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CONDITIONAL BOUNDS FOR SMALL

PRIME SOLUTIONS OF LINEAR EQUATIONS

Kwok-Kwong CHOI, Ming-Chit LIU and Kai-Man TSANG

Let aq, a2, az be non-zero integers with ged(ay,as,a3) = 1 and let b be an
arbitrary integer satisfying ged (b, a;, a;) = 1 for ¢ # j and b = a1 +as+as (mod 2).
In a previous paper [3] which completely settled a problem of A. Baker, the 2nd
and 3rd authors proved that if a1, as,as are not all of the same sign, then the
equation aip1 + asp2 + azps = b has a solution in primes p; satisfying

< )A
Jmax pj < 3jb| + (3 max |a|)

where A > 0 is an absolute constant. In this paper, under the Generalized Riemann
Hypothesis, the authors obtain a more precise bound for the solutions p;. In
particular they obtain A < 4+ ¢ for some € > 0. An immediate consquence of the
main result is that the Linnik’s courtant is less than or equal to 2.

1. Introduction

In previous papers [3], [4], [5] the second and third authors completely settled
a problem of A. Baker [1, Lemma 6] (see also the introduction in [3]) and studied
the solubility and insolubility of some additive equations in prime variables. In

particular, they considered [3] Vinogradov’s type of equations

(1.1) a1p1 + azpz + azps = b

in prime variables p1, p2, p3s. Here a1, a2, az are non-zero integral coefficients such

that

(1.2) (Cl,l, as, CL3) =1

and b is an arbitrary integer satisfying the conditions:
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(1.3) (b,as,a;) =1 for 1<i<j<3,
(1.4) b=ai+az+ a3 (mod 2) .
Here and in the sequel, for integers nq,---,ns not all equal to zero, (ny,---,n)

denotes their greatest common divisor. In [3], the second and third authors proved

Theorem LT. Subject to the conditions (1.2)-(1.4), there exist effective absolute
constants Ay, Ay > 0 such that
(i) if a1, a9, a3 are all positive, then equation (1.1) is soluble in primes p1, p2, p3

whenever
(1.5) b> (3max{ay,az,as})™ ;

(ii) if aq, ag, az are not all of the same sign, then equation (1.1) has a prime solution

D1, P2, p3 satisfying
(]‘6) max{plap27p3} S 3|b| + (3 max{|a1\, |0,2|, ‘a3‘})A2 .

This theorem includes many interesting special cases. For instance, when a; =
az = az = 1 and b is a positive odd integer, then Theorem LT(i) is the classical
three primes theorem of Vinogradov. Another interesting example is that, for any
pair of coprime positive integers £ and ¢, ¢ < ¢, if we take in Theorem LT(ii)
a1 =1, a3 = —q, a3 = q and b = £ or £ + q according as £/ is odd or even, then
there is a prime p; in the arithmetic progression £ 4+ kq, k = 0,1,--- such that
p1 < g2, If L denotes the infimum of the ¢’s such that every such arithmetic
progression contains a prime p < ¢¢, the so-called Linnik’s constant, this example
also shows that As > L. Analogous example, namely, a1 = a3 = ¢, a3 = ¢+ 1 and
b = £ + kq for some suitable k so that (1.3) to (1.5) hold, shows that A; > L + 1.
So the bounds given in (1.5) and (1.6) are of the right order of infinity. However,
the upper bounds we can assign to A; and A, are still far too large. Recently, the
first author has shown that A;, A2 < 4191. In this paper, we shall replace (1.5)
and (1.6) by much more precise estimates under the assumption of the Generalized
Riemann Hypothesis (GRH). We shall prove

Theorem 1. Assuming the GRH, we can replace the bounds in (1.5) and (1.6)
repsectively by

(1.7) b> f(a1,a2,a3)
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and
(1.8) 121?%(3{\%\174'} <L [b] + f(a1,az,a3)
where

f(ah az, a’3) =
|ala2a3\ { |fl1(l2|
(01, 02)(01, 03)(02, a3) (al, 03)((12, as

10
) + (a1, as) + (az, ag)} log™" (3 Jnax, la;|) -

In particular, f(a1,a2,a3) < (a1a2)2\a3|10g10(3 1rgjag<3|aj\) and the A, Ay In
Theorem LT can be taken respectively as 5+ ¢ and 4 + ¢ for any € > 0.

Remarks. (I) To appreciate the precision of the above bounds, let us consider,
say, the estimate (1.8) in the situation where a;, and a2 are bounded and ag
varies. Then (1.8) asserts that equation (1.1) has solutions p;, pa, ps in which
p3 < |as|~'b + log'®|as|, a function which grows much slower than |as|. Such
information on the location of the solutions p;, ps, p3 is not obtainable from the

type of results like (1.6) even when the best possible value of A(> 1) is obtained.
(IT) Let 1 < ¢ <gq, (4,q) = 1 and consider the equation

p—gp —qp" =L or L+¢q

according as £ is odd or even. Our Theorem 1 (the bound in (1.8)) ensures that,
under the GRH there is always a prime p in the arithmetic progression ¢ + kq,
k=0,1,2,---, such that p < ¢> log10 g. ®) Furthermore, k can be specified as a

sum of two primes if £ is odd or of the form p’ + p” + 1 if £ is even.

We shall reduce our Theorem 1 to the following system of 4 linear equations:
(1.9) aing +ogng +agng =k, rn;—u;=p; (1j=1,2,3),

where ni1,n9,ng vary over the natural numbers and pq, p2, p3 are prime variables.
Suppose o1, a2, a3 are pairwise coprime non-zero integers and r;,u; (j = 1,2, 3)

are integers such that
(1.10) OS’U,J' <7y, (Tj,Uj)Z (T‘j,ij)Zl .
Further, let x be any integer such that

(1.11) rirorg(ay(us + 1) + ag(ug + 1) + as(us + 1) — k) is even .

(*) Tt has been conjectured that the bound for p may be glog? q. Our estimate here is only
slightly weaker than the well-known bound ¢? log? ¢ obtained directly under the GRH.
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We have
Theorem 2. (i) If ay, a9, a3 are all positive, then the system (1.9) is soluble
whenever
(1.12) 3> aroges(r + 72+ e102r3) log'*(3 max ayrj) ;
<5<

(ii) if a1, a9, g are not all of the same sign, then the system (1.9) has a solution

which satisfies
2 10
(1.13) 1r£?%<3{\aj|nj} <L JK| + |ragas|(r1 + 72 + [araslrs) log ™ (3 22 a;r;) -

To recover Theorem 1, we take in Theorem 2 r; = (aq,as3), r2 = (a1,a3)
and r3 = (a1,az2). Since (ay,as,a3) = 1, we have rarg = (a1, a203)|a;. Take

1

a1 = ai(rer3)~! and similarly s = as(ri73)71, a3 = az(rir2)~!. Then clearly,

a1, (g, ag are pairwise coprime and (rj,a;) = 1 for j = 1,2,3. Equation (1.1)
implies p; = aj_lb (mod rj), so we let u; = —aj_lb (mod 7;), 0 < u; < r; for
j =1,2,3. Condition (1.3) then ensures that (r;,u;) = 1. Also, we see that a;u; +
asuz + aguz = —b (mod k) holds for k = ryrars, since it holds for k = ry,r9,73
which are pairwise coprime. Finally, take k = (aju; + agus + azuz +b)(rirars) !,

then

Mo

7"17"27"3(2 aj(u; +1) — k) =

Jj=1 J

aj(rj —1)(uj+1)+a1+azs+az—>b

1

and condition (1.11) is clearly equivalent to (1.4). The primes p1,ps,p3 in (1.9)
satisfy the equation a1p; + agps + asgps = b. Since b = rirargk — (a1uy + agug +
asuz) < rirorsk for ay,as,az > 0, hypothesis (1.12) is now a consequence of
hypothesis (1.7) and the first part of Theorem 1 follows from Theorem 2(i). When
a1, a2, a3 are not all of the same sign, we have |a;|p; < rirors|a;|n; and rirers|s| <
bl + 3 11;1;2(3{\%\7"3-} = |b| + 3ryrers 11;19;(3 \aj|. Whence (1.8) follows from (1.13).
Like Theorem LT, the proof of our Theorem 2 is also built on the circle
method. While the techniques we developed in [3] have successful applications
in some other related problems (see [4], [5]), they are not efficient in giving good
upper bounds to A; and As. Our aim in this present article is to obtain the
sharpest possible estimates in (1.5) and (1.6) under the GRH. To achieve this, we
have to modify much of the previous arguments in [3] by injecting new techniques

and ideas.
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One novel idea is a further averaging of some error terms over the major

arcs. This consideration leads to the following mean value result (see Lemma 2(ii)
below)

q
> 1) Cy(nh,q,r,u)Cx(—nh,q,7,u)| = q(rq)”
X,x'(modrg) h=1
involving the generalised Gaussian sums Cy(m,q,r,u) defined in (2.8). It is re-

markable that we actually obtain an exact evaluation for the above sum on the
left side.

In addition, the major arcs in our arguments are also very specialized and

delicate.

2. Notation and some preliminary lemmas

We shall use the standard arithmetic functions, u(n)-the Mobius function,
A(n)-the von Mangoldt function and ¢(n)-the Euler totient function. The symbol
p always denotes a prime. By p?||n, we shall mean p°|n, p°*! Jn. We write, as

2mixT

usual, e(z) = e and eq(x) = e(x/q). The constants implied in the symbols <,

> and O are effectively computable.
Let o, 75, uj (j = 1,2,3) and k be as given in (1.9)-(1.11). We assume,
without loss of generality, that g > 1. Let N > Ny(e) be a large parameter

which satisfies
(2.1) Nlog™'' N > e *|onasas|(r1 + ra + |a10|r3)

for a sufficiently small € > 0. Furthermore, we assume that

N =2k/3, in case (i) of Theorem 2 ,
22) { N > |k|/12, in case (ii) of Theorem 2 .
Let

logp, ifn=p, a prime ,
A(n) ==

0, otherwise ,

and define for j = 1, 2, 3 the generating functions

Si(z) = Z A(rjn — uj)e(a;nz)

N!<n<N;

where

(23) Nj = ch|aj\_1, NJI = c;N|aj|_1
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and the constants c; > c; > 0 are being determined in §3 (following (3.2)). Set
(2.4) 7:=N;"?logN

and define
1+7/as

I(N) = / e(—k) S1 () Sa () Ss (z) dz

T/a3

Then plainly,

I(N) = > [ Aring — uy)

ainitasnstazng=k J=1
N;<n;<N;,j=1,2,3

3
< (log N)3 x card{ny,na,n3 : Zajnj = K, NJ{ <n; <N; and
j=1
rjnj — u; is a prime for j =1,2,3} .

Our objective is to show that I(N) > N2 H (|aj|~trjp(r;)~1) whereby, in view
7=1
of (2.1) and (2.2), our Theorem 2 follows. For convenience, set

3

(2.5) Q:= N2 H(|O¢j|_1’l“j¢(7‘j)_1) s
J=1
(2.6) Q := |agas|?10g®? N .

We begin by defining M, the major arcs. For coprime positive integers h and
q such that h < azq and ¢ < Q, let m(h,q) = [(h — 7)(a3q) ™!, (h + 7)(a3q)™1).
These intervals are pairwise disjoint and are all lying inside [7/a3, 1+ 7/a3), since,
by (2.6), (2.4) and (2.1), we have 27Q) < 1. The union of these intervals m(h, q)
then forms our M and, as usual, its complement in [7/ag,1 + 7/a3) is the minor

arcs M'. Accordingly, we have the decomposition

asq 3
(2.7) I —a3lz Z / —kagz! q_1+9))HS az'(hg™t +6))do
9<Q h—1 e i=1
(h,g)=1
3
+ / e(—kx) H Sj(z)dz := I;(N) + I2(N) ,
j=1

M 7
say.

For any integers m, ¢, r, u such that r,q > 1 and (r,u) = 1, we define

(2.8) Cy(m,q,r,u) == Zx(rﬁ — u)eq(dm)
(=1
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for any Dirichlet character x (mod rq). When r = 1, u = 0, this recovers the usual
Gaussian sum Cy (m) := > x(£)eq(¢m). When x = xo, the principal character,
1<t<q

we write

(2.9) Co(m,q,r,u) = Cyy(m,q,r,u) = Z eq(fm) and Cy(m) := Cy,(m) .

=1
(re—u,q)=1

Lemma 1. (i) If g1, g2 are coprime positive integers, then
CO (m7 q192, T, U) = CO (qu, q1,7, U)CO (mqla q2,7, U)

where q1q; + 29, = 1.

(ii) Let (h,q) = 1. Then Co(mh,q,r,u) = 0 if (r,q) fm and Cy(mh,q,r,u) =
eq(Tumh)Cy(m) if (r,q) = 1. Here r7 =1 (mod q).

(iii) Let (h,q) =1 and j =1 or 2. If (g, azrj) > 1 then Cy(ejh, azgq, rj,u;) = 0.

Proof. (i) Write £ = £1g2 + £2q1, £; = 1,--- ,q; (j = 1,2), then the defining sum

for Co(m, q1q2,7,u) in (2.9) can be rearranged as

q1 q2
Z €q (51 m) Z €q2 (62 m) = CO (mg27 qi, T, U) CO (mQIa q2,T, U’) :

£1:1 32:1
(rgz2t1—u,q1)=1 (rq1l2—wu,q2)=1

This proves part (i).
(ii), (iii) First of all, if (r,q) = 1 then

(2.10) Co(mh,q,r,u) = Y eq((£+u)Fmh) = eq(Fumh)Cq(Fmh)

If (r,q) fm, let p°||q such that p|r, p® fm. By (i), Co(mh,q,r,u) has a factor of

the form

pa'
Co(mhw,p’,r,u) = Z epe (mhw)
=1

where p fw. Since p° fmhw, the last sum vanishes and so does Cy(mh, q,r, u).
Similarly, we have Cy(ajh, asq,rj, u;) = 0if (¢,7;) > 1 since, by (1.9), p fa;h
for any p|(g, ;). Finally, if (¢,r;) = 1 and (q, @3) > 1, let p|(g, a3). Then p fr; and
p?||asq for some o > 2. As above, we consider the factor Co(ajhw, p?, 7, u;) where
p Jw. However, by (2.10), |Co(ajhw,p”,rj,u;)| = |Cpe(ay)|. Since (as,a;) =
1, plag and o > 2, we infer from (2.16) below that Cpe(a;) = 0, and so does

Co(aih, a3q, 75, ;). This proves Lemma 1.
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The following lemma, especially its part (ii), provides the most crucial esti-

mate we need in our argument in §3.

Lemma 2. We have (i) Y. |Cy(m,q,7,u)| < ¢"/%¢(rq) and
x (modrgq)

() X |3 Cylnhg,r,w)Cy(—nh,q,r,u)| = qd(rq)?

x,x'(modrq) h=1
for any integer n coprime to r.

Proof. (i) It is quite easy to establish (i). In fact, from (2.8), we have

Z |Cx(m,q,r,u)‘2zz Z (1 — £3)m) Z x(rly — u)x(rls — u)
£=10,=1

x(modrq) X (modrq)
q

=¢rg) ), 1.

/=1
(Te—uaq):]'

Hence Y |Cy(m,q,7,u)|? < q¢(rq) and the desired inequality follows by ap-
x (modrq)
plying Cauchy’s inequality.

(ii) First, we write ¢ = g1¢2 such that (r,¢q3) = 1 and every prime factor of
g1 appears in 7. Accordingly, each x (mod rq) is factorizable as x; (mod r¢;)-
X2 (mod ¢2). Writing £ = £1qa + £2q1, ¢ = 1,--- ,q; (j = 1,2), we find that

q2

Cy(nh,q,r,u) = Z X1(7q201 — u)eq, (L1nh) Z X2(7q142 — u)eq, (fanh)

=1 lr=1
=Cy, (@nh, q1,1, U)eqz (761U”h)0x2 (Tg.nh) .

/

Here ¢2G, = 1 (mod ¢;) and ¢1Gy, 7 = 1 (mod ¢2). Analogously, x' (mod rq) =

X (mod rqq1)x5 (mod ¢2) and we have

Cy (nh,q,r,u)Cy(—nh,q,r, u)
= Cy, (@ynh, q1, 1, U)Cx (—=@onh, qu, T, “)sz(anh)Cx; (=Tgqynh) .

Summing both sides for h = hygs + hagi such that h; = 1,--- ,¢; (j = 1,2), we

obtain, after some simplifications,
(2.11) Zx,x’ (tmod rg) |ZZ:1 Cy (nh,q,r,u)Cy(—nh,q,r, u)|
= (Zm,x’l (tmod ray) |Z::1 Cy, (nh, q1,m,u)Cy: (—nh, q1, 7, u)‘) X
X (Zm,xg (mod q2)|ZZ2=1 Cxa (Tnh)Cyy (=Tnh))] ) Z Z
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say. Let us first examine ) _,. For any integer m coprime to go, we have

q2 q2

(2.12) D Cyo (W) Coyy (—nhT) =Y Cy, (nmh)Cyy (—nmhi)
h=1 h=1

q2
= X2x5(m) Y Cy, (nh7)Cy (—nk7F) .

The first equality holds because A and mh run over the same set of integers modulo
g2- The second equality follows from the fact that C,,(mn) = Xy(m)Cy, (n). If
X2Xh # Xo then there exists an m such that x2x5(m) # 1 and whence the sum

> in (2.12) must vanish. Thus,
1<h<g>

(2.13) .= Y Y lCain)P

X2 (mOdQQ) h=1
q2

=Y. ) Cu ()P =) ¢(a2)” = q26(a2)” ,

h=1 x2(modg2) h=1

by the same argument in (i). Next we consider ) ,. The inner sum over b is equal

to
(2.14) ZZXl (rk —u)xi(rl —u) Zeql ((k —£)nh)
k=1 ¢=1
q1  q1
=q )Y xi(rk—w)xi(rf —u) —Q1ZX1X1 (rf — u)
k=1 =1
q1|n(k—2)

since (n,r) = 1 implies (n,q;) = 1. Suppose x1x} is induced by the primitive
character 1 (mod v) with v|rg;. Since r and rg; have the same set of prime
factors, we have (rf — u,rq;) = 1 so that x1x}(rf — u) = ¥(rf — u). Recall the

well-known formula ¢(s) = C5(1)~ LS wp(k)ey(sk) for primitive 1 [2, p.65], we
1<k<v

have

v

(2.15) D xaxi(re —u) = Cx(1) ™Y d(k)en(—ku) Y e, (brk) .
=1 =1

k=1

Now 9(k) > e, (¢rk) vanishes if v 7k or (v,k) > 1. So the above double sum
1<t<qx
is non-zero only if v|rk for some k coprime to v, that is, only if v|r. In that case,

the sum in (2.15) is equal to g19(—u). Since there are precisely ¢(r) primitive 1
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with modulus dividing 7, we find from (2.14) that

.= > Y l@(—u)| = $(Nd(ra)d = a1d(ra)?

Y (modv),v|r x1(modrq:)
1 primitive X1=X1%

Combining this with (2.13) and (2.11), we prove part (ii) of Lemma 2.
Lemma 3. For any integers m,q,v with q,v > 1, we have

vq 0, ifvfm,

> evalhm) = |

he1 vCy(m/v), ifvim.
(h,q)=1

Proof. Let v = vyvs such that (v2,q) = 1 and every prime factor of vy appears

in g. By the same argument in Lemma 1(i), we show that

vq quiv2 qui
Z evq(hm) = Z equyv, (M) Ze,,2 (fm) Z equy (km)
h=1 h=1 k=1

(hyq)=1 (h,qul)—l (k,qv1)=1

Zey2 (¢m)) Cqu, (m)
The sum over £ will vanish if vo /m. Also, it is well-known that

(2.16) Cq(m) = p(a/(a,m))$(a)(a/(a,m)) ™" .

Hence Cyy,(m) = 0 if there is a prime power p”|lv; such that p” fm. Since
(v1,v2) = 1, the first case of the lemma follows readily. The second case is straight-

forward.

We come now to establish the key for estimating the generating functions
Sj ().
Lemma 4. Let h,q,r,u be integers such that (r,u) = 1,0 <u < r, 1 < g and
r,gq< ZW0. Let Z <Y < Z and

Then under the GRH, we have
(i) W(0) = rop(rq)~1Co(h,q,7,u fy (t0)dt + O((rqZ) /2((Z|0])*/? +log Z) log Z)
for 0] < rlog™? Z,

(11) W(O) = T¢(TQ)_1(Z - Y)Cﬂ(h7QaT7 U) + ¢(TQ)_1 Z CY(hHQaTv u)@X +
x (modrq)
O(log Z), where ®, does not depend on h and it satisfies
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(2.17) d, < (rZ2)Y*og? Z .
Proof. Since A(n) = 0 if n is not a prime, we see that

wW(0) = Z A(rn —u)e(n(hg™" +6)) + O(logq) .

Y<n<Z
(T"Il—’ll/,q):].

Using the orthogonality relation of the characters x (mod rq), we group the num-

bers rn — u according to n = £ (mod ¢). This leads to

(2.18) W) =¢(re)™" > eqth) > x(rL—u)x

=1 x(modrq)
(rt—u,q)=1

X Z )\(m)x(m)er((m +u)f) + O(log Z)

= dtra) ) S (S0 = W)

x (modrg) £=1

(> Am)x(m)e,(md)) + O(log Z)

rY —u<m<rZ—u

= ¢(rq) e, (ubh) Z Cx(h,q,7,u)H,(0) + O(log Z) ,

x(modrq)

where H, (0) := o <Z< . A(m)x(m)e,(m@).

It is well-known that [2, Chapter 19|, for ¢t > T > 2,

(2.19) P(t ZA ) =0yt — Z tPp L+ O(T log?(rqt)) .

n<t IvI<T
Here p = 8 + iy are the non-trivial zeros of the L-function L(s, x) and 6, = 1 or
0 according as x equals to the principal character or not. Set T :=rY — u. Since

A(n) and A(n) differ only at n = p?, o > 2, we find that

(2.20) H,(0) = > A(m)x(m)e,(mb) + O((rZ)1/?)

_ / e (t0)du(t, x) + O(r2)M2)

T

rZ—u
=4, / e (t0)dt — > / tﬁ_1+i7er(t9)dt+
T

|vI<T
+0((1+10|12)log® Z + (rZ)Y/?) .
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Now

rZ—u ) ) Z—ur!
/ 914 e, (10)dt = P+ / tP= 1 e (t0)dt .
T Y —ur—1

As shown in Lemma 3.2 of [3], the integral on the right side is
ZPly|7Y, 18] < ly|(4n2) 7

(2.21) < ZPTP i y|(4nZ) 7t < |0] < [|(xY) T
ZP=Yo|17L if [y|(nY) T < |6 .

Under the GRH, § = 1/2. Hence, for Y|f| > 2, we have

rZ—u
3 / P10, (t0)dt
T

[v|<T

< rl/2 712191 4 ZV/2)y|~1/2 4 71/2 |1
Y
lv|<7Y6] Y [6|<|v|<4mZ|6| AnZ[0|<|v|<T

<Yz P log Z + ZM2(Y10)) "2 Z|0|log Z + 2/ log? Z)
< (rZ)"*((216))!* +log Z) log Z ,

by using the well-known zero counting formula:

t t
|z|<:t1 = ;log(%) +O(tlogrq) for t>2.
<

For the case Y|f| < 2, the same estimate still holds, by using the first case in

r

(2.21) and the trivial estimate TZ_U t=Y/2+¥ e (t0)dt < (rZ)'/?. Applying these
in (2.20), we have

H, (0) = re,(—u)dy /YZ e(t0)dt + O((r2)Y2((Z16))/% + log Z) log Z) .

Substitution in (2.18) then yields

W (0) = ré(rq) " Co(h, q,r, u)/y e(t0)dt + O(log Z)
+ O(¢(rq)~t Z |Cx(h, g, T, w)|(r2)Y2((Z10))Y? + log Z) log Z) .

x(modrq)
Finally, we estimate the sum in the last O-term by Lemma 2(i). This proves part
(i)-
When 6 = 0, we take &, = H, (0) — 6,7(Z —Y'), which is independent of h.
By (2.19) (with T = 7Y — u) and the GRH,
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o, = Z A(m)x(m) + O((rZ)/?) — 0r(Z -Y)
rY —u<m<rZ-—u

= > A{Y —wf - (rZ—uwf}p "t +0((r2)"?)

[v|<T

1
< (rz)Y? Z |§ +iy| Tt < (rZ2)Y?1og? Z .
lvI<T

Part (ii) now follows from (2.18). This completes the proof of Lemma 4.
Verifying the hypotheses by means of (2.4), (2.6), (2.3) and (2.1), we obtain

from Lemma 4 the following formulas which will be used in the next section:

N3

(2.22) Ss(az t(hg™" +0)) = r3d(rsq) " Co(h, q, 73, us) /N e(tf)dt

+ O((r3qN3)Y?((N3|6])*/? + log N) log N)
for g <771, 0] < 7g "

(2.23) Sj(h(a/gq)_l) = Tj¢(7‘j043q)_1(Nj - N;)Co(ajh, a3q, 7‘]', Uj)
+ O(¢(Tja3q)_1| Z Cx(ajh, o3q, 7, uj) @y | + log N)
x(modr;asq)
for ¢ < Q, j = 1,2. Furthermore, with h = 0 = 0, ¢ = 1, Lemma 4(i) together
with (2.1) gives

(2.24) SJ(O) < NjT‘j(f)(’l‘j)_l for j=1,2.

3. Proof of Theorem 2

We now proceed to prove Theorem 2 by establishing that I; (V) > Q and
I;(N) < Q. The constants implied in the symbols <, > and O are independent
of ¢.

Let us consider I3(N) first. Take any z € M’. By Dirichlet’s theorem on
diophantine approximation, there exist coprime integers h and ¢ such that 1 <

! satisfies 0] < 7¢~1. Since z > 7/a3, we have 1 < h.

g <7 'and @ :=asx—hq™
If ¢ < Q, then the two facts: 27Q < 1 and azr < az + 7 together imply h < asq

and hence 2 € m(h,q) for some ¢ < Q. This contradicts that x € M’. Thus, it
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must be ¢ > Q. Now, with the help of Lemma 1 (ii), (2.16) and (2.4), we deduce
from (2.22) that

Sa(x) = Sa(az ' (hg™" +6))
< 73¢(r3q) " N3 + (ragNs)/?log? N + N3(r3q|0])*/%log N
< Q 'Nzloglog N + (7“37'_1N3)1/2 log? N + Ng(r37)1/2 log N
< Q 'N3loglog N + rl/2N§’/4 log?’/2 N

for any x € M'. Hence

3
(3.1) L(N) = / e(—na) [ 8;(x)da
M j=1

1+7/as
< (Q7'N3 loglogN—i—7"1/2N§’/4 log3/? N)/ |S1(x)Sa(z)|dx

T/Ctg

Applying Cauchy’s inequality, the last integral is

2 1+7'/a3
<11/ P =T Y Ao

/o j=1 N!<n<N;
2 2
< (log N) H 0)'/2 <« (log N) H (Njrp(r)~HY2
j=1 j=1

by (2.24). Hence, from (3.1), (2.6), (2.3), (2.1) and (2.5), we find that I5(N) < eQ
as desired.

Next, we turn to I;(NN), the main contribution in (2.7). As above, we sub-
stitute Sz(ag *(hg~t + 6)) from (2.22). The O-term there contributes < €Q to
I;(N), as it can be seen by the same argument for I3(N) in (3.1). Therefore, we

can now write

(3.2) I(N) = 0(eQ)+

2 a3q
+rzaz’ Z B(r3q)~t Z H A(rjng — uj) Z Co(h,q,r3,u3)X
q<Q Nj<n;<N; j=1 h=1
=12 (h,q)=1

X €qsq(h(a1n1 + aong — K)) / / e(as S (a1ny + aong + ast — k)0)dodt .
-T/q

The double integral ff\z,’e’ f_Tf;q is equal to 7! fgf 2z~ 1lsin z dz, where

2nT 2nT
1:= —(a1n1 + agng + azNg — k), & := —(1n1 + aana + azN3 — k) .
a3q a3q
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We now choose the constants c;, c; as follow: In case (i) of Theorem 3, that is,
when all o, ay, as are positive, we set ¢; = co = 1/2, ¢3 = 5/4 and cg = 1/4 for
j =1,2,3. In case (ii), that is, not both a;, @y are positive, say a; < 0, we take
c1=232,¢) =28, co=2, ¢4, =1, cg =48 and ¢§ = 12. In view of (2.2), we find, in

both cases, that & > 77N (2a3q)~! and &; < —77N(2a3q)~!. Hence
§2
(3.3) 7r_1/ 2 lsinz dz =14+ 0(|&| 7+ 651 =14+ O((asq)(N) 7).
1
Let E; be the contribution of the above O-term to I; (V) in (3.2). Then plainly

E; < r3(tN)™t Z qo(raq)™? Z Z H A(rjng — uj) %

5@ Nj<n;<N; Jj=1
=12
aszq
E CO(h’a q,73, U’3)ea3q(h’(a1n1 + aong — H))‘ .
h=1
(h,q)=1

Denote by ) the above inner sum over h. By Lemma 1(ii) and (2.16) we see that
(R)
Co(hsq;73,u3) = 0if (¢,73) > 1 and Co(h, q, 73, u3) = p(q)eq(husts) if (¢,73) = 1.

Here r373 =1 (mod ¢). Thus, for (¢,73) = 1, we have

asq
Z = u(q) Z easq(R(@1n1 + agng + agusfs — K)) .
(h) h=1
(h,q)=1

According to Lemma 3, the last sum vanishes if ag fain; + asng — k. Otherwise,

we have Y < as¢(q). Consequently,
(h)

2
E; < rzaz(tN¢(rs)) Z q Z Z H A(rjn; —u
et

q<Q
asglain;t+asns—k

L r3az(TNo(rs)) 19?2 Z)\ TNy — Uy) Z log N

azne=k—aini (mod as)

< T3O!3(TN¢(7’3))_1Q2(N204§151(0) lOgN) < €Q y

by (2.4), (2.6), (2.24), (2.3), (2.5) and (2.1). Hence, when (3.3) is substituted in
(3.2), we have

I1(N) = O(eQ)+

as3q
+rao3" Y p(raq)" Y Colh,q,73,us)eazq(—hr) Sy (h(asg) ™) S2(h(asg) ™) .
<@ h=1

(h,q)=1
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The next step is to approximate S;j(h(aszg)™') (j = 1,2) by the formula in (2.23).
For simplicity, let us rewrite the formula as S; = M; + O(R;) where M; is the

main term and R; is the remainder. Then we have

azq
(3.4) L(N) =r3a3! Z P(raq)~* Z Co(h,q,73,u3)eqyq(—hk) (M Mo+
q<Q h=1
(h,q)=1

+ O(|M1|Ry + [Ma|Ry 4+ R1R2)) + O(e9) .

The three terms inside the O-symbol are to be estimated by similar arguments.
Consider, for instance, the term |M7|Ry and let F5 be its total contribution to the

right side of (3.4). Then by Cauchy’s inequality, we have

aszq aszq
(3.5) E: kK rgozgl Z ¢(7‘3q)_1( Z |C’0(h,q,r3,u3)M1|2)1/2(Z ‘R2‘2) 2 .
a<Q (hhz)l . h=1
Q)=

Let j = 1,2. With reference to (2.23), we see that
CO(ha q,73, u3)MJ = ’l"j(b(’f'j()égq)_l(Nj - N_;)CO(h, q,73, U3)C()(Oéjh, a3q, Ty, UJ)

and Lemma 1 (ii), (iii) show that this will vanish if (¢, 7;r3a3) > 1. So we consider
only those ¢’s such that (g, 7;r3a3) = 1. In this case, applying Lemma 1 (i), (ii),

we have
1Co(h, q, 73, uz) M| < rjd(rjasq) ™ N;|Cqla;)||Cola;hg, as, 7j, uj)]

where g7 = 1 (mod as). Since |Cy(a;)| < (g, @), we deduce that

azq
( Z ‘CO(h’7Q7T37u3)Mj|2)1/2
h=1
(h,q)=1
_ o2 _ 1/2
< 'l'ij(T'jOng) 1NJ(Q7 aJ)¢(Q)1/2(Z |CO(a]hQ7 C\fg,T‘j,Uj)'z) /
h=1
as
_ 1/2
= rjo(rjasa) " Nj (@, 09)(esp(@) V2 (S0 1 )Y
=1

(rjl—uj,a3)=1

< rjas(p(ry)p(as)) é(q) "2 (q, o) Nj -

Next, in view of (2.23), we have
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aszq aszq
Z 1R;|? < ¢(rjasq)” Z | Z Cx(ajh, azq,rj,u;)®,|* + azqlog? N
h=1 h=1 x(modr;asq)
. azq
= ¢(Tj6¥3Q)_2 Z @XQX, ZCY(O‘jhaQ’SQaTjauj)cx'(_ajhaQBQaTjauj)+
X,X'(modr;asq) h=1
+ agqlog® N .

Invoking (2.17) and then Lemma 2(ii), we see that the last expression is
< d(rjazq)"2rjNjazqp(rjazq)*log* N = azqr;N;log* N .
Collecting these estimates into (3.5), we find that

Ey < rir3a3($(r1)$(ra)¢(as)) "' Ni(Narzaz 1)/ log” N(loglog Q)*/* Y g7 (g, 1) -
9<Q

The last sum over ¢ is

<Y EY at=D)0 ) <) logQ < fon |V logQ

klay q<Q klar q<Qk—1 klas
klq
Hence, Fy < N3/2r;/2|a1a2a3|_1/2 log* N < €Q, by (2.3), (2.5) and (2.1). The
same bound holds for the contributions from |Mj3|R; and R1R» in (3.4). We

therefore have

a3q

(3.6) I (N) = rsaz Z #(r3q)” Z Co(h,q,73,u3) M1 Mseq,q(—hk) + O(e2)

<Q h=
(h,q)=1

= (1 = ¢1) (e — h) N |enasas|"Trirars ) {$(raq)d(riasg)d(rzasq)} ' T(q)
<@
+ O0(eQ)

where

asq
T(q) := Z Co(h,q,73,u3)Co(a1h, aszq,m1,u1)Co(azh, a3zq, 2, U2)eq,q(—hK) .

h=1
(h,q)=1

Let us first examine T'(¢). Using Lemma 1(ii), (iii), we see that the summand

in T'(q) will vanish if (¢, r172r3a3) > 1. For those ¢’s such that (g, r1rersas) = 1,
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we find by Lemma 1 (i), (ii) that
2
h »4q,7T3,U3 H ijh, 34, Tjauj) =
2
= Cy(1)eq(T3ush) H (aj)eq(Tjujo;ash)Co(ohg, g, i, uy)
J=1

where ¢G =1 (mod a3). If we write h = hyag+hog with hy = 1,--- ,q, (h1,q) =1

and hg = 1,--- , a3, then for (¢, r1rar3ai3) = 1 we have
q
T(q) = Cq(1)Cq(e1)Cqlaz) Y eq(hi(caTruy + aaTauy + asTsus — K)) X
hi=1
(hlaq)_l
X Z eas (—hak) HCO ajhg, ag, i, u;)
hy=1

= p(q)Cq(1) q(a’2)Cq( JF(as)

where 7 1= ayT1u1 + @aToug + agTsuz — K, r;7; = 1 (mod ¢) and

for any positive integer n. Substituting this into (3.6), we have

(3.7) I(N) = (c1 — ¢)(c2 — h) N?|arazas| ' rirars{d(rs)¢(r1as)d(racs) } ' X
xFlas) Y, w(@)Cqlar)Cqla)Cq(m)d(g) ™ + O(e9) .

a<Q
(g,r1irarsas)=1

Since |Cy(a1)Cq(a2)Cy(n)| < araagp(q), we see that the above sum over ¢ con-

verges absolutely. Let & be its limit. Then

[e.9]

= Y (g)Cqla1)Cqla)Cq(n)e(q)

q=1
(g,r1rarsas)=1

— H (1 — Cp(a1)Cp(a2)Cp(n)p(p)~2)

p Jriraraas

since Cy(m) is multiplicative in ¢. For each p frirarsas, let w(p) be the number

of the integers 1, as,n which are divisible by p. Then

= I a-(=g@)®?).

p ,}’TszTsas
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Furthermore, (o, ) = 1 shows that 0 < w(p) < 2. Thus, 1 — (—¢(p))*® 3 >
1—¢(p)"2>1-3p 2 for p> 3. For p =2, the condition (1.11) ensures that
w(2) # 1if 2 friryrsas. Hence 1 — (—¢(2))*? =3 = 2 and

(3-8) ¢> [ -3p?)>1.
D ,|/2'r1'r2r3a3
We turn now to F(n). Similar to Lemma 1(i), we can show that F'(n) is

multiplicative in n. Furthermore, if p||as then

p°  p° 2

=y Z D epe (honly + azls — K))
l1=1 {2=1 h=1

(rj€;— u, p)=

:po X card{ﬁl,ﬂz 1< £1,€2 < po,p /Tjgj - ’U,j,Ot1£1 + 04282 =K (IIlOd pa)} .

Since p|as and (asg,a3) = 1, each given #/; determines one £5 (mod p?) by the

congruence a1 + asls = K (mod p?). Hence

F(p?)=p° xcard{£:1 <L <p?, pJfril—uy, p/fra(k —a1f) — asus}

=p?? ' xcard{€: 1 <L <p, pfril—u1, p[ra(k — a1f) — agus}

20’—1(

=p p—v(p)),

where v(p) = 0if p|(r1,72), v(p) = 1 if p divides exactly one of r1, 79, and v(p) =1
or 2 if p friry. The case v(p) = 2 occurs only if p friry and ayreuy + asriug #
r1rok (mod p). In particular, condition (1.11) ensures that such situation will not
occur for p = 2, that is, v(2) < 1 if 2|as. Hence

w)= [ ' w-rv)=a2 [[ a-"2) 11 a-“2)

] p p
7 ||as p|(as,r1ir2) plas
p ) (r1,72) p frire
>oi [ a-pYH [] -207YH
pl(as,rira) plas
p [ (ri,r2) p [ 2rire
_ _ 1
>ao J[ Q-p") J] A-p 1)2:0‘12%1_[(1_5)1_[(1_—
pl(as,rira) plas plas plas
p ) (r1,72) p frirs pJr pJfra

Applying this and (3.8) in (3.7), we conclude that, when @ is sufficiently large
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Il(N) > N2‘011012043|_17‘17‘27’3{¢(7‘3)¢(T10¢3)¢(7‘2a3)}_1a§X

x [T =™ J] @ -p "+ 0@EQ)

plas plas
p )T p ) re

> N2\a1a2a3\_1r1r2r3{¢(r1)¢(r2)¢(r3)}_1 + O(é’Q) .

In view of (2.5) and (2.1), when ¢ is sufficiently small, we have I(N) = I;(N) +
O(e€2) > Q, as desired. This completes the proof of Theorem 2.
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