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On Low Complexity Robust Beamforming With Positive
Semidefinite Constraints

Chengwen Xing, Shaodan Ma, and Yik-Chung Wu

Abstract—This paper addresses the problem of robust beamforming for
general-rank signal models with norm bounded uncertainties in the de-
sired and received signal covariance matrices as well as positive semidef-
inite constraints on the covariance matrices. Two novel minimum variance
robust beamformers are derived in closed-form. The first one basically is
the closed-form version of an existing iterative algorithm, while the second
one offers even better performance with respect to the first one. Both of
them have the advantage of low complexity. The effectiveness and perfor-
mance improvement of the proposed beamformers are verified by simula-
tion results.

Index Terms—Robust beamforming, convex optimization, positive
semidefinite constraint, minimax.

I. INTRODUCTION

Beamforming has long been an active research topic due to its ability
to preserve desired signal and null interference. It has been widely
utilized in radar, sonar, microphone array, wireless communications,
and other fields [1]. Ideally, the beamformer is designed based on the
true array responses to the received signal or the corresponding per-
fect covariance matrices. In practice, such actual/perfect information
is difficult to obtain and the presumed/estimated array responses or
covariance matrices are generally used for beamformer design. Un-
fortunately, mismatch between the actual and presumed/estimated in-
formation exists due to limited training or time varying environment,
causing substantial performance degradation of beamformers. Robust
beamforming, which takes the uncertainties of covariance matrices into
account, therefore is of great importance in practical systems and has
attracted a lot of research interest recently [2], [3].

For the simple point source signal model (i.e., rank-one model),
a number of robust beamformers have been proposed in the litera-
ture [1]. However, in practice, the signal is usually incoherently scat-
tered, resulting in a general-rank signal model, which calls for more
sophisticated beamforming algorithms. In [5], a closed-form minimum
variance (MV) robust beamformer was proposed for the general-rank
signal model under norm bounded uncertainties in the desired signal
and received signal covariance matrices. Unfortunately, in the formu-
lation of [5], the positive semidefinite (PSD) constraints on the covari-
ance matrices are not considered, which might result in over conser-
vative solutions [2], [3]. Recently, with the additional PSD constraints
considered, an iterative robust beamforming algorithm was proposed
in [6]. While it provides better performance than the algorithm in [5],
it has rather high computational complexity since a standard semidef-
inite programming (SDP) problem must be solved at each iteration by
interior-point methods, which at least have polynomial complexity [8].
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In this paper, a general-rank signal model with uncertainties in the
desired and received signal covariance matrices as well as the PSD con-
straints on the covariance matrices is considered. Two novel MV robust
beamformers are derived in closed-form. The first one is a closed-form
solution to the iterative beamforming algorithm in [6], thus offering the
same performance as the iterative algorithm but with a much lower com-
plexity. The second one provides even better performance compared
to the first one since fewer approximations are made in the derivation.
Simulation results confirm the effectiveness and performance improve-
ment of the proposed beamformers. Note that both of the proposed
beamformers have the advantage of low complexity due to the simple
closed-form solutions and thus are attractive in practical systems.

The following notations are used throughout this paper. Boldface
lowercase letters denote vectors, while boldface uppercase letters de-
note matrices. The notation Z" denotes the Hermitian of the matrix Z,
and Z" is the conjugate of the matrix Z. The symbol Tr(Z) denotes
the trace of the matrix Z.

II. PROBLEM FORMULATION

Sensor arrays are commonly used to detect signals and track targets.
The array snapshot vector at the sensor array, which consists of M
sensors, can be expressed as

x(k) £ [wo(k) 21 (k) - xa— (k)"
=s(k) 4+ i(k) + n(k) 1

where s(k),i(k) and n(k) are the desired signal, interference and
noise components, respectively. Symbol k£ is the time index. After
narrowband beamforming, the output signal is w''x(k) where
w = [wowi -~ wu—1]" is the complex weight vector. A simple but
efficient algorithm to design the beamforming weight vector w is the
minimum variance (MV) beamforming, which is

mhizn WwRw st w'Rew >1 2)
where Re = E{s(k)s" (k)} and R = E{x(k)x""(k)} are the desired
signal covariance matrix and signal-interference-plus-noise (SINR) co-
variance matrix, respectively. Notice that if the source is an incoher-
ently scattered source, the rank of the matrix Rs can be any integer
between 1 and M. This is called the general rank signal model [1],
[5]-[7]. If R and R.. are known exactly, the optimal solution can be
shown to be [5]

wideal = P{R™'Rs} 3)

where P(Z) represents the principle eigenvector of the matrix Z.

In practice, it is impossible to get the true values of R and R. They
are usually replaced by their estimated values and subject to errors.
Therefore, we can write

R=R+A, 4
R =R + Ay )
where R and R are the estimates of R, and R, respectively [5], [6]
and A, and A are the estimation errors of R, and R, respectively.
Substituting (4) and (5) into (2) and introducing norm bounds on A
and A [5], the optimization problem (2) becomes
min w”(R + As)w
W
s.t. wn(f{s + A )w>1
Azl <7, (A <e
R+A>0, Ri+A; =0 (6)
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where [|.|| is the Frobenius norm, = and + are uncertianty norm bounds
on A; and A, respectively and the last two inequalities specify that
matrices Rs + A7 and R + A, are positive semidefinite (PSD).

Notice that (6) is a multicriterion optimization problem [8] that does
not have an unique optimal solution, since the optimal solution to (6)
depends on the unknown values of Ay and As. In order to design the
beamformer which is independent of A; and A», minmax approaches
are frequently used

wn(R + As)w

min max
w A

s.t. rgian(].f{s +ANw>1
1

Azl <~ ALl <e
R+A:>0, Ret Ay =0. (7

When the last two PSD constraints are not considered, the worst case
A; and A occur on the boundaries of their respective uncertainty
regions, and the closed-form solution was shown to be [5]:

wiob = P{R 47D} (R — 1)}, ®

When the PSD constraints are considered, the worst case As equals
to vww™ /||w||? [6], while the worst case A cannot be calculated using
conventional Lagrangian algorithm. Recently, in [6], by introducing A
(with norm bound 7) as the uncertainty in the square root of R, and
with eigendecomposition RS = QH Q, the PSD constraint fls +A; =
0 is replaced by (Q + A)™(Q + A) > 0 [6] and the optimization
problem becomes

PI:

min wH(R + Dw
s.t. an(wH(Q +A)"Q+A)w) >1
Al <. ©)
Problem P/ cannot be solved straightforwardly, because it is a non-
convex program. In [6], based on Cauchy-Schwarz inequality and

Triangle inequality, and introducing W = ww™, the optimization
problem was further transformed into

Tr((R +7DW)

st. Tr(R<W) — P’ Te(W) — 1 > 2/Tr(W)
W =0, rank(W)=1.

min
W

(10)

The optimization problem (10) still cannot be solved easily because
the term 2n+/Tr(W) is nonconvex and the constraint rank(W) = 1
cannot be formulated as a linear matrix inequality (LMI). In [6], to
avoid these two nonconvex constraints, an iterative algorithm based
on Lagrangian relaxation has been proposed. More specifically, at the
kth iteration of the algorithm, the nonconvex term 211/ Tr(W) is re-
placed by the result of the previous iteration 25/ Tr(W_1 ). At each
iteration, the optimization problem becomes a standard SDP or LMI
problem [8], which is

P2:
min Tr((ﬁ+ ~FI)Wy) (1)
W,
s.t. Tr((]?{ﬁ — ')72I)Wk) > ck (12)
Wi =0 (13)
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where ¢, = 2n4/Tr(Wj._1) + 1. An obvious way to solve P2 (when
k is fixed) is to use interior-point algorithms. In the following, we will
show that closed-form solution exists for P2, and iterative algorithm is
not necessary.

III. A CLOSED-FORM SOLUTION FOR P2

At the kth iteration, due to the PSD constraint on Wy, in (13) and
based on eigendecomposition, we can write

Wi = Qw, Qw, (14)
where Qw £ [41,k Q2.1 - -+ darx] and Qi & denotes the ith column
of the matrix Qw,, . Substituting (14) into (11), we have

Tr(R 4+ 7D Wy) = Tr(R+71)Qw, Qw, )
= Tr(Qw, (R+71)Qw,)
M
= ai(R+9Dai s (15)
i=1

Similarly, by substituting W = Qw, Qi . into (12), the optimiza-
tion problem P2 can be reformulated as

M
> ank(R+D)qi
i=1,2,...,M i=1

M

min
i,k

s.t. qu;\(ﬁé - ’Uzl)q;‘l,v > ck (16)
i=1
which can be rewritten in a more compact form
. H5 Hy
min  q; Rqr s.t.q; Rsqr > ¢k a7
qp
where qi = [qlT,C qg, AR qL,,C]T is the vector variable. The matrices
R and R, are defined as
R=1IxR+I), (18)
R.=1® (R, —5°I) 19)

The optimization problem (17) is in the same form as the optimization
problem (2). Based on a similar proof to that in [5], the solution is given
by

Q' = PR 'Ry) (20)
=PI (R++I) 1R, —5°I)) @0
=10P(R+-0) (R, —°I)) (22)

where 1 is all-one vector. The equality (21) is due to (18) and (19). The
last equality is due to the property of Kronecker product [10]. From
(22), the corresponding optimal column vectors q; » are
o opt o
Q= qzl,k == qﬁf),tk
=P((R+I)"HR, — 5°I)). (23)
Since Wi = Qw,, ngk =5, qlkqpk the optimal matrix Wy, is

WP o (P(R 4D (R — oI}

x{P(R+~D) (R, - 7°I)}". (24)
Finally the optimal beamforming weight vector is
Wiy =P(R+7D7' R, —9°T)). (25)
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Notice that the final closed-form solution is not a function of ¢; =
2n4/Tr(Wy_1) 4+ 1. It means that the solution at the kth iteration
has no relation with the previous iteration. At each iteration, there is a
closed-form solution and this solution is independent of the result of
the previous iteration, so the iterative algorithm is not necessary and
(25) is the closed-form solution for P2.

It is worth mentioning that in addition to being the closed-form solu-
tion for P2, (25) automatically satisfies the rank one constraint in (10),
which cannot be guaranteed by the iterative algorithm of [6]. Further-
more, in contrast to the closed-form solution of beamformer (25), the
iterative algorithm in [6] only offers a solution of W. After obtaining
‘W, multiple Gaussian vectors with the covariance matrix W' are gen-
erated and the one giving the largest signal-to-interference-plus-noise
ratio (SINR) will be chosen [6]. This process incurs extra complexity
with respect to the closed-solution (25).

It should be noticed that (25) is only the solution to P2, which is
a relaxed version of P/ in (9). In the following, we will propose an
approximated closed-form solution for the optimization problem P/,
which is closer to the original robust beamformer design problem under
PSD constraints.

IV. PROPOSED SOLUTION FOR Pl
In P1, the worst case A can be obtained from the following mini-
mization problem
wHAHQw + wHQHAw + T AYAw
+wHQHQw s.t.

min
A

A< 9. (26)

This problem is a convex optimization problem with a quadratic objec-
tive function and its Lagrangian function is

£=u"A"Qu + " QM Aw + AT Aw
+0"Q"Quw + MTr(AA™) = *) @)

whose Karush—-Kuhn-Tucker (KKT) conditions are [8]
D

oL

OA*

2)

2

Tr(AA") = 5%

For convex optimization problems, KKT conditions are necessary and
sufficient for the optimal solutions. Based on the first KKT condition,
we have

oL

— Oy H —
AT = Quww™ + Aww + AA = 0. (28)
The solution of (28) is
A= —Quu" (A +ww)™". (29)

Based on the matrix inversion lemma, the previous equation can be
rewritten as

A= (30)
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Substituting (30) into the second KKT condition, we have

Tr (waH(waH)H) 9

O wlw)? =" 31
From (30) and (31), the worst case A is
Aco )T quut (32)
o wHQHEQuuwHw )

Substituting A into the objective function in (26), the first term
WwT ARQu is given by

. HAH H U
=—w Quww wHQHwaHwa
wTQTQw g
=-m\—F W w
whw

Similarly, the second and the third terms of the objective function in

(26) are
. [oHOH
WwQMAw = —n qugwaHw
whw

HAHA 2 H
wATAw =n'w w.

(33)

(34)
(35)

Based on (33), (34), and (35), the optimization problem P/ becomes
min TR+ Dw

wHRw

st. o [ Re+ 7}21 — 2y Ilw>1 (36)

wlw

where we have used the definition R, = Q"Q.

Unfortunately, in the constraint, the term inside the square root
depends on the unknown w. This makes deriving the closed-form solu-
tion difficult. Here, based on the fact that 0" Rew < Amax (Rs)w" w,

we propose to replace \/(wHRsw)/(wHw) by its maximum value

A/ Amax ( Rs). The optimization problem (36) is relaxed as

min w (R4 D)w
st w' <RS + 7721 — 214/ /\,,,ax(f{s)1> w > 1. (37)

Since

wHRw
wHw

> W <Rs + 7/21 — 2/ )\max(Rs)I> w, (38)

the new constraint actually corresponds to a smaller feasible set of w
(i.e., a stricter constraint) than the original one. Noticing that (37) is
also in the same form as (2), the optimal solution of (37) can be shown
to be

WPt =P {(R+ ~I)™! <Rs — 24/ Amax (Re )7L + ;ﬁ) } . (39)

H

w Rs+n21—217 I|w
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Fig. 1. SINR of output signal versus SNR for the robust beamforming without
PSD constraints [5], iterative algorithm [6], the two proposed low complexity
algorithms and the optimal SINR.

V. SIMULATION RESULTS AND DISCUSSIONS

A uniform linear array of M/ = 20 omnidirectional sensors with ad-
jacent sensors half a wavelength spaced apart is considered. The desired
signal is assumed to be an incoherently scattered source with Gaussian
angular power density whose central angle and angular spread equal
to 30° and 4°, respectively. The presumed angular power density of
the signal is also Gaussian, but the presumed central angle and angular
spread are 32° and 6°, respectively. There is a single point-source inter-
ferer with interference-to-noise-ratio (INR) equals to 20 dB. The inter-
ferer is modeled as a moving source with time varying direction-of-ar-
rival (DOA) 8 (k) = —30°+10° sin(k/15°) [4]. The diagonal loading
parameter is ¥ = 30. The value £ = 9Tr(R.;)/M is chosen as [5] and
the value n = 0.754/Tr(R.) is chosen as [6]. In the simulations, an
average of results from 500 trials is used to give each point in the figure.

Fig. 1 compares the output SINR of the two proposed algorithms, the
iterative algorithm [6], the robust beamforming algorithm without PSD
constraints [5], and the optimal SINR which corresponds to the beam-
former based on perfect covariance matrices. For the iterative algorithm
[6], 10 iterations are performed to design W, and at each iteration, the
Matlab software toolbox CVX [11] is used to solve P2.

It can be seen that the proposed closed-form solution of P2 has sim-
ilar performance to the iterative algorithm in [6], since they are solving
the same problem. Also they perform better than the algorithm without
considering PSD constraints [5]. On the other hand, the proposed algo-
rithm for P/ performs better than both closed-form and iterative so-
lutions of P2, since PI is closer to the original beamformer design
problem. At SNR = 15 dB, the proposed algorithm for PI has 1 dB
higher SINR output than the solutions of P2.

Below, we compare the complexities of the two proposed algorithms
to that of the iterative SDP algorithm in [6]. From (25) and (39), our
two proposed algorithms need matrix inverse, matrix multiplication
and eigendecomposition. For a M x M matrix, the complexities of
these operations are all O(M*), so the total complexity is also O(M?*).
For Chen’s algorithm in [6], it is an iterative algorithm and at each it-
eration, it involves solving a SDP problem. Primal-dual interior-point
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methods are usually used to solve SDP with the general complexity ex-
pression given in [9]. Applying the general expression to the problem
in this paper. It can be shown that the complexity of Chen’s algorithm
is O(M*®In(1/¢)), where e is precision. For example, when M = 20
and € = 0.01, the reduction in complexities of the proposed algorithms,
with respect to the iterative SDP in [6], is over 300 times.

VI. CONCLUSION

In this paper, two novel algorithms were proposed for beamformer
design under norm bounded uncertainties and PSD constraints on co-
variance matrices. The first one is the closed-form version of the itera-
tive algorithm in [6]. The proposed closed-form solution basically has
the same performance as the iterative algorithm but with a much lower
complexity. The second algorithm proposed in this paper solves the
beamformer design problem with fewer approximations, thus shows
improved performance with respect to the first proposed algorithm.
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