
 1

A Grid Middleware for Distributed Java Computing with MPI Binding and

Process Migration Supports

Lin Chen, Cho-Li Wang, Francis C.M. Lau, and Ricky K. K. Ma
Department of Computer Science & Information Systems

The University of Hong Kong

Abstract

 “Grid” computing has emerged as an important new research field. With years of

efforts, Grid researchers have successfully developed Grid technologies including security
solutions, resource management protocols, information query protocols, and data management
services. However, as the ultimate goal of Grid Computing is to design an infrastructure
which supports dynamic, cross-organizational resource sharing, there is a need of solutions
for efficient and transparent task re-scheduling in the Grid.
 In this research, we propose a new Grid middleware, named G-JavaMPI. This middleware
adds the parallel computing capability of Java on the Grid with the support of a Grid-enabled
message passing interface (MPI) for inter-process communication between Java processes
executed at different Grid points. A special feature of the proposed G-JavaMPI is the support
of Java process migration with post-migration message redirection. With these supports, we
can migrate executing Java process from site to site for continuous computation, if some site
is scheduled to turn down for system reconfiguration. The proposed middleware is useful for
Grid computing as most applications in Grid require long processing time. Restart the
execution of those applications will certainly lessen the productivity. Moreover, the proposed
G-JavaMPI middleware is very portable as it requires no modification of underlying OS, Java
virtual machine, and MPI package. Preliminary performance tests have been conducted. The
proposed mechanisms have shown good migration efficiency in a simulated Grid
environment.

1. Introduction

 “Grid” computing [2], distinguished from conventional distributed computing, is

featured by its focus on large-scale resource sharing, innovative applications, and, in some
cases, high-performance orientation. Previous Grid research mainly address the issues related
to authentication, authorization, resource access, and resource discovery for enabling resource
sharing among dynamic, multi-institutional organizations connected across a WAN. As these
organizations vary tremendously in their purpose, scope, size, duration, and structure;
particularly, the resource configurations of organizations have the potential to change
dramatically. To achieve continuous computation and make better utilization of the available
computing resources among these organizations , runtime process re-scheduling is required.
Process migration is an attractive feature for re-scheduling tasks in Grid environments. With
the support of process migration, various runtime load balancing schemes can be
employed for improving the execution efficiency of coarse-grained Grid applications.
Process migration can also help those long-running applications by relocating them at suitable
times to prevent interruption due to system activities or the execution of other applications. It
also can help relocate processes closer to the Grid point with data that they need to access.

This research describes a new Grid middleware called G-JavaMPI for distributed Java
computing using message passing interface (MPI) on Grid. This middleware supports MPI-
style inter-process communication between multiple Java processes that are running on
different Grid sites, through a special binding between Java applications and the Grid-ready,
MPICH-G2 libraries [3]. This middleware also supports security-enhanced Java process

 2

migration functions, which allows transparent migration of Java programs in the Grid
environment.

G-JavaMPI uses the Java built-in debugging interface (JVMDI) to capture execution
states, and uses object serialization mechanism [16] to store data in portable form. As JVMDI
[15] is a standard interface, this approach is potentially more portable and suitable for the
heterogeneous Grid environments, where different JVMs are used. In a Grid environment, any
attempt of remote process creation must first pass the authentication process with their
appropriate credentials to the destination site before the process can be actually restarted. In
G-JavaMPI, the authentication processes are based on the security services provided by GSI
[8, 19] (Globus Security Infrastructure) implemented in Globus toolkit [12].

The implementation of the native MPI library that we use in this research is MPICH-
G2 [3]. MPICH-G2 is a Grid-enabled implementation of the MPI v1.1 standard. MPICH-G2
uses services provided by the Globus Toolkit to coordinate work and enable authenticated
inter-site communication in the Grid environment. MPICH-G2 can also automatically convert
data in messages sent between machines of different architectures and supports multi-protocol
communication by automatically selecting TCP for inter-machine messaging and vendor-
supplied MPI (where available) for intra-machine messaging. To support transparent Java
process migration, the communication channels between distributed Java processes must be
re-constructed before the migrated process can be restarted. In G-JavaMPI we implement a
restorable MPI communication layer to reconstruct the communication channels. It provides a
unified communication abstraction for post-migration interprocess communication. Therefore,
other processes don’t need to care about the physical location of the migrated Java processes.

All the above stated mechanisms require no modifications of underlying OS, Java
Virtual Machine, and MPI, which make the proposed system portable to run on various
platforms. With this support, the parallel Java processes can be migrated freely and
transparently between sites in the Grid and continue their execution and inter-process
communication using MPI to achieve dynamic load balancing.

The rest of the paper is organized as follows. In section 2, we show an overview of
the proposed middleware. Section 3 discusses our mechanism on saving and restoring
execution state of programs. Section 4 describes the authenticated restorable MPI
communication layer. Performance results and evaluation are given in section 5. The related
works are presented in section 6. Conclusion is given in section 7.

2. System Architecture

Fig. 1. shows the layered design of the G-JavaMPI middleware. The middleware
consists of several layers, including the Java-MPI layer, the Migration layer, the
Authenticated & Restorable MPI Communication layer, Load Balancing and Controlling
Modules.

Java-MPI API layer: The Java-MPI API layer implements MPI calling interfaces to link
Java programs to the native MPI library. Thus, efficient message passing among distributed
Java processes can be achieved. We opted for a modular, client-server design of a message
redirection mechanism for migrated Java processes. The Java-MPI API layer acts as a client
which sends MPI-related messaging requests to the MPI daemon (a server) in the same node
in the Restorable MPI communication layer (will be discussed later). The MPI daemon is
responsible for delivering messages on behalf of the Java process. This client-server message
redirection model makes it possible to avoid conflicts on the use of system resources (e.g.
conflicts on the system signals) between the native MPI library and the JVM.

Authenticated & Restorable MPI Communication layer: The authenticated restorable MPI
communication layer (we call it MPI communication layer for short in the following content)
is implemented as a daemon. For short, we call it MPI daemon. The MPI daemons themselves
use the authenticated communication services from the underlying MPICH-G2. And then the

 3

MPI daemons provide MPI communication services only to those Java-MPI applications or
processes which have a set of authenticated credentials. Therefore, this chain of authenticated
communication channels assures the communication security. The set of credentials includes
the credential (usually proxy or delegated credential) for the user that the process is on behalf
of, and the Java-MPI job credential which identifies this unique application in the global
range. The representation of credentials and authentication method adhere to those in the GSI
(Grid Security Infrastructure) which the Globus toolkit [12] is also based on. Therefore, it
enables the processes of a Java-MPI application to do the authenticated inter-process
communication with each other. In addition, this communication services are restorable.
Therefore, the communication channels can be re-constructed automatically after migration.
This allows Java processes to communicate with each other after migration as if no migration
has occurred.

Fig. 1. The layered design of G-JavaMPI

Migration layer: The Migration layer performs two main tasks: (1) to capture and save the
execution state of the migrating process in the source node, and to restore the execution state
of the migrated process in the destination node; (2) to cooperate with the Authenticated
Restorable MPI Communication layer to reconstruct the communication channels of the
parallel application. In G-JavaMPI, we use the Java built-in interface, JVMDI, to capture Java
process execution states. To enable this feature, we need only to compile Java programs with
the debugging option switched on. In addition, we set the migration safe point at the first
bytecode instruction of each source code line. It means that migration can only happen after
the complete execution of all Java bytecode corresponding to a single Java source code line,
and before the execution of the next Java source code line. If a migration request is received
in the middle of executing a Java source code line, the migration will be delayed until the end
of execution of the current source code line. This source-code-level granularity eliminates the
need to save operand stacks which are usually non-empty in the middle of the execution of a
source line, and also avoids the need to save machine-dependent process state information
which is present during the execution of a native method. Therefore, without modifying the
JVM, the resulting system can then be as portable as any ordinary Java program.

Restorable

Communication Services

Authentication
Control
Block

DLB
Policy

Info.

Update

(Restorable MPI Comm Layer) (Load Balancing Module)

Java-MPI Applications

Hardware

MPICH-G2

Message
Queues

Migration
Instructions

Globus Services

OS

JVM
JVMDI

Execution State Probe &
Migration Plug-in

(Migration Layer)

Java-MPI API & Java API
 (Java-MPI API Layer)

 4

Load Balancing and Controlling Module: A monitor agent is used to detect the available
computing resources and network bandwidth between Grid points connected across the WAN.
On the other hand, prediction on the application’s future communication pattern is performed
through on-the-fly bytecode analysis. The load balancing policy will integrate and analyze all
those information to give some effective process migration instructions. Therefore, with the
load balancing and controlling module, the whole middleware can control the applications’
execution and make the execution much more efficient. This part of work is still under
development. We hope to present this in the full version of the paper.

3. Authenticated and Restorable MPI Communication layer

3.1. Client-Server Message Redirection Model

The restorable MPI communication service is based on a client-server model. This
layer is implemented as a group of MPI daemons in all participating processing nodes in all
Grid sites. It is a bridge between Java-MPI communication API and underlying native MPI
libraries. The Java-MPI communication API is the interface for parallel Java processes to
send requests to MPI daemons. The MPI daemon running on each node of Grid sites is
responsible for sending messages and receiving messages on behalf of the calling Java
programs in the same node. The Java programs and the MPI daemon in the same node
communicate through one or several message queues reserved by the middleware.

 In order to provide efficient MPI communication, inter-node or inter-site
communication done by MPI daemons are through the native MPI library. Instead of linking
the Java program directly with the native MPI library, the native MPI library is linked by the
MPI daemon such that MPI communication is used exclusively by MPI daemons in different
nodes for their communication. This approach requires no modification of the existing MPI
library. The implementation of MPI library we use is MPICH-G2. MPICH-G2 uses services
provided by the Globus Toolkit to coordinate work and enable authenticated inter-site
communication in the Grid environment. And it can automatically convert data in messages
sent between machines of different architectures and supports multi-protocol communication
by automatically selecting TCP for inter-machine messaging and vendor-supplied MPI (where
available) for intra-machine messaging.

3.2. Authenticated Communication services

 In the Grid environment, security becomes an important issue. This characteristic is
one of most significant differences between traditional clusters with Grid. Thus, any sharing
mechanism must have the ability to authenticate the user’s or job’s identity and determine
whether the user is authorized to request the resource. The restorable MPI communication
services can also be taken as a kind of shared resource. Like normal Globus jobs, the
processes of a Java-MPI job can access normal resources on a user’s half with their delegated
credentials associated with the user’s credential. However, our MPI communication layer, as
a server, aims to provide communication services to multiple Java-MPI jobs which may
belong to the same user or different users. Therefore, to identify different Java-MPI jobs, we
especially introduce another kind of credential (called Java-MPI job credential) associated
with a particular Java-MPI job. Through this credential, the processes belonging to the same
Java-MPI job can identify and authenticate each other, therefore do authenticated
communication.

This credential has two versions of implementations, among which one is for the
server (MPI communication layer), another for each Java-MPI process. (1) The sever-side
credential is implemented as a table which is shared among all servers in the global range. It
consists of a globally unique identity key (identifying this Java-MPI job) signed by the MPI
communication layer, the process distribution information, and the communication record

 5

information for those processes residing in this node. The communication record information
may include the sending and receiving message sequence numbers of those processes. This
information is important for the global communication integrity. (2) The client-site credential
is used for the processes to interface with the server. Most time it is used per-message, so that
is implemented as a message envelop. Especially this kind of credential encloses the Java-
MPI credential together with the corresponding process rank which exclusively identifies that
single process. This credential also encloses that process’s message sequence information for
the message integrity. Every process will get a credential signed by the underlying MPI
communication layer during the job start-up.

The authentication process consists of two stages. Fig. 2 shows the basic idea. In first

stage, the Globus security mechanism checks the user program’s identity using its
authentication algorithm which is defined by Secure Socket Layer Version 3 (SSLv3)
protocol. Usually this stage is needed for only one time. With proxy credentials and
delegation, processes running on the user’s behalf can access all resources other than MPI
communication resource. In the second stage, the MPI communication layer checks the
particular Java-MPI job’s identity when the processes of this job attempt to request MPI
communication service. Then the processes use their own process rank to identify with each
other during inter-process communication. The most common requests on MPI
communication service are sending and receiving an MPI message. The second stage of
authentication is associated with the communication, therefore, this stage happens in per-
message level. Basically, the authentication process involves the following five events:

(1) user credential authentication
(2) allocate resource (new process creation)
(3) request for Java-MPI communication services
(4) signing a Java-MPI job credential for process(CDJ)
(5) request of sending or receiving a MPI message with CDJ

Fig. 2. Authentication Process: CUP: user proxy credential. CR: resource credential. CJS:
Java-MPI job credential in server-side. CDU: delegated user credential. CJC:
Java-MPI job credential for process (in client-side).

 Therefore, in G-JavaMPI, each Java-MPI process belonging to a user’s application
has a set of two credentials including the delegated credential associated with the user and the
job credential associated with the particular Java-MPI job and process.

3.3 Restorable Communication Channel

 In authenticated communication services, the Java-MPI job credential is mainly used by
the processes to authenticate their identities to the underlying MPI communication layer,
therefore get authorized interprocess communication with their peers. Except for that
function, the Java-MPI job credential also provides important support for re-constructing

 6

communication channel for the migrated process. In the global Grid system, a Java-MPI job
credential identifies one unique G-JavaMPI job. A G-JavaMPI job may consist of many
parallel processes which are distributed on different local nodes of all Grid points. When a
process is migrated from one location to another location, its physical location changes. But
its peer processes will not know this change as this migration mechanism is transparent to
high-level applications. The migrated process will re-construct the communication channels
with its peer processes through the abstract interface provided by its job credential. Because
the job credential is constant and in the global range, the migrated process can always get
contact with its peers in any physical location.

4. Transparent Migration Layer

4.1. State Capturing using JVMDI

The Java Virtual Machine Debugger Interface (JVMDI) [15] is a native interface

available for the JVM since Java 2, and is used typically by debuggers. It defines the standard
services that a JVM must provide for debugging. There are ways to inspect the state and to
control the execution of applications. On the one hand, we can obtain the runtime information
of threads, stack frames, local variables, classes, objects, and methods. On the other hand,
JVMDI can be used to control threads, to set local variables, and to receive notifications of
events such as method exit/entry and frame pop-up. JVMDI is called by the JVMDI client
running in the same virtual machine as the application program being debugged. The
application runs continuously if no debugging requests have been issued.
 In G-JavaMPI, we make use of JVMDI to capture process states, as this can be done
much more easily than other existing approaches. The migration layer is implemented as a
JVMDI client. All the actions performed by the JVMDI client are transparent to the
applications. In addition, the capturing mechanism is all on top of an ordinary JVM so that no
modifications of the JVM are required.
 Although JVMDI functions can inspect information on threads, stack frames, local
variables, classes, objects, and methods, no functions are provided to extract and rebuild
operand stacks. And data in the operand stack are JVM-dependent. In addition, when the
execution point is inside the native method (frame), the local data in the frame are machine-
dependent. All these factors make it very hard to capture and restore operand stacks and also
destroy the portability of the middleware. Therefore we introduce an approach to makes sure
that all operand stacks are empty and the execution point is outside of a native method at the
time of migration. This is achieved through setting Migration Safe Point and bytecode
rearrangement.

Migration Safe Point is defined as any execution point on the first bytecode
instruction of each source code line only in a Java method. If the execution point which a Java
process reaches to when migration instruction is received is in the middle of executing a Java
source code line or inside a native method, the point is not safe for migration. In these two
conditions, the migration will be delayed until reaching the next migration safe point.
However, this source -code -level migration granularity only assures the empty operand
stack in the current frame. The bytecode rearrangement introduces some new local variables
to store those intermediate values in the program’s bytecode file before execution. Therefore,
the combination of the source-code-level granularity and bytecode rearrangement can make
the operand stacks of all frames always empty during migration.

4.2. State Restoring using Exception Handler

For the state restoration, we basically follow the same mechanism used in M-
JavaMPI [18]. For the sake of completeness, the working mechanisms are briefly
discussed here.

 7

This mechanism is to add the capacity of restoration exception handling to the
application’s bytecode in advance, so that the new process can perform restoration of
execution state with the help of migration layer. Restoration functions are inserted as
exception handlers to perform restoration under the control of migration layer. Exception
handlers are inserted in each of the methods. The exception handlers catch and react to
restoration exceptions. Inside these exception handlers, local variables of the called methods
are pre-set with the saved information, and a “jump” command is issued to branch to the
position saved during capturing.

During restoration, a breakpoint is set at the start of each method associated with
stack frmes. When any breakpoint is caught, the migration layer will throw a restoration
exception. Then, in the corresponding method, the exception is caught by the Restoration
Exception Handler where local variables of the method are restored to the saved values. A
“branch” command is then performed to jump to the last executed location of the current
frame. This action is repeated for each frame of the program until the last frame is re-
established. Then the program will execute again from the last executed position.

4.3. Delegation of Credentials During Migration

Apart from the execution state capture and restoration, the migration process also

involves stopping the old process and creating a new process at the remote destination site.
Unlike those in a cluster environment, the remote process creation cannot be done simply
through remote shell or other mechanism without specialized protection of security. In G-
JavaMPI, the security mechanism for the remote process creation is an extension from the
mechanism provided by GSI (Globus Security Infrastructure) in the Globus toolkit. The
extension is mainly for the delegation of Java-MPI job credentials. Fig. 3. shows the basic
operations.

 Fig. 3. Delegation of Credentials During Migration: CDU : delegated user credential
CJC : Java-MPI job credential in client-side. CR : resource credential. CJS: Java-MPI job

credential in server-side. CDJC: Delegated Java-MPI job credential

 In fig.3, the process in site 1 will be migrated to site 2. Before the process in site 1 is
stopped completely, it sends requests to the resources in the remote site 2 with its set of
credentials. The requests include the request for the new process creation to normal resource
and the request for the MPI communication services to the Java-MPI communication resource
(Java-MPI Authenticated & Restorable Communication Layer). On one hand, the new process
creation is authorized after the authentication check of the delegated user credential. On the
other hand, the new process created gets a delegated Java-MPI job credential (CDJC) from the
old process, and then is authorized to use the MPI communication resource with this
delegated credential. After that, the old process in site 1 can be stopped safely, and the new
process continues the execution in remote site 2, on behalf of the original process. The
underlying restorable communication layer will help to re-construct the communication
channel between the new process with all other processes.

Migrating

Java-MPI
Comm
Resource

Site 1 Site 2

Process Process

Resource
Credentials

Resource
Credentials

Java-MPI
Comm
Resource

CDU CDU

CJC CDJC

CR

CJS CJS

CR

 8

4.4. Migration Process

The migration process is like the following. When starting JVM, the JVMDI client is
started as well to wait any migration instruction from the middleware control block. When
receiving a migration instruction, the initialization for migration is firstly done. The
initialization process mainly checks whether the execution point is on the Migration Safe
Point. When migration is ready to occur, the client suspends the execution of that process.
And at the same time it sends a message to the local MPI daemon to notify it of the migration.
After that, it inspects and saves all the Java stack frames created by the migrating Java
process. For each frame, local variables, referenced objects, the name of the classes and the
class methods, and the program counter need to be saved into a package using object
serialization. After the saving, the captured data package is sent to the destination node. And
before the JVM where the migrated process resides in is stopped, the process sends a request
of new process creation to the destination node resource with its own set of two credentials.
After passing the authentication, a new Java-MPI process is created with its own set of two
credentials that are both delegated from the original process.

In the destination node, when the data package is received by the MPI daemon, the
MPI daemon sends a notification message to the migration layer. Then the migration layer
throws a Restoration Exception to the newly created instance of the process. The Restoration
Exception handler inserted in each method reads values from the data package using
mechanisms provide by object serialization and restores those values to local variables. After
all frames finish restoration, the thread can be resumed to continue its execution.

5. Performance Evaluation

The implementation of G-JavaMPI involves three system softwares: (1) Java
Development Kit : Sun JDK 1.4.1 [21] (2) MPI library : MPICH-G2 [3] (3) Grid toolkit:
Globus Toolkit 2.0 [12]. The introduction of our middleware may have an impact on the
performance of both the computation and communication parts. The computation part could
be affected by the state-capturing and state-restoring actions and the use of JVMDI, while the
communication part could be affected by the authenticated & restorable MPI communication
mechanism. We divide the evaluations into two important modules: evaluation of the
performance of the MPI communication layer among intra-sites or inter-sites, evaluation of
the performance of the process state-capturing and restoring mechanism.

The experiments were conducted on two 16-node clusters. Each cluster is taken as a
Grid point. All PCs in a cluster are connected by a 24-port Fast Ethernet switch. The two
clusters are connected by a single 100Mb/s fast Ethernet link. Each PC has a 733MHz
Pentium III processor and 392MB of memory, running Linux 2.2.14 with Sun JDK 1.4.1 and
MPICH 1.2.4. All Java programs were executed in full-speed debugging mode which is new
feature provided by Sun Java Hotspot JVM in Sun JDK1.4.1 [20].

We have tested the communication bandwidths attained respectively for inter-site
communication and intra-site communication. The fig.4 and fig.5 show the performance
difference caused by different communication mechanisms. Inter-site communication has
caused extra latency delay based on intra-site (about 48-52 ms for short messages with size of
1-32 bytes) and lower bandwidth (lost 7.54% of the peak bandwidth of the intra-site
communication at 2KB). As the physical network bandwidth inside a grid point and between
two grid points are basically the same in our experiment, the communication performance gap
between intra-site and inter-site is mainly caused by the different communication mechanism
inside a Grid point and between two Grid points. Intra-site communication is done by the MPI
implementation, while inter-site communication is done through TCP communication. In
addition, for the security purpose in the underlying Globus service, the inter-site TCP
communication must go through the local Grid point job-manager to the remote Grid point.
We think this kind of mechanism cause part of the performance lost. And we analyze that the
amount of lost bandwidth should be somewhat bigger than 7.54% in the real Grid

 9

environment, as this inter-site communication performance will be slowed down by the real
WAN communication environment.

Bandwidth

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

8 16 32 64 128 256 512 1024 2048

Message Size (byte)

B
an

dw
id

th
 (

K
by

te
/s

)

Intra-site bandwidth Inter-site bandwidth

Fig.4. Bandwidth comparison between inter-site and intra-site communication with the
installation of the MPI communication layer.

Latency

0

0.1
0.2

0.3

0.4
0.5

0.6

1 2 4 8 16 32 64 128 256 512 1024 2048

Message Size (byte)

L
at

en
cy

 (s
)

Inter-site latency Intra-site latency

Fig.5. Latency comparison for small messages between intra-site and inter-site
communication with the installation of the MPI communication layer.

The migration cost equals to the sum of time spent in capturing state in the source

node, the time spent in restoring state in the destination node, and the time spent in starting
the JVM and loading the program in the destination node. We evaluated the time spent in
capturing state separately on the objects and the frames. Similarly, the time spent in restoring
state includes two parts: time spent in restoring the objects and time spent in restoring the
frames. The times spent in restoring both objects and frames are also evaluated.

Fig.6.shows the time needed in capturing and restoring objects of different sizes. In
this test, objects that were used are arrays with variable type “byte”. The data size of a “byte”
is 1 byte. The minimum overheads in capturing and restoring objects are 1.01 and 0.175 ms
respectively. The capturing time is about 0.158 µs/bytes and the restoring time is about 0.038
µs/bytes.

 10

Fig.7 shows the time needed in capturing and restoring frames. In this test, no local
variables were defined in each frame. Hence, the measured time is the minimum overhead in
capturing and restoring different number of frames. The capturing time is about 4.5ms/frame
and the restoring time is about 2.68ms/frame. The overhead is mainly caused by the process
of retrieving the frame information and storing the data structure describing that frame.

Times for capturing and restoring objects

0
20
40
60
80

100
120
140
160
180

10 100 1000 10000 100000 1000000

Object size (byte)

T
im

e
(m

ill
is

ec
o

n
d

)

Capturing time Restoring time

Fig.6. Time spent in capturing and restoring objects

Time for capturing and restoring frame stacks

0
500

1000
1500
2000
2500
3000
3500

1 100 200 300 400 500

Number of frames

T
im

e
(m

s)

Capture time Restore time

Fig.7. Time spent in capturing and restoring frames

Related Work

The Message Passing Interface (MPI) is a widely adopted communication library for
parallel and distributed computing. There have been efforts to provide MPI for Java language
[9,10,11,13,14]. Existing approaches to MPI for Java can be grouped into two main types: (1)
native MPI bindings where the some native MPI library is called by Java programs through
Java wrappers [9,10,11], and (2) pure Java implementations [13,14]. The native MPI binding

 11

approach provides efficient MPI communication through calling native MPI methods.
Conflicts could arise on the use of system resources such as signals between the MPI library
and the JVM. The pure Java implementation approach on the other hand can provide a
portable MPI implementation since the whole MPI library is rewritten in Java, but the MPI
communication would be relatively less efficient since Java operates at a higher level. All of
them however did not include any restorable message-passing communication feature.
Moreover, our Java-MPI layer is “MPI-implementation-independent,” which makes our
system more portable . All those researches only support the execution in the cluster
environment, and our middleware is Grid-enabled so that it provides necessary mechanisms
for the security protection (authentication and authorization) and message integrity.
 There are systems, such as JESSICA [1], Ara [6], and among others [5,7], that
provide state-capturing and restoring of Java programs, but these systems need to modify the
JVM. Some work [4,17] has been done to allow state-capturing and restoring via pre-
processing of bytecode. Our approach is different from this in that extra bytecode is added
only for state-restoring but not for capturing execution state. Besides, in their approaches,
code is added to change the original program flow in order to do state-capturing and restoring.
This could translate into considerable amount of overhead during runtime. In our approach,
code is inserted as exception handlers which will only be executed during restoring.
 Our Grid security mechanism is based on GSI (Grid Security Infrastructure)[8, 19].
GSI, a key component of the Globus Toolkit [12], greatly simplifies the usage of multiple
machines in Grid environment through user single sign-on mechanism. Different from this,
our mechanism is specially providing the security protection and message integrity for the
communication-toward applications running across Grid points. Its special support for the
global-range communication enables those communicating processes to move anywhere
freely and transparently, therefore enabling better resource sharing.

7. Conclusion

In this paper, we have presented a new middleware for the Grid with Java-MPI
communication and transparent process migration features. This middleware enable people to
write MPI-style programs in Java language easily in the Grid environment. The transparent
Java process migration mechanism will help the user applications to exploit and use the most
appropriate resources. This will also support the development of any dynamic load balancing
policy or fault tolerance mechanism. All these features will help Grid applications to utilize
the Grid resource more efficiently and survive from the poor WAN bandwidth in the Grid
environment. In future, we will make more evaluation on the Grid applications’ behavior to
help developing efficient dynamic load balancing policy.

References

[1] M.J.M. Ma, C.L. Wang, F.C.M. Lau, ``JESSICA: Java-Enabled Single-System-Image

Computing Architecture,” Journal of Parallel and Distributed Computing, Vol. 60, No.
10, October 2000, pp. 1194-1222

[2] Ian Foster, “The Grid: A New Infrastructure for 21st Century Science”, Physics Today,
Vol. 55, Februrary 2002 (URL: http://www.aip.org/pt/vol-55/iss-2/p42.html)

[3] MPICH-G2: http://www.hpclab.niu.edu/mpi/
[4] M. Dahm. “Byte Code Engineering”. Proceedings JIT’99, 1999.
[5] M.Ranganthan, A. Acharya, S. D. Sharma and J Saltz. “Network-aware Mobile

programs”. Proceedings of the USENIX Annual Technical Conference, Anaheim,
California, 1997.

[6] H. Peine and T. Stolpmann. “The architecture of the Ara platform for mobile agents”.
Proceedings of the Second International Workshop of Mobile Agents (MA’97), 1997.

[7] S. Bouchenak. “Pickling threads state in the Java system”. Proceedings of the third
European Research Seminar on Advances in Distributed Systems (ERSADS’99), 1999.

 12

[8] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, V. Welch. A
National-Scale Authentication Infrastructure, IEEE Computer, 33(12): 60-66, 2000.

[9] S. Mintchev. “Writing Programs in JavaMPI”. TR MAN-CSPE-02, Univ. of
Westminster, London, UK, 1997

[10] Sava Mintchev and Vladimir Getov. “Towards portable message passing in Java:
Binding MPI” Technical Report TR-CSPE-07”. University of Westminster, School of
Computer Science, Harrow Campus, July 1997.

[11] M. Bake. “mpiJava: A Java interface to MPI”. 1st UK Workshop on Java for HKCN,
1998.

[12] Globus Toolkit 2.0: http://www.globus.org
[13] Tong WeiQin, Ye Hua, Yao WenSheng. “PJMPI: pure Java implementation of MPI”.

Proceedings of the 4 th International Conference on High Performance Computing in the
Asia-Pacific Region, 2000.

[14] K. Dincer. “A Ubiquitous Message Passing Interface Implementation in Java: jmpi”.
Proceedings of 13th International and 10th Symposium on Parallel and Distributed
Processing, 1999.

[15] Javasoft. “Java Virtual Machine Debugger Interface”.
http://java.sun.com/j2se/1.4/docs/guide/jpda/jvmdi-spec.html

[16] Javasoft. “Java Object Serialization”.
http://java.sun.com/j2se/1.4/docs/guide/serialization/index.html

[17] Eddy Truyen, Bert Robben, Bart Vanhaute, Tim Coninx, Wouter Joosen and Pierre
Verbaeten. "Portable Support for Transparent Thread Migration in Java". In
Proceedings of International Symposium on Agent Systems and Applications/Mobile
Agents (ASA/MA'2000), September 2000, Zurich, Suisse.

[18] Ricky K. K. Ma, Cho-Li Wang, and Francis C. M. Lau, ``M-JavaMPI: A Java-MPI
Binding with Process Migration Support,'' The Second IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid 2002), Berlin, Germany.

[19] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security Architecture for
Computational Grids. Proc. 5th ACM Conference on Computer and Communications
Security Conference, pp. 83-92, 1998.

[20] Java HotSpot[TM] virtual machine "full-speed debugging":
http://java.sun.com/j2se/1.4.1/docs/guide/jpda/enhancements.html

[21] Sun Java2 SDK1.4.1: http://java.sun.com/j2se/1.4.1/docs/

