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Abstract. In this paper, we establish a large sieve inequality of Elliott-Montgomery-

Vaughan type for Fourier coefficients of newforms. As applications, we give a significant

improvement on the principal result of Duke & Kowalski on Linnik’s problem for modular

forms and prove the upper part of the first conjecture of Montgomery-Vaughan in the

context of automorphic L-functions.

§ 1. Introduction

The large sieve inequalities are fundamental tools in analytic number theory. The first idea
was devised by Linnik to study a question of Vinogradov on the size of the smallest quadratic
non-residue modulo a prime. Later, various large sieve inequalities were developed with vital
applications, for instance, to problems on primes and Riemann zeta-function. Recently Kowal-
ski [13] introduced a general abstract form of large sieve inequalities and gave many greatly
interesting applications on algebraic problems. The present work is motivated by two important
papers ([3], [8]). In [3], Duke & Kowalski generalized the large sieve inequality of Linnik to the
automorphic form case and applied their estimate to study the analogue of Linnik’s problem for
automorphic forms/elliptic curves. In [8], Granville & Soundararajan proved the first conjecture
of Montgomery-Vaughan [19] on the extreme values of the Dirichlet L-functions L(1, χd) asso-
ciated to real characters. Very recently, we [17] found that in contrast with Linnik’s inequality,
the large sieve type inequalities adopted by Elliott [4], [5] or Montgomery and Vaughan [19]
yields better almost-all results on the size of the smallest quadratic non-residue modulo a prime.
We refer them as the large sieve inequalities of Elliott-Montgomery-Vaughan (E-M-V) type.

In this paper we derive a general large sieve inequality of E-M-V type for modular forms,
which is of the same strength as the E-M-V inequality for real characters. As applications, we
shall give a significant improvement on the principal result of Duke & Kowalski [3] on Linnik’s
problem for automorphic forms. Moreover, we use our large sieve inequality, differently than in
the work of Granville & Soundararajan [8], to prove the upper part of the first conjecture of
Montgomery-Vaughan in the context of automorphic L-functions (cf. Sections 2 and 3).

Let us fix our notation. For a positive even integer k and a positive squarefree integer N ,
we denote by H∗k(N) the set of all normalized holomorphic primitive cusp forms of weight k for
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the congruence group Γ0(N). It is known that

(1.1) |H∗k(N)| = k − 1
12

ϕ(N) + O
(
(kN)2/3

)
,

where ϕ(N) is the Euler function and the implied constant is absolute (cf. [10], (2.72)).
Let λf (n) be the n-th normalized Fourier coefficient of f ∈ H∗k(N) at the cusp ∞, i.e.

f(z) =
∞∑

n=1

λf (n)n(k−1)/2e2πinz (=mz > 0)

and λf (1) = 1. Following from the properties of Hecke operators, we have the Hecke relation

(1.2) λf (m)λf (n) =
∑

d|(m,n)
(d,N)=1

λf

(
mn

d2

)

for all positive integers m and n. Indeed λf (n) is multiplicative, and for every prime p there are
complex numbers αf (p) and βf (p) such that

λf (pν) = αf (p)ν + αf (p)ν−1βf (p) + · · ·+ βf (p)ν .

where αf (p) and βf (p) are known, due to Deligne [2], to satisfy

(1.3)

{
αf (p) = εf (p)p−1/2, βf (p) = 0 if p | N
|αf (p)| = αf (p)βf (p) = 1 if p - N

with εf (p) = ±1. Hence, λf (n) is real and for all primes p and integers ν ≥ 0,

(1.4) |λf (pν)| ≤ ν + 1 (Deligne’s inequality).

Our first result is a large sieve inequality of Elliott-Montgomery-Vaughan type.

Theorem 1. Let ν ≥ 1 be a fixed integer and let {bp}p be a sequence of real numbers indexed

by prime numbers such that |bp| ≤ B for some constant B and for all primes p. Then we have

(1.6)
∑

f∈H∗
k
(N)

∣∣∣∣
∑

P<p≤Q
p -N

bp
λf (pν)

p

∣∣∣∣
2j

¿ν kϕ(N)
(

96B2(ν + 1)2j
P log P

)j

+ (kN)10/11

(
10BQν/10

log P

)2j

uniformly for

2 | k, B > 0, 2 ≤ P < Q ≤ 2P, N ≥ 1 (squarefree), j ≥ 1.

The implied constant depends on ν only.

When bp ≡ 1 and N = 1, a weaker form of (1.6) has been derived in ([16], Proposition).
Essentially the estimate there contains an extra factor of jj , which originates in the applica-
tion of Cauchy-Schwarz’s inequality. To save it, we approach Theorem 1 by another auxiliary
tool which is simple but powerful. We shall use a trace formula without harmonic weights (see
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Lemma 4.1 below and compare it with Corollary 2.10 of [10]). This trace formula is more ef-
fective for our purpose, though it is easily deduced from the work of Iwaniec, Luo & Sarnak
[10]. Still, unlike quadratic characters, there are intrinsic technical difficulties in this problem.
More specifically λsymνf (n) is not completely multiplicative and satisfies no counterpart of the
quadratic reciprocity law. The non-complete multiplicativity can be overcome with some pre-
liminary calculation which will be done in Section 5. The exponent 10/11 in (1.6) can be done
better by using more delicate technique (see Remark 4 below). Under the Grand Riemann Hy-
pothesis (GRH), this exponent can be improved to 2/3. For our purpose, it is sufficient to have
1− δ with some constant δ > 0.

Sections 2 and 3 are devoted to the applications of Theorem 1, which give almost opti-
mal results in Linnik’s problem and the upper bound part of Montgomery-Vaughan’s first two
conjectures.

Acknowledgements. The authors would like to express heartfelt gratitude to Professor Em-
manuel Royer for helpful comments on an earlier version, and to the referee for careful reading
and the many valuable suggestions. The first author was supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative Region, China (HKU7032/06P).

§ 2. Linnik’s problem for modular forms

This problem of Linnik was initially raised for Dirichlet characters and Dirichlet L-functions,
stated as follows. Let d be a fundamental discriminant and χd(n) :=

(
d
n

)
the Kronecker symbol.

Then χd is a real primitive character with modulus |d|. Linnik’s problem on χd is to investigate
the least integer n such that

(|d|, n) = 1 and χd(n) 6= 1.

Interested readers can find in [17] a historical account and some recent development on this
problem.

The following generalization is formulated for automorphic forms. Given f and g two
holomorphic primitive cusp forms of weights kf and kg, and of levels Nf and Ng, respectively.
What is the smallest integer n for which

(n, NfNg) = 1 and λf (n) 6= λg(n) ?

Denote this smallest integer by nf,g which must be a prime in view of (1.2). One way to evaluate
nf,g is through the Rankin-Selberg L-function L(s, f⊗g) of f and g. Under GRH for L(s, f⊗g),
it is known that

(2.1) nf,g ¿ {log(kfkgNfNg)}2,

with an absolute implied constant. Using merely the convexity bound for L(s, f ⊗ g), for any
ε > 0 one has

(2.2) nf,g ¿ε (kNfNg)1+ε,
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where k := max{kf , kg}(|kf − kg| + 1) and the implied constant depends on ε only. As an
application of their subconvexity bound for L( 1

2 + iτ, f ⊗ g), Kowalski, Michel & Vanderkam
[14] gave an improvement on the level aspect of (2.2),

nf,g ¿kf ,g,ε N
1−1/40+ε
f ,

where the implied constant depends on kf , g and ε. Other relevant results in the weight aspect
(with a fixed level) were obtained by Ram Murty [20], Sengupta [23] and Kohnen [11].

Of course, it is desirable to prove (2.1) unconditionally, which can at present be achieved in
almost-all sense. Such a result was firstly obtained by Duke & Kowalski [3] with a generalization
of Linnik’s large sieve inequality to the automorphic form case. Their result ([3], Theorem 3)
yields the following for squarefree conductors. See [10, Theorem 1.1] for more exposition.

Theorem A. Let Q ≥ 2 and k be an even integer. Let g be a given primitive form of weight

k and conductor less than Q. For all α > 0 and ε > 0, the number N of primitive non-CM

modular forms f of weight k and squarefree conductor q ≤ Q such that

λf (p) = λg(p) for p ≤ (log Q)α

satisfies

(2.3) N ¿ Q10α−1+ε

where the implied constant depends on α and ε only.

Theorem A can be viewed as a result concerning the number of the joint eigenfunctions of
a Laplace operator and Hecke operators. The Strong Multiplicity One theorem asserts that a
primitive form is uniquely determined by all of its Hecke eigenvalues. The interest in small α

is also motivated from the multiplicity of Maass forms (see [22]). Let us return to the maass
case in another occasion. The estimate (2.3) becomes trivial when α ≤ 5, for N ¿ Q2. Our
first application of Theorem 1 is to extend its range for non-trivial estimates when the level N

is squarefree. (See Remark 1 (ii).) Here, we take generic sequences into account as in [12] where
Kowalski was inspired by Sarnak [22].

Theorem 2. Let N be squarefree. Let Λ = {λ(p)}p be a fixed real sequence indexed by prime

numbers and ν ≥ 1 be a fixed integer. Let P be a set of prime numbers of positive density in

the following sense ∑

z<p≤2z
p∈P

1
p
≥ δ

log z
(z ≥ z0)

with some constants δ > 0 and z0 > 0. Then there are two positive constants C and c such that

the number of forms f ∈ H∗k(N) verifying

λf (pν) = λ(p) for p ∈ P, p - N and C log(kN) < p ≤ 2C log(kN)

is bounded by

¿ kNe−c log(kN)/ log2(kN),

where logr is the r-fold iterated logarithm. Here C, c and the implied constant depend on Λ, ν

and P only.

The following results follow straightforwardly from Theorem 2.
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Corollary 3. Let g be a primitive cusp form of weight k′ and of level N ′ (not necessarily

squarefree) and let P be stated as in Theorem 2. Then there are two positive constants C =
C(g,P) and c = c(g,P) such that the number of forms f ∈ H∗k(N) verifying

λf (p) = λg(p) for p ∈ P, p - N and C log(kN) < p ≤ 2C log(kN)

is bounded by

¿g,P kNe−c log(kN)/ log2(kN).

Corollary 4. Let g be a primitive cusp form of weight k′ and of level N ′ (not necessarily

squarefree) and let P be as in Theorem 2. Then there are two positive constants C = C(g,P)
and c = c(g,P) such that the number of primitive forms f ∈ H∗k(N) verifying

λf (p2) = λg(p2) for p ∈ P, p - N and C log(kN) < p ≤ 2C log(kN)

is bounded by

¿g,P kNe−c log(kN)/ log2(kN).

Corollary 5. For any quadratic field K/Q, there are two positive constants C = C(K) and

c = c(K) such that the number of symmetric squares of forms f ∈ H∗k(N) verifying

λf (p) = 0 for C log(kN) < p ≤ 2C log(kN) insert in K

is bounded by

¿K kNe−c log(kN)/ log2(kN).

Remark 1. (i) In the formulation of the Linnik problem, it is more appropriate to compare
the normalized Fourier coefficient λf (n) rather than the full coefficient λf (n)n(k−1)/2, especially
for the weight aspect. In the context of L-functions, the normalization process shifts the center
of the critical strip to standardize the L-function. This removes the drastic amplifying effect of
the factor n(k−1)/2.

(ii) In contrast with Theorem A, Corollary 3 gives an upper bound uniformly for both level
N and weight k, and above all, α can now assume the value 1. However, it is worthwhile to
note that the main result of Duke & Kowalski ([3], Theorem 3) covers the situation of arbitrary
conductors. Our work here supplements only the squarefree case.

(iii) Corollaries 4 and 5 relax the condition α > 5 in Theorems 4.1 and 4.3 of [12] to α > 1.
(iv) We have the query whether the estimate in Corollary 3 for the exceptional set is optimal.

In the case of real primitive Dirichlet characters, we derive a similar result and the optimality
is successfully shown (see [17], Theorem 2). The proof for optimality utilizes the weighted
function

2−π(y)−1(1 + χ4(p))
∏

q≤y
q primes

(1 + χp(q))

(where π(y) denotes the number of primes p ≤ y), and the most crucially, the quadratic reci-
procity law and Graham-Ringrose’s character sum estimates ([7], Theorem 5) for characters of
friable/smooth moduli. We are unable to develop similar tools for modular forms. In fact, it
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might be too optimistic (or even too wild) to guess that the result in Corollary 3 is tight. Below
is a probabilistic reasoning based on the referee’s comment.

Since a real character assumes two values on generic primes, roughly there is a probability
of 1/2l that real characters coincide at l distinct primes. Now l ≈ log N/ log2 N which is the
estimate of primes less than log N . This explains the factor e−c log N/ log2 N in the case of real
characters. However, λf (p) may assume much more values, for example, as large as p(k−1)/2 if f

has integral Fourier coefficients. Repeating the probabilistic argument, one gets a much smaller
value.

Finally, we outline the difference in the large sieve inequalities (and their generalizations)
between Linnik’s type and Elliott-Montgomery-Vaughan’s type. The typical Linnik’s large sieve
inequality for primitive Dirichlet charaters is

(2.4)
∑

q≤Q

∑∗

χ(mod q)

∣∣∣
∑

n≤N

anχ(n)
∣∣∣
2

≤ (
N + Q2

) ∑

n≤N

|an|2

for any sequence {an}n≤N of complex numbers. The upper estimate (2.4) is effective only when
N is about Q2, and relatively ineffective for N smaller than a power of log Q. The same feature
is carried over to its generalization in [3]. However the E-M-V inequality (1.6) is still good when
Q is close to log(kN) with a suitable choice of j, which is the key to the proof of Theorem 2.

§ 3. Montgomery-Vaughan’s conjectures for automorphic L-functions

The Montgomery-Vaughan’s conjectures for Dirichlet L-functions L(s, χd) associated to
primitive real character χd, proposed in [19] based on probabilistic models, are concerned with
the proportion of the fundamental discriminant d for which the value L(1, χd) is exceptionally
large or small.

Let Dx be the set of all fundamental discriminants d with |d| ≤ x. Suppose ξ is a positive
function on [100,∞). As in [8], define the distribution functions

Φ+
x (ξ) :=

1
|Dx|

∑

d∈Dx

L(1,χd)>eγξ(|d|)

1

and
Φ−x (ξ) :=

1
|Dx|

∑

d∈Dx

L(1,χd)<(eγ6π−2ξ(|d|))−1

1,

where γ is the Euler constant. The (three) Montgomery-Vaughan conjectures in [19] can be
expressed as follows: There are positive constants x0, C > c > 0 and 0 < θ < Θ < 1 such that

(C1) e−C(log x)/ log2 x ≤ Φ±x (log2 ·) ≤ e−c(log x)/ log2 x

and

(C2) x−Θ ≤ Φ±x (log2 ·+ log3 ·) ≤ x−θ

for x ≥ x0. Further for any ε > 0, one has

(C3) Φ±x (log2 ·+ (1 + ε) log3 ·) ¿ε x−1



A large sieve inequality of Elliott-Montgomery-Vaughan type and two applications 7

for x ≥ 3.

Recently Granville and Soundararajan [8] made great progress towards these conjectures.
Their results depict Φ±x (ξ) in a precise and delicate way, and Conjecture (C1) follows uncondi-
tionally. Under GRH, their result ([8], Theorem 4) implies that for any large constant A there
are positive constants x0 and 0 < θ < Θ < 1 such that

x−Θ ≤ Φ±x (log2 ·+ log3 · −A) ≤ x−θ

for x ≥ x0 and hence the upper bound part of Conjecture (C2) holds (conditionally). Their
proof uses the complex moment method and the saddle-point method. Two main ingredients
are again quadratic reciprocity and Graham-Ringrose’s estimate on character sums (see Remark
1(iii)).

Let us turn to automorphic L-functions. We consider the analogues of the above conjectures
for symmetric ν-th power L-functions of f ∈ H∗k := H∗k(1) in the k-aspect. In what follows we
shall assume k to be any sufficiently large even integer. For ν ∈ N and f ∈ H∗k, the associated
symmetric ν-th power L-functions L(s, symνf) is given by

L(s, symνf) :=
∏
p

∏

0≤j≤ν

(
1− αf (p)ν−jβf (p)jp−s

)−1 =
∞∑

n=1

λsymνf (n)n−s

for <e s > 1. Plainly by (1.3),

|λsymνf (n)| ≤ dν+1(n) (n ≥ 1),

where dr(n) counts the number of ways of factorizing n into a product of r natural numbers.
For ν = 1, 2, 3, 4, the symmetric ν-th power functions L(s, symνf) can be analytically continued
to the entire complex plane C and satisfies a functional equation. Here we are interested in the
behavior of the extreme values of L(1, symνf) as the weight k → +∞.

In [15], we proved that under GRH for L(s, symνf) (ν ∈ N),

(3.1) {1 + o(1)}(2B−
ν log2 k)−A−ν ≤ L(1, symνf) ≤ {1 + o(1)}(2B+

ν log2 k)A+
ν .

Also, the constants A±ν and B±
ν are explicitly evaluated:





A+
ν = ν + 1, B+

ν = eγ (ν = 1, 2, 3, 4),
A−ν = ν + 1, B−

ν = eγζ(2)−1 (ν = 1, 3),
A−2 = 1, B−

2 = eγζ(2)−2,

A−4 = 5
4 , B−

4 = eγB′−
4 ,

where as usual ζ(s) is the Riemann zeta-function. The constant B′−
4 is positive and given by

a complicated Euler product (cf. [15], (1.16)). The inequality (3.1), if true unconditionally,
is believed to be sharp up to the constant 2. Indeed, it is shown unconditionally that for
ν = 1, 2, 3, 4 there are f±ν ∈ H∗k such that for k →∞,

(3.2) L(1, symνf+
ν ) ≥ {1 + o(1)}(B+

ν log2 k)A+
ν

and

(3.3) L(1, symνf−ν ) ≤ {1 + o(1)}(B−
ν log2 k)−A−ν .

In [16], we evaluated the size of the exceptional set in which (3.2) or (3.3) holds.
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Theorem B. Let ε > 0 be an arbitrarily small, ν = 1, 2, 3, 4 and 2 | k. Then there is a subset

E∗k of H∗k such that

|E∗k| ¿ ke−(log k)1/2−ε

and for each f ∈ H∗krE∗k, we have

{
1 + O

(
(log k)−ε

)}
(B−

ν log2 k)−A−ν ≤ L(1, symνf) ≤ {
1 + O

(
(log k)−ε

)}
(B+

ν log2 k)A+
ν .

The implied constants depend on ε only.

In order to describe more precisely the size of the exceptional set, one may consider the
distribution functions

F+
k (t, symν) :=

1
|H∗k|

∑

f∈H∗k
L(1,symνf)>(B+

ν t)A
+
ν

1

and
F−k (t, symν) :=

1
|H∗k|

∑

f∈H∗k
L(1,symνf)<(B−ν t)−A

−
ν

1.

Below are the analogues of Conjectures (C1) and (C2) of Montgomery and Vaughan: For each

ν ∈ N, there are positive constants k0 = k0(ν), Cν > cν > 0 and 0 < θν < Θν < 1 such that

(C1)′ e−Cν(log k)/ log2 k ≤ F±k (log2 k, symν) ≤ e−cν(log k)/ log2 k

and

(C2)′ k−Θν ≤ F±k (log2 k + log3 k, symν) ≤ k−θν

for k ≥ k0.

Towards the conjecture (C1)′, Liu, Royer & Wu [18] proved a weak form for ν = 1: there
are positive constants C, c1 and c2 such that for all large k,

(3.4) e−c1(log k)/{(log2 k)7/2 log3 k} ≤ F±k (Tk, sym1) ≤ e−c2(log k)/{(log2 k)7/2 log3 k}

where Tk := log2 k − 5
2 log3 k − log4 k − 3C ∼ log2 k.

The next application of Theorem 1 is to derive some upper bounds for F±k (·, symν) in (C1)′

and (C2)′ when ν = 1, 2, 3, 4. Our result is unconditional and capable of establishing the upper
estimate in the first Montgomery-Vaughan’s conjecture (C1)′.

Theorem 6. Let ν = 1, 2, 3, 4. Then for any ε > 0, there are two positive constants c = c(ε)
and k0 = k0(ε) such that

F±k (log2 k + r, symν) ≤ exp
(
− c(|r|+ 1)

log k

log2 k

)

for all even integer k ≥ k0 and log ε ≤ r ≤ 9 log2 k.

Remark 2. When r = 0, this gives the second inequality in (C1)′, i.e. the upper bound of the
first Montgomery-Vaughan conjecture. The choice r = log3 k gives (unconditionally) an upper
bound for F±k (log2 k + log3 k, symν), which is however weaker than the conjectured value in
(C2)′.

Concerning the lower bound of Conjecture (C1)′, we have the following result.
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Theorem 7. Let ν = 1, 2, 3, 4. There are positive absolute constants k0, c1 and c2 such that

(3.5) F±k (log2 k − c1 log3 k, symν) ≥ e−c2(log k)/{(log2 k)2 log3 k}

for all even integer k ≥ k0.

Remark 3. (i) Theorem 7 can be regarded as a complement of the upper bound in (3.4), which
applies to ν = 1 only. Besides, the constant c1 in (3.5) is indeed bigger than 5

2 in (3.4). By
virtue of the probabilistic model in [18], the distribution functions F±k (t, symν) behave like

exp
{
− et−γ0

t

[
1 + O

(
1
t

)]}

in a neighbourhood of the key value log2 k. (γ0 is an explicit constant, see [18], Corollary 5.)
Thus the expected size of F±k (log2 k−c1 log3 k, symν) should be e−c2(log k)/(log2 k)1+c1 . The lower
estimate in (3.5) is rather good.

(ii) As in [15] and [16], we do not want to impose further hypotheses, hence confine to the
cases 1 ≤ ν ≤ 4.

(iii) Theorems 6 and 7 can be generalized to H∗k(N). In this case the implied constants
depend on the level N . Our method can also be applied to establish similar results in level
aspects provided the level is squarefree and free of small prime factors. It seems possible to
prove analogous results in both aspects k and N .

§ 4. An unweighted trace formula

As was indicated in §1, one of our new ingredients is the unweighted trace formula. This
will simplify considerably the argument in [16] and is certainly of independent interest.

Lemma 4.1. Let N be squarefree and (mn, N2) | N . Then for any ε > 0 we have

∑

f∈H∗
k
(N)

λf (m)λf (n) =
k − 1
12

ϕ(N)
σ((m, n))√

mn
δmn=¤(4.1)

+ Oε

({k29N27(mn)3}1/33(kNmn)ε
)
,

where δ`=¤ = 1 for perfect square ` or 0 otherwise and σ(`) :=
∑

d|` d.

Proof. First we establish the following asymptotic formula

(4.2) L(1, sym2f) = ζ(2)
∑

n≤y
(n,N)=1

λf (n2)
n

+ Oε

(
(kN/y)2/7(kNy)ε

)

valable uniformly for y ≥ 1.
According to (3.14)–(3.16) of [10], for <e s > 1 we have

L(s, sym2f) = ζ(N)(2s)
∞∑

n=1

λf (n2)
ns

= ζ(N)(2s)ζN (s + 1)
∞∑

n=1
(n,N)=1

λf (n2)
ns
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where ζN (s) :=
∏

p|N (1 − p−s)−1 and ζ(N)(s) := ζ(s)/ζN (s). Thus by using Perron’s formula
(Theorem II.2.2 of [24]) and Deligne’s inequality, we can write

∑

n≤y
(n,N)=1

λf (n2)
n

=
1

2πi

∫ ε+iT

ε−iT

ζ(N)(2 + 2s)−1ζN (2 + s)−1L(1 + s, sym2f)
ys

s
ds

+ Oε

(
yε

∑

n≥1

τ(n2)
n1+ε(1 + T | log(y/n)|)

)
,

where T is a large parameter chosen up to our disposal. Separating, as usual, n into |n−y| ≥ 1
2y

or not, the O-term is bounded above by

yε

T

∑

|n−y|≥y/2

τ(n2)
n1+ε

+
yε

T

∑

1≤|n−y|≤y/2

τ(n2)
nε|y − n| + yε−1 ¿ yε

T
+ y−1+ε.

Clearly both ζ(N)(2 + 2s) and ζN (2 + s) are holomorphic and of magnitude Àε 1 on
<e s ≥ −1/2 + ε. We shift the line of integration to [−1/2 + ε − iT,−1/2 + ε + iT ], the main
term equals

L(1, sym2f) + O

(∣∣∣∣
∫ ε±iT

−1/2+ε±iT

∣∣∣∣ +
∣∣∣∣
∫ −1/2+ε+iT

−1/2+ε−iT

∣∣∣∣
)

.

Invoking the convexity bound

L(σ + iτ, sym2f) ¿ {
N2(|τ |+ 1)(|τ |+ k)2

}max{(1−σ)/2, 0}+ε

¿ {
(kN)2(|τ |+ 1)3

}max{(1−σ)/2, 0}(kNτ)ε

with σ = 1 + <e s, we see that
∣∣∣∣
∫ ε±iT

−1/2+ε±iT

∣∣∣∣ +
∣∣∣∣
∫ −1/2+ε+iT

−1/2+ε−iT

∣∣∣∣ ¿ T−1(kNTy)ε + (kN/y)1/2T 3/4(kNTy)ε.

Taking T = {y/(kN)}2/7, we get the required asymptotic formula (4.2).
As in [10], for <e s > 1 define

Z(s, f) =
∞∑

n=1

λf (n2)n−s = ζ(N)(2s)−1L(s, sym2f).

Then we write

(4.3)
∑

f∈H∗
k
(N)

λf (m)λf (n) = ζ(N)(2)−1
∑

f∈H∗
k
(N)

λf (m)λf (n)
Z(1, f)

L(1, sym2f),

in order to apply Corollary 2.10 of [10] (see [10], (2,54) as well).
Replacing L(1, sym2f) by the formula (4.2), we split the right-hand side of (4.3) into two

parts accordingly. Since 1/ log(kN) ¿ L(1, sym2f) ¿ log(kN) (see [9] and [6]), the same
bounds hold for Z(1, f). The O-term in (4.2) contributes a term

¿ (kN/y)2/7(kNy)ε
∑

f∈H∗
k
(N)

|λf (m)λf (n)|
Z(1, f)

¿ (kN)9/7y−2/7(kNmny)ε.
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Inserting the main term in (4.2) into (4.3) and using the Hecke relation (1.2), the contribu-
tion of the main term in (4.2) to (4.3) is

= ζN (2)
∑

f∈H∗
k
(N)

λf (m)λf (n)
Z(1, f)

∑

`≤y
(`,N)=1

λf (`2)
`

(4.4)

=
∑

d|(m,n)
(d,N)=1

∑

`≤y
(`,N)=1

ζN (2)
`

∑

f∈H∗
k
(N)

λf (`2)λf (mn/d2)
Z(1, f)

.

Note that ζ(2)ζ(N)(2)−1 = ζN (2). As (mn, N2) | N implies that (mn/d2, N2) | N for all
d | (m,n) and (`,N) = 1, we can apply Corollary 2.10 of [10] with (m,n) = (`2, mn/d2) to the
innermost sum,

ζN (2)
∑

f∈H∗
k
(N)

λf (`2)λf (mn/d2)
Z(1, f)

=
k − 1
12

ϕ(N)δmn/d2=`2 + O

(
k1/6

(
`2mn

d2

)1/4

(`Nmn)ε

)
.

Putting this into (4.4), we get that
k − 1
12

ϕ(N)
∑

`≤y
(`,N)=1

1
`

∑

d|(m,n)
(d,N)=1

δmn/d2=`2 + O
({k2(mn)3}1/12y1/2(Nmny)ε

)
.

If y ≥ (mn)1/2, the main term is apparently equal to
k − 1
12

ϕ(N)δmn/(m,n)2=¤
σ((m,n))√

mn
.

The condition mn/(m,n)2 = ¤ is equivalent to mn = ¤. Combining the above estimates and
optimizing y over [(mn)1/2,∞), we obtain

∑

f∈H∗
k
(N)

λf (m)λf (n) =
k − 1
12

ϕ(N)δmn=¤
σ((m, n))√

mn

+ O
({

(k29N27)1/33(mn)1/11 + k1/6(mn)1/2
}
(kNmn)ε

)
.

This implies the asymptotic formula (4.1) since we can assume mn ≤ (k47N54)1/27, otherwise
(4.1) is trivial. This completes the proof. ¤
Remark 4. The error term in (4.1) can be improved by more delicate technique as in [16].
Under GRH, this error term is improved to

O

(
(kN)2/3 (mn)1/6τ((m,n))√

(mn,N)

)
.

In fact by using the Hecke relation (1.2), it follows that
∑

f∈H∗
k
(N)

λf (m)λf (n) =
∑

d|(m,n)
(d,N)=1

∑

f∈H∗
k
(N)

λf

(
mn

d2

)
.

Under GRH, we can apply Proposition 2.13 (1) of [10] to the inner sum over f for obtaining our
required result.

§ 5. A preliminary lemma

In this section, we establish a technical lemma.

(1) It is worthy to indicate that this proposition assumes GRH.
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Lemma 5.1. Let Ω(n) be the number of all prime factors of n. For 2 ≤ P < Q ≤ 2P , j ≥ 1
and n ≥ 1, we define

aj(n) = aj(n;P,Q) := |{(p1, . . . , pj) : p1 · · · pj = n, P < p1, . . . , pj ≤ Q}|.

Then the following three inequalities

∑
n

aj(n2)
dΩ(n)

n2
≤ δ2|j

(
3dj

P log P

)j/2

,(5.1)

∑\

n

aj(n)
dΩ(n)

n
≤

(
12d2j

P log P

)j/2{
1 +

(
j log P

54P

)j/6}
,(5.2)

∑
m

[ ∑\

(m, n)=1

aj(mn)
dΩ(mn)

m2n
≤

(
48d2j

P log P

)j/2{
1 +

(
20j log P

P

)j/6}
(5.3)

hold for

d > 0, j ≥ 1 and 2 ≤ P < Q ≤ 2P,

where

δ2|j :=
{

1 if j is even,

0 otherwise.

The summations
∑\

and
∑[

run over squarefull and squarefree integers, respectively.

Proof. First we prove (5.1). The number of primes (counted with multiplicity) in a square is
even, hence the case for odd j is trivial. Let j = 2j′. Then aj(n2) = 0 unless Ω(n) = j′ and
n = pν1

1 · · · pνi
i where each prime factor lies in (P, Q]. In this case we have

a2j′(n2) =
(2j′)!

(2ν1)! · · · (2νi)!

=
(2j′)!
j′!

ν1!
(2ν1)!

· · · νi!
(2νi)!

aj′(n)

≤ j′j
′
aj′(n).

It follows that ∑
n

a2j′(n2)
dΩ(n)

n2
≤ j′j

′ ∑
n

aj′(n)
dΩ(n)

n2

=
(

j′
∑

P<p≤Q

d

p2

)j′

≤
(

6dj′

P log P

)j′

.

Next, for (5.2) we note that every squarefull integer n is uniquely expressible in the form
n = `2m, where m is squarefree and m | `. This can be seen by taking

` = pν1
1 · · · pνi+i′

i+i′ , m = pi+1 · · · pi+i′

in the decomposition of
n = p2ν1

1 · · · p2νi
i p

2νi+1+1
i+1 · · · p2νi+i′+1

i+i′
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into distinct prime powers. Observe that aj(`2m) = 0 or j = 2ν1 + · · ·+ 2νi+i′ + i′, and

aj(`2m) =
j!

(2ν1)! · · · (2νi)!(2νi+1 + 1)! · · · (2νi+i′ + 1)!

≤ j!
(j − i′)!3i′

(j − i′)!
(2ν1)! · · · (2νi+i′)!

=
j!

(j − i′)!3i′ aj−i′(`2)

≤
(

j

3

)i′

aj−i′(`2)

whenever it is nonzero. We infer that

∑
n

\
aj(n)

dΩ(n)

n
=

∑

`

∑[

m|`
aj(`2m)

dΩ(`2m)

`2m

≤
∑

0≤i′≤j/3
i′≡j(mod 2)

(
j

3

)i′ ∑

`

aj−i′(`2)
d2Ω(`)

`2

∑[

m|`, Ω(m)=i′

p|m⇒P<p≤Q

dΩ(m)

m
.

Obviously
∑[

m|`, Ω(m)=i′

p|m⇒P<p≤Q

dΩ(m)

m
≤ 2Ω(`)

(
d

P

)i′

.

Together with (5.1), we have

∑
n

\
aj(n)

dΩ(n)

n
≤

∑

0≤i′≤j/3
i′≡j(mod 2)

(
dj

3P

)i′( 6d2j

P log P

)(j−i′)/2

≤
(

6d2j

P log P

)j/2 ∑

0≤i′≤j/3
i′≡j(mod 2)

(
j log P

54P

)i′/2

≤
(

6d2j

P log P

)j/2(
j/3 + 1

2
+ 1

){
1 +

(
j log P

54P

)j/6}
,

which implies (5.2) since (j/3 + 1)/2 + 1 ≤ 2j/2 for j ≥ 2.

Finally, we prove (5.3). Let us write m = p1 · · · pi and n = p
νi+1
i+1 · · · p

νi+i′
i+i′ for squarefree m

and squarefull n. We have j = i + νi+1 + · · ·+ νi+i′ when aj(mn) 6= 0. Thus for (m,n) = 1,

aj(mn) =
j!

νi+1! · · · νi+i′ !

=
j!

(j − i)!i!
i!

(j − i)!
νi+1! · · · νi+i′ !

=
(

j

i

)
ai(m)aj−i(n).

This shows that

∑
m

[ ∑\

(m, n)=1

aj(mn)
dΩ(mn)

m2n
≤

∑

0≤i≤j

(
j

i

) ∑
m

[
ai(m)

dΩ(m)

m2

∑
n

\
aj−i(n)

dΩ(n)

n
.
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Clearly the sum over m is

≤
( ∑

P<p≤Q

d

p2

)i

≤
(

6d

P log P

)i

.

Inserting it into the preceding inequality and applying (5.2) to the sum over n, we find that

∑
m

[ ∑\

(m, n)=1

aj(mn)
dΩ(mn)

m2n
≤

∑

0≤i≤j

(
j

i

)(
6d

P log P

)i{(
12d2j

P log P

)1/2[
1 +

(
j log P

54P

)1/6]}j−i

≤
{

6d

P log P
+

(
12d2j

P log P

)1/2[
1 +

(
j log P

54P

)1/6]}j

≤
(

12d2j

P log P

)j/2{
1 +

(
20j log P

P

)1/6}j

.

Consequently (5.3) follows since (1 + x)j ≤ 2j(1 + xj) for any x > 0. ¤

§ 6. Proof of Theorem 1

Without loss of generality, we suppose

(6.1) j ≤ P/(24 log P )

since, otherwise, the required result follows trivially. Indeed, if j > P/(24 log P ), we deduce by
(1.1), (1.4), the hypothesis |bp| ≤ B and the well-known estimate

∑

P<p≤2P

1
p
∼ log 2

log P

that

∑

f∈H∗
k
(N)

∣∣∣∣
∑

P<p≤Q
p -N

bp
λf (pν)

p

∣∣∣∣
2j

¿ kN

(
2B(ν + 1)

log P

)2j

¿ν kN

(
96B2(ν + 1)2j

P log P

)j

.

Define bn :=
∏

pµ‖n bµ
p . Multiplying out the product

∣∣∣∣
∑

P<p≤Q
p -N

bp
λf (pν)

p

∣∣∣∣
2j

,

we obtain a summation over integers in (P 2j , Q2j ] whose prime factors do not divide N . An
integer decomposes uniquely into a product of coprime integers mn with m squarefree and n

squarefull. It then follows that

(6.2)
∣∣∣∣

∑

P<p≤Q
p -N

bp
λf (pν)

p

∣∣∣∣
2j

=
∑\

n≤Q2j

(n,N)=1

∑[

P 2j<mn≤Q2j

(m,nN)=1

a2j(mn)
bmbn

mn
λf (mν)

∏

pµ‖n
λf (pν)µ,
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where, as before,
∑\ and

∑[ run respectively over squarefull and squarefree integers.
Introducing the sets

Eν
µ(p) :=

{
dp = (d1, . . . , dµ−1) ∈ Nµ−1 : dj

∣∣∣
(

pjν

(d1 · · · dj−1)2
, pν

)
(1 ≤ j ≤ µ− 1)

}

with the convention d1 · · · d0 = 1 and N0 = {1}, and

E(n) :=
{

(dp)p|n : dp ∈ Eν
µ(p) where pν‖n for p|n

}

where (ap)p|n is an ordered tuple with ω(n) components.
We can write ∏

pµ‖n
λf (pν)µ =

∏

pµ‖n

{ ∑

dp∈Eν
µ(p)

λf

(
pνµ

|dp|2
)}

=
∑

(dp)p|n∈E(n)

λf

( ∏

pµ‖n

pνµ

|dp|2
)

,

where |dp| = d1 · · · dµ−1. The right-hand side of (1.6) becomes

(6.3)
∑\

n≤Q2j

(n,N)=1

∑[

P 2j<mn≤Q2j

(m,nN)=1

a2j(mn)
bmbn

mn

∑

(dp)p|n∈E(n)

∑

f∈H∗
k
(N)

λf

( ∏

pµ‖n

pνµ

|dp|2
)

λf (mν).

Since (n,N) = 1 and (m,nN) = 1, we have (mn,N2) = 1. Thus the unweighted trace
formula (4.1) is applicable, and leads (6.3) to two parts arising from the main term and error
term in (4.1). Clearly we have

∑

(dp)p|n∈E(n)

∏

pµ‖n
|dp|−2/10 =

∏

pµ‖n

( ∑

dp∈Eν
µ(p)

|dp|−1/5

)

≤
∏

pµ‖n

( ∑

ν′≥0

p−ν′/5

)µ−1

< 8Ω(n).

Noting |bp| ≤ B, the contribution to (6.3) from the error term in (4.1) is, therefore,

¿ (kN)10/11
∑\

n≤Q2j

∑[

P 2j/n<m≤Q2j/n
(m,n)=1

a2j(mn)
BΩ(mn)8Ω(n)

(mn)1−ν/10
(6.4)

¿ (kN)10/11Qjν/5
∑

P 2j<`≤Q2j

a2j(`)
(8B)Ω(`)

`

¿ (kN)10/11Qjν/5

( ∑

P<p≤Q

8B

p

)2j

¿ (kN)10/11

(
10BQν/10

log P

)2j

.

Here we have used the uniqueness of decomposing an integer into the product of a squarefull
and a squarefree number.
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It remains to handle the contribution from the main term in (4.1), which is nonzero if and
only if

(6.5)
∏

pµ‖n

pνµ

|dp|2 = ¤ and mν = ¤.

We separate into two cases.
(i) ν is odd. Then (6.5) is equivalent to

2 | µ (i.e. n = ¤) and m = 1.

Thus by (5.1), the contribution is

≤ kϕ(N)
∑

n

a2j(n2)
[B(ν + 1)]2Ω(n)

n2
(6.6)

≤ kϕ(N)
(

6B2(ν + 1)2j
P log P

)j

.

(ii) ν is even. Then (6.5) always holds. By (5.3) with 2j in place of j and (6.1), the
contribution in this case is

¿ kϕ(N)
∑
m

[ ∑\

(m, n)=1

a2j(mn)
(ν + 1)Ω(n)BΩ(mn)

m2n
(6.7)

¿ kϕ(N)
(

96B2(ν + 1)2j
P log P

)j

.

The proof is complete from (6.3), (6.4), (6.6) and (6.7). ¤

§ 7. Proof of Theorem 2

Define

E∗k(N, P ;P) :=
{
f ∈ H∗k(N) : λf (pν) = λ(p) for P < p ≤ 2P, p ∈ P and p - N

}
.

It suffices to prove that there are two positive constants C = C(Λ, ν,P) and c = c(Λ, ν,P) such
that

(7.1) |E∗k(N, P ;P)| ¿Λ,ν,P kNe−c log(kN)/ log2(kN)

uniformly for

2 | k, N (squarefree), kN ≥ X0, C log(kN) ≤ P ≤ (log(kN))10

for some sufficiently large number X0 = X0(Λ, ν,P). We may assume

(7.2) |λ(p)| ≤ ν + 1

for all p ≥ P ≥ C log(kN), otherwise the set E∗k(N,P ;P) is empty by Deligne’s inequality.
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Define for 1 ≤ ν′ ≤ ν,

Eν′
k (N, P ;P) :=

{
f ∈ H∗k(N) :

∣∣∣∣
∑

P<p≤2P
p∈P, p -N

λf (p2ν′)
p

∣∣∣∣ ≥
δ

2ν log P

}
.

Take

ν = 2ν′, Q = 2P and bp =
{

1 if p ∈ P
0 otherwise

in Theorem 1. Then we get

(
δ

2ν log P

)2j

|Eν′
k (N, P ;P)| ≤

∑

f∈H∗
k
(N)

∣∣∣∣
∑

P<p≤2P
p -N

bp
λf (p2ν′)

p

∣∣∣∣
2j

¿ kN

(
96(2ν′ + 1)2j

P log P

)j

+ (kN)10/11

(
10(2P )ν′/5

log P

)2j

.

Hence,

(7.3) |Eν′
k (N,P ;P)| ¿ kN

(
3456ν4j log P

δ2P

)j

+ (kN)10/11P νj ,

provided P ≥ 2(20ν/δ)10/(3ν).
Let

bp =
{

λ(p) if p ∈ P
0 otherwise,

¿From the definition of E∗k(N, P ;P), we deduce that

∑

f∈E∗
k
(N,P ;P)

∣∣∣∣
∑

P<p≤2P
p∈P, p -N

λf (pν)2

p

∣∣∣∣
2j

≤
∑

f∈H∗
k
(N)

∣∣∣∣
∑

P<p≤2P
p -N

bp
λf (pν)

p

∣∣∣∣
2j

(7.4)

¿ kN

(
96(ν + 1)4j

P log P

)j

+ (kN)10/11P νj/2,

by Theorem 1 and (7.2). The Hecke relation (1.2) gives

λf (pν)2 = 1 + λf (p2) + · · ·+ λf (p2ν) (p - N).

The left-hand side of (7.4) is

≥
∑

f∈E∗
k
(N,P ;P)\(∪ν

ν′=1
Eν′

k
(N,P ;P))

( ∑

P<p≤2P
p∈P, p -N

1
p
−

∑

1≤ν′≤ν

∣∣∣∣
∑

P<p≤2P
p∈P, p -N

λf (p2ν′)
p

∣∣∣∣
)2j

≥
∑

f∈E∗
k
(N,P ;P)\(∪ν

ν′=1
Eν′

k
(N,P ;P))

( ∑

P<p≤2P
p∈P, p -N

1
p
− δ

2 log P

)2j

.

Let ω(n) be the number of distinct prime factors of n. Using the hypothesis on P and the
inequality

ω(n) ≤ {1 + o(1)}(log n)/ log2 n,
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we infer that ∑

P<p≤2P
p∈P, p -N

1
p
− δ

2 log P
≥

∑

P<p≤2P
p∈P

1
p
−

∑

P<p≤2P
p |N

1
p
− δ

2 log P

≥ δ

2 log P
− ω(N)

P

≥ δ/2− 2/C

log P

≥ δ

6 log P
,

provided C ≥ 6/δ.
Combining these estimates with (7.4), we conclude that

|E∗k(N,P ;P) \ (∪ν
ν′=1E

ν′
k (N,P ;P))| ¿ kN

(
3456(ν + 1)4j log P

δ2P

)j

+ (kN)10/11P νj .

Together with (7.3), it implies

(7.5) |E∗k(N,P ;P)| ¿ kN

(
3456(ν + 1)4j log P

δ2P

)j

+ (kN)10/11P νj

uniformly for

2 | k, N (squarefree), C log(kN) ≤ P ≤ (log(kN))10, j ≥ 1.

Take

j =
[
δ∗

log(kN)
log P

]

where δ∗ = δ2/(10(ν + 1))4. We can ensure j > 1 once X0 is chosen to be suitably large. A
simple computation gives that

(
3456(ν + 1)4j log P

δ2P

)j

¿ e−c log(kN)/ log2(kN)

for some positive constant c = c(Λ, ν,P) and P νj ¿ (kN)1/1000, provided X0 is large enough.
Inserting them into (7.5), we get (7.1) and complete the proof. ¤

§ 8. Proof of Theorem 6

The proof is based on a more general result.

Proposition 8.1. Let ν = 1, 2, 3, 4. For any 0 < ε < 1, there is a positive constant c0 = c0(ε)
such that uniformly for

2 | k, k ≥ 16, ε log k ≤ z ≤ (log k)10,

we have

(8.1) L(1, symνf) =
{

1 + O

(
1

log2 k

)} ∏

p≤z

∏

0≤j≤ν

(
1− αf (p)ν−2j

p

)−1

for all but Oε

(
k1−c0{log[2z/(ε log k)]}/ log2 k

)
primitive forms f ∈ H∗k. The implied constant in the

O-term of (8.1) is absolute.

Before proving this Proposition 8.1, we need to establish a preliminary lemma.
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Lemma 8.1. Let ν ∈ N be a fixed positive integer and let 0 < ε < 1 be an arbitrary constant.

(i) Define

(8.2) E1
ν(P,Q) :=

{
f ∈ H∗k :

∣∣∣∣
∑

P<p≤Q

λf (pν)
p

∣∣∣∣ >
10(ν + 1)

(log k)(log P )

}
.

We have ∣∣E1
ν(P,Q)

∣∣ ¿ν k1−1/(250ν)

for

(8.3) 2 | k, k ≥ 16, (log k)10 ≤ P ≤ Q ≤ 2P ≤ exp
{√

log k
}
.

The implied constant depends on ν at most.

(ii) Let

(8.4) E2
ν(P, Q; z) :=

{
f ∈ H∗k :

∣∣∣∣
∑

P<p≤Q

λf (pν)
p

∣∣∣∣ >

(
96(ν + 1)2z
(log2 k)2P

)1/2
}

.

There is a positive constant c0(ε, ν) such that if

(8.5) 2 | k, k ≥ 16, ε log k ≤ z ≤ P ≤ Q ≤ 2P ≤ (log k)10,

then ∣∣E2
ν(P,Q; z)

∣∣ ¿ε,ν k exp
{
− c0(ε, ν)

log k

log2 k
log

(
2z

ε log k

)}
,

where the implied constant depends on ε and ν at most.

Proof. Clearly we can assume k ≥ k0 (where k0 = e(200ν)2 for the assertion (i) and k0 = e(200ν/ε)2

for (ii)) and ignore the remaining cases by enlarging the ¿-constants. We shall apply Theorem
1 with the choice N = 1, bp = 1, B = 1 and

j =





[
log k

100ν log P

]
if (8.3) holds

[
ε log k

100ν log2 k

]
if (8.5) holds

to count |E1
ν(P, Q)| and |E2

ν(P, Q; z)|. The right-hand side of (1.6) is plainly

(8.6) ¿ k

{(
96(ν + 1)2j

P log P

)j

+
Qjν

k1/11

}
.

By (8.3) and (8.6), we get that

|E1
ν(P, Q)| ¿ k

{(
96(ν + 1)2j

P log P

)j

+
Qjν

k1/11

}(
(log k)2(log P )2

100(ν + 1)2

)j

¿ k

{(
j(log P )(log k)2

P

)j

+
Q2νj

k1/11

}

¿ k

{(
(log k)3

P

)j

+
e2νj log Q

k1/11

}

¿ k1−1/(250ν),
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for j log Q ≤ 1
100ν log k.

Next for the case (8.5), we have log P ≥ 1
2 log2 k and z ≥ (log2 k)2, whence it follows that

|E2
ν(P,Q; z)| ¿ k

{(
96(ν + 1)2j

P log P

)j

+
Qjν

k1/11

}(
P (log2 k)2

96(ν + 1)2z

)j

¿ k

{(
j log2 k

z

)j

+
Q2νj

k1/11

}

¿ k

{(
ε log k

2z

)j

+
e2νj log Q

k1/11

}

¿ k exp
{
− ε

101ν

log k

log2 k
log

(
2z

ε log k

)}
.

This completes the proof of Lemma 8.1. ¤

Now we prove the proposition 8.1.

Let η ∈ (0, 1
100 ] be fixed and ν = 1, 2, 3, 4. We let

(8.7) H+
k,symν (1; η) :=

{
f ∈ H∗k : L(s, symνf) 6= 0, s ∈ S}

where S := {s : σ ≥ 1− η, |τ | ≤ 100kη} ∪ {s : σ ≥ 1}, and

(8.8) H−k,symν (1; η) := H∗krH+
k,symν (1; η).

¿From (1.11) of [15], we have

(8.9)
∣∣H−k,symν (1; η)

∣∣ ¿η k31η.

Define
y0 = exp

{√
(log k)/{7(ν + 4)}}, y1 := (log k)10, y2 := ε(log k).

By Lemma 3.1 of [16] with the choice of δ0 = 1
2 , we have

log L(1, symνf) =
∑

p≤y0

∑

0≤j≤ν

log
(

1− αf (p)ν−2j

p

)−1

+ O

(
1√

log k

)

for any f ∈ H+
k,symν (1; η). The implied constant is absolute.

For each f ∈ H+
k,symν (1; η), we further write

log L(1, symνf) =
∑

p≤y1

∑

0≤j≤ν

log
(

1− αf (p)ν−2j

p

)−1

+ O

(
1√

log k

)
+ R1(symνf)

where

R1(symνf) :=
∑

y1<p≤y0

∑

0≤j≤ν

log
(

1− αf (p)ν−2j

p

)−1

=
∑

y1<p≤y0

λf (pν)
p

+ O

(
1
y1

)
.

To treat the last sum, we divide it dyadically and apply Lemma 8.1(i). Define

(8.10) P`(y1) := 2`−1y1, Q`(y1, y0) := min{2`y1, y0}
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and

(8.11) E1
ν := H−k,symν (1; η) ∪

⋃

`

E1
ν

(
P`(y1), Q`(y1, y0)

)
,

where E1
ν(P, Q) is defined as in (8.2). There are at most (log y0)/(log 2) + 1 values of ` which

occur in the union. By Lemma 8.1(i), we see that

|E1
ν | ¿ k31η +

∑

`

∣∣E1
ν

(
P`(y1), Q`(y1, y0)

)∣∣(8.12)

¿ k31η + k1−1/(250ν)
√

log k

¿ k1−1/(251ν).

For all f ∈ H∗krE1
ν , we have

R1(symνf) ¿
∑

`

∣∣∣∣
∑

P`(y1)<p≤Q`(y1,y0)

λf (pν)
p

∣∣∣∣ +
1
y1

¿
∑

`

10(ν + 1)
(log k) log P`(y1)

+
1
y1

¿ log2 k

log k
.

Therefore, for all 2 | k, k ≥ 16 and f ∈ H∗krE1
ν we have

log L(1, symνf) =
∑

p≤y1

∑

0≤j≤ν

log
(

1− αf (p)ν−2j

p

)−1

+ O

(
1

log2 k

)
,

where the implied constant is absolute.

Finally we consider y2 ≤ z ≤ y1. In the same fashion, it remains to evaluate

R2(symνf) :=
∑

z<p≤y1

∑

0≤j≤ν

log
(

1− αf (p)ν−2j

p

)−1

.

Set

E2
ν(z) := E1

ν ∪
⋃

`

E2
ν

(
P`(z), Q`(z, y1); z

)
,

where E1
ν , E2

ν(P,Q; z), P`(z) and Q`(z, y1) are defined as in (8.11), (8.4) and (8.10), respectively.
Here the number of sets in the union over ` is at most (log y1)/(log 2) + 1 ¿ log2 k. By (8.12)
and Lemma 8.1(ii), we have

|E2
ν(z)| ¿ε k1−1/(251ν) + k1−2c0{log(2z/y2)}/ log2 k log2 k

¿ε k1−c0{log(2z/y2)}/ log2 k

for all even integer k ≥ 16, where c0 = c0(ε) is a positive constant depending on ε.
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For all even integer k ≥ 16 and f ∈ H∗krE2
ν(z), we have

R2(symνf) ¿
∑

`

∣∣∣∣
∑

P`(z)<p≤Q`(z,y1)

λf (pν)
p

∣∣∣∣ +
1
z

¿
∑

`

(
z

P`(z)(log2 k)2

)1/2

+
1
z

¿
∑

`

1
2`/2 log2 k

+
1
z

¿ 1
log2 k

.

Hence

log L(1, symνf) =
∑

p≤z

∑

0≤j≤ν

log
(

1− αf (p)ν−2j

p

)−1

+ O

(
1

log2 k

)

for all even integer k ≥ 16 and f ∈ H∗krE2
ν(z), where the implied constant is absolute. This

proves Proposition 8.1.

Finally we are ready to complete the proof of Theorem 6.
According to Proposition 8.1, for any ε > 0 there are two suitable positive constants

c0 = c0(ε) and k0 = k0(ε) such that for even integer k ≥ k0 and ε log k ≤ z ≤ (log k)10 we
can find a subset E∗k(z) ⊂ H∗k with cardinality

(8.13) |E∗k(z)| < k exp
{
− c0 log

(
2z

ε log k

)
log k

log2 k

}

such that for all f ∈ H∗k \ E∗k(z), the formula (8.1) holds. Thus for these f , we can deduce

L(1, symνf) ≤
{

1 + O

(
1

log2 k

)} ∏

p≤z

(
1− 1

p

)−(ν+1)

(8.14)

≤
{

1 + O

(
1

log2 k

)}(
eγ log z

)ν+1

≤ {
eγ(log z + C0)

}ν+1

and (similarly)

(8.15) L(1, symνf) ≥ {
B−

ν (log z + C0)
}−A−ν ,

where C0 is an absolute positive constant. Now Theorem 6 follows from (8.13), (8.14) and (8.15)
with ε replaced by εe−C0 and the choice of z = elog2 k+r−C0 . ¤

§ 9. Proof of Theorem 7

The proof of Theorem 7 is similar to that of théorème A of [21]. The essential difference is
that our asymptotic formula for moments (see [15], Proposition 6.1) holds in a larger domain.
As a result we can obtain a better estimate. Of course, some modifications are necessary since
only the symmetric square case was considered there.
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Let η ∈ (0, 1
100 ], H+

k,symν (1; η) be defined as in (8.7) and Υk,ν > 0 be a parameter to be
specified later on. By the Cauchy–Schwarz inequality, we infer that for any integer n ≥ 1,

( ∑

f∈H+
k,symν (1;η)

L(1,symνf)>Υk,ν

L(1, symνf)n

)2

≤ |H+
k,symν (1; η, Υk,ν)|

∑

f∈H+
k,symν (1;η)

L(1, symνf)2n,

where
H+

k,symν

(
1; η, Υk,ν

)
:=

{
f ∈ H+

k,symν (1; η) : L(1, symνf) > Υk,ν

}
.

On the other hand, we can write

∑

f∈H+
k,symν (1;η)

L(1,symνf)>Υk,ν

L(1, symνf)n =
∑

f∈H+
k,symν (1;η)

L(1, symνf)n −
∑

f∈H+
k,symν (1;η)

L(1,symνf)≤Υk,ν

L(1, symνf)n

≥
∑

f∈H+
k,symν (1;η)

L(1, symνf)n −Υn
k,ν |H+

k,symν (1; η)|.

¿From these two estimates, we deduce that

(9.1)
∣∣H+

k,symν (1; η, Υk,ν)
∣∣ ≥

(Mn
k −Υn

k,ν

)2

M2n
k

|H+
k,symν (1; η)|

provided

(9.2) Mn
k ≥ Υn

k,ν ,

where

(9.3) Mn
k := |H+

k,symν (1; η)|−1
∑

f∈H+
k,symν (1;η)

L(1, symνf)n.

To evaluate Mn
k , we recall at first Proposition 6.1 of [15]: There are two positive constants

δ = δ(η) and C1 = C1(η) such that

W z
symν :=

∑

f∈H+
k,symν (1;η)

ωfL(1, symνf)z = Mz
symν + Oη

(
e−δ log k/ log2 k

)

uniformly for
2 | k and |z| ≤ C1 log k/(log2(8k) log3(8k)),

where

(9.4) ωf :=
Γ(k − 1)

(4π)k−1‖f‖ =
12ζ(2)

(k − 1)L(1, sym2f)

is the harmonic weight. The main term Mz
symν is given by

Mz
symν :=

∏
p

2
π

∫ π

0

∏

0≤j≤ν

(
1− ei(ν−2j)θp−1

)−z sin2 θ dθ,
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from which one deduces M−1
sym2 = ζ(3)−1, M2

sym2 = ζ(2)3 and the following asymptotic formula
(see [1], Theorem 1.12)

log M±n
symν = A±ν n log

(
B±

ν log n
)

+ Oν

(
n

log n

)
.

As the sum in (9.3) is not weighted, we need to use (9.4) and the Cauchy-Schwarz inequality
to resolve it. Applying the Cauchy-Schwarz inequality to (9.3) and using (9.4), we infer that

(M2n
k

)2 ≤ |H+
k,symν (1; η)|−2W 4n

symν

∑

f∈H+
k,symν (1;η)

ω−1
f

= |H+
k,symν (1; η)|−2[(k − 1)/(12ζ(2))]2W 4n

symν W 2
sym2 .

In view of (1.1), (8.7) and (8.9), it follows that |H+
k,symν (1; η)| ∼ k/12. Thus for any integer

n ≥ 1, we have

(9.5) M2n
k ≤ C2

(
M4n

symν

)1/2
.

Like the constant C1, we use here (and in the sequel) Ci (i = 2, 3, . . .) to denote suitable positive
constants depending on η only.

Similarly we have

(
W

n/2
symν

)2 ≤ |H+
k,symν (1; η)|Mn

k

∑

f∈H+
k,symν (1;η)

ω2
f

≤ [12ζ(2)/(k − 1)]|H+
k,symν (1; η)|Mn

kW−1
sym2 ,

which implies

Mn
k ≥

(
W

n/2
symν

)2

2W−1
sym2

≥ C3

(
M

n/2
symν

)2
.

Taking

(9.6) Υk,ν = Υk,ν(n) :=
(

C3

2
(
M

n/2
symν

)2
)1/n

,

we see that (9.2) is satisfied and thus, in view of (9.5),

(Mn
k −Υn

k,ν

)2

M2n
k

≥ C5

(
M

n/2
symν

)4

(
M4n

symν

)1/2
≥ C6 exp

{
− C7n

log n

}

holds uniformly for 1 ≤ n ≤ C1 log k/(log2(8k) log3(8k)). By (9.1), we conclude that

(9.7)
∣∣H+

k,symν (1; η, Υk,ν(n))
∣∣ ≥ C6 exp

{
− C7n

log n

}

for 1 ≤ n ≤ C1 log k/(log2(8k) log3(8k)).
Finally, with the choice of n =

[
C1 log k/(4 log2(8k) log3(8k))

]
, it is plain that (9.6) gives

Υk ≥ (1− C8 log3 k/ log2 k)(B+
ν log2 k)A+

ν

≥ {B+
ν (log2 k − C log3 k)}A+

ν
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and (9.7) yields the desired lower bound (3.5).
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