power
exercised. Reference [11] formulates a dynamic Cournot game
for generator bidding and solves it using dynamic program-
ming, a type of optimal control. Its study differs in some ways
from our study. In [11], the market dynamic model is a linear
stochastic price predicator. All market participants are assumed
to make long-term optimization, and the derived solution is
called a closed “Nash–Cournot’ strategy. The focus in [11] is
to compare the efficiency and competitiveness of double-sided
auctions with one-sided auctions

In this paper, we follow the same idea as in [12] to model the
generation competition process as a dynamic feedback system.
In our modeling, the market dynamics originate from a market
participant’s one-step optimization behavior. First, we define
a framework for applying optimal control to generation deci-
sions. Later on, we provide a detailed system formulation. A
linear periodic dynamic feedback system is proposed to model
the generation bidding process in electricity markets, regarding
market clearing price (MCP) as system output feedback. For a
generator who makes a long-term/multiperiod decision, its gen-
eration problem is formulated as an optimal control problem.
We include several lemmas concerning system stability. Using
a sweeping method, we obtain an optimal state-feedback con-
trol rule with backward induction. Numerical results suggest
the generator who applies the optimal control will obtain more
profits as long as other generators do not. A sensitivity analysis
is also carried out to identify market factors that determine the
performance of optimal control.

This paper is organized as follows. In Section III, the gen-
eral idea of optimal control is presented. Section IV gives a de-
tailed system formulation. In Section V, the issues of system
stability and the properties of the optimal control system are
discussed. The optimal state-feedback control rule is derived
using a sweeping method. A numerical simulation and sensi-
tivity analysis are given in Section VI. A discussion is presented
in Section VII. Finally, Section VIII concludes the paper.

III. FRAMEWORK FOR OPTIMAL CONTROL

TO GENERATION BIDDING

A. Bidding Process as a Dynamic Feedback System

In hourly-based real-time markets for electricity, generators
submit their (hourly) generation bids to an independent system

Fig. 1. Diagram of a dynamic feedback system.

operator (ISO). Based on these submitted bids as well as other
system information, the ISO clears the market to schedule gen-
eration and determine the MCP [13]. After the market is cleared,
individualgeneratorknows thepublicizedMCPandits scheduled
generation. In the next round of bidding, the individual generator
will adjust its generation bid for maximizing its profits. There-
fore, the bidding process can be modeled as a dynamic feedback
system, where the MCP is taken as the system output feedback.
Fig. 1 shows the general idea of such a dynamic feedback system.

In Fig. 1, there are three function boxes. The generation
decision box makes generation bidding decisions; the market
clearing box clears the market; and the market information box
publishes market clearing results (such as MCP and individual’s
scheduled generation).

B. Long-Term Optimization With Optimal Control

As mentioned above, many reported works on generator bid-
ding focus on individual generator’s short-term/single-period
optimization. That is, the objective function is to maximize the
single-period (hourly) profit, i.e. .

Meanwhile, the long-term/multiperiod optimization intends
to maximize the sum of profits over a planning time horizon ,
i.e., . If the system is always in static or
without dynamics, then the hourly profits are independent, and
the repetition of single-period optimization is equivalent to the
long-term/multiperiod optimization in the sense of aggregated
profits, i.e., .
However, hourly profits might not be interdependent,
so the long-term/multiperiod optimization could out-
perform the short-term/single-period optimization, i.e.,

. In a dynamic
system, it is known that multiperiod/long-term optimization
can be studied with optimal control. In the following section,
we will elaborate on the application of optimal control for
generation decisions. Numerical studies are given later to
demonstrate the performance of optimal control.

Fig. 2 shows the proposed general idea of applying optimal
control to generation decisions. In Fig. 2, the generator (using
generator 1 for illustration, for other generators, the idea is sim-
ilar) will adopt an optimal control strategy for maximizing its
aggregated profit over a planning time horizon while taking its
observation/estimates of rivals’ dynamic behavior as a system
state equation.

Note that in the above framework, only one firm’s generation
is taken as the decision variable. Real electricity markets usu-
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Fig. 2. Applying optimal control to generator bidding.

ally require the generator’s bid to be (quantity, price) pairs; thus,
the supply function model seems to be the natural choice for
studying a generator’s strategic bidding [8]. The question is how
can our quantity decision process be applicable? In our opinion,
a generator’s strategic bidding can be thought of as optimally
withholding generation capacity to mark up electricity price
above the competitive level for more profits. The above quantity
decision process thus assumes that an individual generator first
determines how much to generate and then bids that specified
generation with the corresponding marginal cost. Doing so, the
MCP is actually determined with the system demand function
(assumed to have price elasticity) and the overall system genera-
tion. Usually, the obtained MCP will be larger than a generator’s
marginal production cost.

IV. SYSTEM FORMULATION

In this section, a detailed formulation for applying optimal
control in a deterministic market situation is given. Market un-
certainties are not considered here. This will allow us to analyt-
ically solve the problem and tackle the basic issues of solution
existence and system stability.

Particularly in our formulation, the periodic property of
system demand is considered. We then propose a periodic
linear system to model the generator bidding process. With the
developed dynamic system, we formulate an optimal control
problem to investigate an individual generator’s long-term/mul-
tiperiod optimization behavior.

A. Linear Periodic System

Generally, electricity demand can be modeled by some
convex function of electricity price. Here we adopt a linear
inverse demand function

(1)

Electricity demand has some price elasticity ]the elasticity is
defined as ]. The
elasticity is the consumer’s sensitivity to price. Usually, is
negative, as demand decreases when price increases. Residential
consumers have low price elasticity or have little price response
ability, while industrial consumers have higher price elasticity
[14].

Fig. 3. Unconstrained market price.

Fig. 4. Unconstrained scheduled quantity.

The system demand varies across hours of a day. Over dif-
ferent weekdays, there is some notable periodicity. For example,
demand functions in the same specified hour of different week-
days are almost the same. Supposing the period is (usually,
is 24 h), we have

(2)

Because of the non-storability of power energy, the instanta-
neous market balance requires .

Many techniques can be used to model market dynamics in
electricity markets, such as ARIMA and linear regression. In our
paper, we propose a linear dynamic feedback system, which is
based on an individual generator’s profit-maximizing behavior.

It is known that an individual generator’s profit function is
given as the revenue minus the cost, i.e.,

(3)

where is generator ’s quadratic
production cost function.

From the formulation (3), the first-order condition for opti-
mality should be satisfied to achieve the maximum profit, i.e.,

(4)

With the nature of system complexity and variation, it is not ex-
pected that generator can find the optimal that satisfies the
condition (4) in one shot. Actually, the repeated bidding process
of electricity markets provides a mechanism for generator to
refine its generation bid with the revealed system information.
That is to say, given the learned system information, generator

can adjust its generation bid in a way to satisfy the condition
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(4). Such models of market dynamics are common in the eco-
nomic literature [15, Ch. 16, pp. 287–288]). Thus, in a contin-
uous time domain, electricity market dynamics are modeled as

(5)

where is a factor representing the speed of adjustment or
the preference of adjustment intensity of generator . Equation
(5) also indicates that generator will adjust its generation in
the direction of increasing profits. Thus, a dynamic feedback
system is obtained where the MCP is taken as system output
feedback. If generator has a good knowledge of the system
inverse demand function (1), the above output feedback system
(5) can be easily changed to a state-feedback system, i.e.,

(6)

where

and can be viewed
as an exogenous variable. Because of the periodic property of
system demand, parameters in (6) will also be periodic with
the same period . Note that the adjustment process (6) is a
linear state-feedback rule. We can estimate its parameters
(including ) via linear regression from historical data.

An example of the above adjustment process is the simple
dynamic Cournot competition model. Cournot competition
strategy has been well studied in the economic literature [15],
and its application in generator bidding is also reported in
[16]. The Cournot model means that one generator makes
its decision with the belief that others’ outputs fixed as
the previous, i.e., we have and

, and .
As generator bidding in real-time electricity markets is often

hourly based, it is better to have a formulation in discrete time
domain. Thus, we formulate a corresponding discrete version of
(6), i.e.,

(7)

In matrix form, a linear periodic system yields

...
...
. . .

...

...
...

(8)

If generators adopt the above simple dynamic Cournot strategy,
system parameters can be obtained as aforementioned. For other
strategic models, the corresponding parameters of the formula-
tion (8) can also be obtained.

Note that with the above dynamic model, the individual gen-
erator is making a (dynamic) one-step optimization or single-pe-
riod optimization.

B. Optimal Control Problem

As mentioned above, it is more desirable to study long-term
optimization considering system dynamics. In this section,
an optimal control problem is formulated to investigate indi-
vidual generator’s long-term/multiperiod generation decision
behavior.

Without loss of generality, we use generator 1 for illustration
(for other generators, the formulation is similar). Now assume
that generator 1 undertakes long-term optimization, and its ob-
jective is to maximize its aggregated profits over a planning time
horizon

(9)

This objective function is subjected to its observation/estimate
of rivals’ dynamic behavior

(10)

where is the generation vector from generator 1’s
rivals, is the
matrix composed by estimated elements

is the vector of estimated elements
, and is the vector of exogenous variable from gen-

erator 1’s rivals, . The
observed/estimated and
are also periodic with a period .

Equation (10) is also known as the system (estimated) state
equation in an optimal control formulation.

The system output equation is the determination of MCP with
(1), rewritten as

(11)

where and .
Later on, (11) is substituted into the objective function (9) to
solve for a state-feedback control rule.

V. SYSTEM STABILITY AND OPTIMAL

STATE-FEEDBACK CONTROL

In this section, the issue of system stability and the properties
of optimal control system are discussed, and an optimal state-
feedback control rule is derived via a sweeping method.
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A. Stability of Linear Periodic System

From the Floquet theory, it is well known that a linear peri-
odic system can be transformed into an equivalent linear time-
invariant system by some Lyapunov transformation, and at the
same time, the system stability property is preserved [17]. For
our discrete linear periodic system (10), such a transformation
can always be done with a “lifting method” [18].

First, define the system monodromy matrix as

(12)

Concerning system stability issues, we have the following
lemmas. (The proof of Lemma 1 and Lemma 4 can be found
in [18], and proofs of Lemma 2 and Lemma 3 can be found in
Appendix A.)

Lemma 1: The open-loop system (10) is stable if and only if
all eigenvalues of matrix belong to the open unit disk.

Lemma 2: A sufficient condition for all eigenvalues of matrix
to belong to the open unit disk is that all eigenvalues of

matrix in one period belong to the open unit disk.
Lemma 3: For a stable linear periodic system (10), the system

stable solution is periodic.

B. Properties of Optimal Control System

Lemma 4: For a discrete linear periodic system (10), if it is
stabilizable and detectable, then there is the unique optimal con-
trol rule (from the discrete periodic Riccati equation), and the
closed-loop system is stable. Furthermore, the stable solution is
also periodic.

Usually, if one system is stable (in the sense of bounded input
and bounded output), then it is stabilizable. Our studied op-
timal control system for generation decisions is always stabi-
lizable (under the condition given by Lemmas 1 or 2) and de-
tectable; therefore, the unique optimal control rule can always
been found. The obtained closed-loop system is also stable,
which implies that the unique market equilibrium is guaranteed.

Note that these lemmas for system stability are general. Even
if there are multiple generators who all use the optimal control
approach, these lemmas still give the conditions for system sta-
bility.

C. State-Feedback Control

To be robust against system uncertainties, the optimal con-
trol rule should depend on system information, such as system

state variables. Therefore, the state-feedback control rule is in-
vestigated. For solving the developed optimal control problem,
a Hamilton function is formulated, given as

(13)

Note that the last term in (13) considers the impacts of current
decisions on future profits.

The Pontryagin maximum principle gives the necessary con-
ditions for optimality (first-order condition)[19]

(14)

(15)

(16)

The sufficient condition for a maximum (second-order condi-
tion) is

(17)

The condition (17) is always satisfied. This property is due to
the continuity and concavity of the objective function (9).

The above optimal control problem does not belong to the
standard linear-quadratic regulator (LQR) class, as its objec-
tive function multiplies state and control variables (the term

. However, the common sweeping method for
solving the standard LQR problem is still applicable, as shown
in [20]. To solve above specific two-point boundary (14)–(16),
we propose a sweeping method (details in Appendix B) and ob-
tain the optimal state-feedback control rule, shown in (18) at
the bottom of the page, where both and are known

(18)
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as Riccati-like equations, shown in (19) and (20) at the bottom
of the page, where terminal conditions are and

. As Lemma 1 guarantee the existence of an
unique optimal control rule and system stability, the state-feed-
back control rules (18)–(20) will reach their steady states, and
system convergence is also assured.

Note that the state-feedback gain of control rule (18) is op-
timized with respect to system parameters. However, the state-
feedback gain of adjustment process (7) is derived from a one-
step optimization technique (4), and it is not optimized with re-
spect to system parameters.

VI. NUMERICAL EXAMPLES

Numerical results are given in this section to show the perfor-
mance of unilateral optimal control for generation decisions. A
sensitivity analysis is also given to identify these market factors
that affect the performance of optimal control.

A. Production Cost Function and Demand Function

The production cost function of a generator is given as

(21)

Real load data in the California electricity market [21] are
used for the simulation. Figs. 3 and 4 show its unconstrained
demand data on 16–20 April 1998.

Figs. 3 and 4 indicate that system demands have notable
periodicity. Although there is also some daily demand
variation, here for illustration only, one periodic demand
function is estimated via linear regression. The values of system
demand function parameter in a period are calculated
as

. The values of the inverse demand function
parameters can be easily calculated as

and

B. Results From Single-Period Optimization

To compare the performance between multiperiod/long-term
optimization and single-period/short-term optimization, let us
first focus on a benchmark system and study the performance
of short-term/single-period optimization. Assume that there
are two symmetrical generators [with the same production cost
function (21)]. They both undertake the (dynamic) single-pe-
riod optimization, and their strategic choices are given as (i.e.,
a simple dynamic Cournot strategy, and the derivation of such
a dynamic model is mentioned in Section IV-2)

(22)

where or . With initial conditions
[ (MWh), (MWh)], parameters

, cost function (21), and the above demand
functions (22) are used in forward iteration to obtain genera-
tors’ outputs and the MCPs. With the formulation (3), gener-
ator 1’s aggregated profits in one steady period (24 h) is given
as $ . Due to system symmetry, we have

$ .

C. Performance of Optimal Control

We assume the same two symmetric generators. Generator
2 still makes (dynamic) single-period optimization, and its dy-
namic behavior is given in (22) with the above given parame-
ters. Meanwhile, generator 1 undertakes multiperiod generation
optimization with a planning time horizon of 216 h. It is also
assumed that generator 1 has a good estimate of generator 2’s
dynamic behavior. Equations (18)–(20) are used to calculate the
optimal control rule (i.e., generator 1’s output), and (22) is used
to calculate generator 2’s output. Fig. 5 shows the generators’
output trajectories. It is clear that after a short transient time, the
steady periodic solution is repeated.

With the above generation outputs and inverse demand func-
tion (1), the MCPs are calculated, and with the formulation (3),
the generators’ profits are also obtained. It is found that in this
situation, generator 1’s aggregated profit in a steady period is
given as $ . The profit increment of generator

(19)

(20)
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Fig. 5. Trajectory of generators’ outputs: Generator 1—optimal control. Gen-
erator 2—single-period optimization.

Fig. 6. MCP trajectories in three cases. Case 1—both with strategy (22). Case
2—one with strategy (22), another with optimal control. Case 3—static Cournot
equilibrium price.

1 is $ , and the percent in-
crease is 3.74%. Meanwhile, generator 2’s aggregated profit in
one steady period is reduced to $ .

Furthermore, the completely static Cournot competition
outcome can also be obtained with the above data [15]. With
the completely static Cournot model, generator 1’s aggregated
profit in a steady period is given as $ .

From the above simulations result, it is known that generator
1, who makes multiperiod optimization with optimal control,
can obtain more profits. This is because generator 1 using op-
timal control will generate more than the withholding level of
other strategies. To have a better view of this fact, let us look at
the MCPs in these situations, as shown in Fig. 6.

It is known that for most of the time, MCPs in case 2 are
smaller than in cases 1 and 3. This fact implies that when some
generator deviates from the single-period optimization strategy
to the “advanced” strategy (such as optimal control), MCPs be-
come smaller. Because of the linear relationship between price
and quantity (i.e., , it is known that the equilibrium
quantities in cases 1 and 3 are usually less than those in case 2.
That is to say, an individual generator’s “advanced” strategic be-
havior will have a positive effect on market efficiency and will
also benefit consumers. This is similar to what occurs in a static
Stackelberg competition game [22].

Because the explicit state-feedback control rule is given by
(18)–(20), the above computation is very efficient and done
within a few seconds.

D. Sensitivity Analysis

It can be expected that system parameters, such as demand
function coefficients , production cost function param-
eter (e.g., ), the adjustment factor , and number of market
generators , will influence the performance of multiperiod
optimization with optimal control. A sensitivity analysis is
thus given to show the effect of system parameters’ varia-
tions. In the simulation, it is assumed that generator 1 will
adopt the optimal control, and others follow the single-period
optimization strategy. To show the sensitivity of one con-
sidered parameter, we change this parameter while keeping
the others unchanged. Only the percent profit increase (i.e.,

% is shown here. The
simulation procedure is similar to the one in the above section.
Fig. 7 shows the percent profit increase with respect to several
system parameters. In the above simulation, the computation is
also efficient, and the convergence is fast.

The percent profit increase is one index to measure the perfor-
mance of long-term/multiperiod generation optimization for the
leader firm with optimal control. Generally, if it is rather small,
the performance of long-term/multiperiod generation optimiza-
tion is unsatisfactory; otherwise, the performance is good. Ac-
cording to this criterion and from the above simulation results,
the following can be concluded.

1) With the marginal cost function slope increasing, the per-
formance of optimal control will deteriorate, i.e., the more
expensive the generation production, the less beneficial the
optimal control.

2) With the demand function slope increasing, the perfor-
mance of optimal control will deteriorate, which means
that the more elastic the demand, the less beneficial the op-
timal control.

3) With the demand function intercept scaling up, the better
the performance of optimal control, which implies that the
more system demand, the more beneficial to apply optimal
control.

4) The more generators in the market using the simple (single-
period optimization) strategy, the better the performance of
optimal control.

5) If rivals’ responses (a small ) are slower, the performance
of optimal control improves.

VII. DISCUSSION

A. Consideration of Operating Constraints
and Network Constraints

The current study does not consider many system operational
constraints, such as generation capacity limits and ramping
up/down limits as well as network constraints. In particular,
when network constraints are considered, a key issue is how
the system operator prices them and how generators can change
those prices [23]. Actually, these constraints will affect both
system state variables and control variables. Such issues should
be incorporated into our future formulation. Generally, there
are two ways to include these constraints [17]. The first al-
ternative is to augment the system Hamilton function with
penalty functions that attribute high costs to deviations from
the constraints. The second alternative is to use Lagrange
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Fig. 7. Percent profit increase with respect to (a) c ; (b) b ; (c) a ; (d) n; and
(e) �.

multipliers to adjoin these constraints to the objective function.
To avoid the problem of penalty function selection, the second
alternative is suggested. Thus, after including these constraints
in our formulation, we obtain a corresponding constrained
optimal control problem. To solve it, an augmented system

Hamilton function is then formulated. Necessary conditions for
optimality are still given by the Pontryagin maximum principle.
Based on these conditions, the optimal solution can be obtained
in principle via a similar procedure, as shown in this paper.
Of course it should be pointed out that in some situations, the
explicit solution may be difficult to obtain, and we should resort
to numerical techniques [24].

B. Other Extensions of the Proposed Method

Although the above formulation considers periodic system
demand, it is also applicable to other situations. For instance,
if multiple system demand profiles (not necessary periodic) are
given along the time horizon, the price-quantity pairs (the gen-
eration bid curves) for each time slot can also be generated by
the proposed method.

In reality, there are many market uncertainties associated
with system demand as well as the observation/estimate of
rival behavior; therefore, a stochastic formulation is more
preferred. If system uncertainties can be modeled by some
known probabilistic process, such as the Gaussian distribution,
a corresponding stochastic optimal control (LQG) problem
can be formulated. As system stochastic behaviors between
different time slots are usually interdependent (e.g., system
hourly demands are strongly correlated), it is obvious that we
cannot replace system random variables with their expected
values and deal with the stochastic system as a deterministic
one when solving it (i.e., the certainty equivalent principle [9]
does not hold). The obtained system performance would be
suboptimal. To obtain the global optimum in this situation, the
covariance of system random variables should be incorporated
into system formulation.

It is also interesting to explore the situation in which two or
more generators apply the optimal control for generation deci-
sions and then study its effect on generators’ profits and market
efficiency. For these investigations, we conjecture that there will
be a kind of “Prisoner Dilemma” [22] (i.e., if more generators
are the optimal control type, actually generators’ payoffs will
decrease). These issues are left for future work.

VIII. CONCLUSION

In this paper, optimal control is applied to study generator
bidding in an oligopolistic electricity market. Based on the gen-
erators’ dynamic profit-maximizing behavior, we model the re-
peated bidding process in (hourly-based) real-time electricity
markets as a dynamic feedback system.

We then formulate an optimal control problem to explore an
individual generator’s long-term/multiperiod optimization be-
havior. In our formulation, the periodic property of the system
demand is considered.

Several lemmas are included for concerning system stability.
Necessary conditions for solving the proposed optimal control
problem are given by the Pontryagin maximum principle. Based
on these necessary conditions and with a sweeping method, we
obtain an optimal state-feedback control rule via backward in-
duction. Numerical results suggest the generator who uses the
optimal control can obtain more profits. A sensitivity analysis
is also performed afterward, identifying these market factors
that affect the performance of optimal control. Future work is
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in progress on extending the proposed method to a general sit-
uation with various market uncertainties.

APPENDIX A
STABILITY OF A LINEAR PERIODIC SYSTEM

Consider a linear periodic system

(A1)

where and are periodic; is
the state vector, bounded and periodic; and is the con-
trol variable, also bounded. The period is .

From linear system theory, it is known that that system solu-
tion is given as

(A2)

where is the state transition matrix, defined as

(A3)

Because of the periodicity of matrix , the state transition
matrix enjoys the property

(A4)

Define the system monodromy matrix

(A5)

Equation (A2) can be rewritten as shown in (A6) at the bottom of
the page, where is to obtain the residual, and is
to obtain the module. Such a technique for transforming a linear
periodic (time-varying) system to an equivalent linear time-in-
variant system in the control literature is known as the lifting
method [18].

Lemma 2: A sufficient condition for all eigenvalues of matrix
to belong to the open unit disk is that all eigenvalues of

matrix in one period belong to the open unit disk.

Proof: If all eigenvalues of normal matrix in
one period belong to the open unit disk, we have

; that is to say that all
eigenvalues of matrix belong to the open unit disk.

Lemma 3: For a stable linear periodic system (A-1), the
system stable solution is periodic.

Proof: With (A-6), system state solution is
given as

(A7)

As the system is stable, we have
and

(A8)

(A6)
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APPENDIX B
OPTIMAL STATE-FEEDBACK CONTROL RULE

For the Hamilton function

(B1)

The necessary conditions for optimality based on maximum

principle are listed as shown in (B2)–(B4) at the bottom of
the page. A sweeping method is used to find the state feedback
control rule, i.e., assuming there is linear relationship between
ad-joint variable and system state variable

(B5)

With (B3)–(B5), this yields (B6), shown on the bottom of the
page. Solving for gives (B7), shown at the bottom
of the page. From (B5) and (B7), we have (B8), shown at the
bottom of the page. With (B5) and (B8), we have (B9), shown
at the bottom of the next page. For the condition (B9) to be

(B2)

(B3)

(B4)

(B6)

(B7)

(B8)
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satisfied for all state sequences, clearly we must have (B10) and
(B11), shown at the bottom of the page, where terminal condi-
tions are and . The sequence

can be calculated with (B10) and (B11) via back-
ward induction. Matrix and are also known as Ric-
cati-like equations.

With calculated via (B10) and (B11), (B5) is sub-
stituted into (B4) to obtain the optimal control rule, given as
shown in (B12) at the bottom of the page. Solving for gives
(B13), shown at the bottom of the page. At time
and are known, and the optimal control can be
calculated with (B13).

(B9)

(B10)

(B11)

(B12)

(B13)
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