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Abstract 

 
     “Grid” computing has emerged as an important new research field. With years of 

efforts, Grid researchers have successfully developed Grid technologies including security 
solutions, resource management protocols, information query protocols, and data management 
services. However, as the ultimate goal of Grid Computing is to design an infrastructure 
which supports dynamic, cross-organizational resource sharing, there is a need of solutions 
for efficient and transparent task re-scheduling in the Grid.  
     In this research, we propose a new Grid middleware, named G-JavaMPI. This middleware 
adds the parallel computing capability of Java on the Grid with the support of a Grid-enabled 
message passing interface (MPI) for inter-process communication between Java processes 
executed at different Grid points. A special feature of the proposed G-JavaMPI is the support 
of Java process migration with post-migration message redirection.  With these supports, we 
can migrate executing Java process from site to site for continuous computation, if some site 
is scheduled to turn down for system reconfiguration. The proposed middleware is useful for 
Grid computing as most applications in Grid require long processing time. Restart the 
execution of those applications will certainly lessen the productivity. Moreover, the proposed 
G-JavaMPI middleware is very portable as it requires no modification of underlying OS, Java 
virtual machine, and MPI package. Preliminary performance tests have been conducted. The 
proposed mechanisms have shown good migration efficiency in a simulated Grid 
environment.   
 
 
1. Introduction 

 
          “Grid” computing [2], distinguished from conventional distributed computing, is 

featured by its focus on large-scale resource sharing, innovative applications, and, in some 
cases, high-performance orientation.  Previous Grid research mainly address the issues related 
to authentication, authorization, resource access, and resource discovery for enabling resource 
sharing among dynamic, multi-institutional organizations connected across a WAN. As these 
organizations vary tremendously in their purpose, scope, size, duration, and structure; 
particularly, the resource configurations of organizations have the potential to change 
dramatically. To achieve continuous computation and make better utilization of the available 
computing resources among these organizations , runtime process re-scheduling is required. 
Process migration is an attractive feature for re-scheduling tasks in Grid environments. With 
the support of process migration, various runtime load balancing schemes can be 
employed for improving the execution efficiency of coarse-grained Grid applications. 
Process migration can also help those long-running applications by relocating them at suitable 
times to prevent interruption due to system activities or the execution of other applications. It 
also can help relocate processes closer to the Grid point with data that they need to access. 

This research describes a new Grid middleware called G-JavaMPI for distributed Java 
computing using message passing interface (MPI) on Grid. This middleware supports MPI-
style inter-process communication between multiple Java processes that are running on 
different Grid sites, through a special binding between Java applications and the Grid-ready, 
MPICH-G2 libraries [3]. This middleware also supports security-enhanced Java process 
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migration functions, which allows transparent migration of Java programs in the Grid 
environment.  

G-JavaMPI uses the Java built-in debugging interface (JVMDI) to capture execution 
states, and uses object serialization mechanism [16] to store data in portable form. As JVMDI 
[15] is a standard interface, this approach is potentially more portable and suitable for the 
heterogeneous Grid environments, where different JVMs are used. In a Grid environment, any 
attempt of remote process creation must first pass the authentication process with their 
appropriate credentials to the destination site before the process can be actually restarted. In 
G-JavaMPI, the authentication processes are based on the security services provided by GSI 
[8, 19] (Globus Security Infrastructure) implemented in Globus toolkit [12].  

The implementation of the native MPI library that we use in this research is MPICH-
G2 [3]. MPICH-G2 is a Grid-enabled implementation of the MPI v1.1 standard. MPICH-G2 
uses services provided by the Globus Toolkit to coordinate work and enable authenticated 
inter-site communication in the Grid environment. MPICH-G2 can also automatically convert 
data in messages sent between machines of different architectures and supports multi-protocol 
communication by automatically selecting TCP for inter-machine messaging and vendor-
supplied MPI (where available) for intra-machine messaging. To support transparent Java 
process migration, the communication channels between distributed Java processes must be 
re-constructed before the migrated process can be restarted. In G-JavaMPI we implement a 
restorable MPI communication layer to reconstruct the communication channels. It provides a 
unified communication abstraction for post-migration interprocess communication. Therefore, 
other processes don’t need to care about the physical location of the migrated Java processes. 

All the above stated mechanisms require no modifications of underlying OS, Java 
Virtual Machine, and MPI, which make the proposed system portable to run on various 
platforms. With this support, the parallel Java processes can be migrated freely and 
transparently between sites in the Grid and continue their execution and inter-process 
communication using MPI to achieve dynamic load balancing. 

The rest of the paper is organized as follows. In section 2, we show an overview of 
the proposed middleware. Section 3 discusses our mechanism on saving and restoring 
execution state of programs. Section 4 describes the authenticated restorable MPI 
communication layer. Performance results and evaluation are given in section 5. The related 
works are presented in section 6. Conclusion is given in section 7. 
 

 
2. System Architecture  
 

Fig. 1. shows the layered design of the G-JavaMPI middleware. The middleware 
consists of several layers, including the Java-MPI layer, the Migration layer, the 
Authenticated & Restorable MPI Communication layer, Load Balancing and Controlling 
Modules.  

 
Java-MPI API layer: The Java-MPI API layer implements MPI calling interfaces to link 
Java programs to the native MPI library. Thus, efficient message passing among distributed 
Java processes can be achieved. We opted for a modular, client-server design of a message 
redirection mechanism for migrated Java processes. The Java-MPI API layer acts as a client 
which sends MPI-related messaging requests to the MPI daemon (a server) in the same node 
in the Restorable MPI communication layer (will be discussed later). The MPI daemon is 
responsible for delivering messages on behalf of the Java process. This client-server message 
redirection model makes it possible to avoid conflicts on the use of system resources (e.g. 
conflicts on the system signals) between the native MPI library and the JVM. 

 
Authenticated & Restorable MPI Communication layer: The authenticated restorable MPI 
communication layer (we call it MPI communication layer for short in the following content) 
is implemented as a daemon. For short, we call it MPI daemon. The MPI daemons themselves 
use the authenticated communication services from the underlying MPICH-G2. And then the 
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MPI daemons provide MPI communication services only to those Java-MPI applications or 
processes which have a set of authenticated credentials. Therefore, this chain of authenticated 
communication channels assures the communication security. The set of credentials includes 
the credential (usually proxy or delegated credential) for the user that the process is on behalf 
of, and the Java-MPI job credential which identifies this unique application in the global 
range. The representation of credentials and authentication method adhere to those in the GSI 
(Grid Security Infrastructure) which the Globus toolkit [12] is also based on. Therefore, it 
enables the processes of a Java-MPI application to do the authenticated inter-process 
communication with each other. In addition, this communication services are restorable. 
Therefore, the communication channels can be re-constructed automatically after migration. 
This allows Java processes to communicate with each other after migration as if no migration 
has occurred. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. The layered design of G-JavaMPI  
 

Migration layer: The Migration layer performs two main tasks: (1) to capture and save the 
execution state of the migrating process in the source node, and to restore the execution state 
of the migrated process in the destination node; (2) to cooperate with the Authenticated 
Restorable MPI Communication layer to reconstruct the communication channels of the 
parallel application. In G-JavaMPI, we use the Java built-in interface, JVMDI, to capture Java 
process execution states. To enable this feature, we need only to compile Java programs with 
the debugging option switched on. In addition, we set the migration safe point at the first 
bytecode instruction of each source code line. It means that migration can only happen after 
the complete execution of all Java bytecode corresponding to a single Java source code line, 
and before the execution of the next Java source code line. If a migration request is received 
in the middle of executing a Java source code line, the migration will be delayed until the end 
of execution of the current source code line. This source-code-level granularity eliminates the 
need to save operand stacks which are usually non-empty in the middle of the execution of a 
source line, and also avoids the need to save machine-dependent process state information 
which is present during the execution of a native method. Therefore, without modifying the 
JVM, the resulting system can then be as portable as any ordinary Java program. 
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Load Balancing and Controlling Module: A monitor agent is used to detect the available 
computing resources and network bandwidth between Grid points connected across the WAN. 
On the other hand, prediction on the application’s future communication pattern is performed 
through on-the-fly bytecode analysis. The load balancing policy will integrate and analyze all 
those information to give some effective process migration instructions. Therefore, with the 
load balancing and controlling module, the whole middleware can control the applications’ 
execution and make the execution much more efficient. This part of work is still under 
development. We hope to present this in the full version of the paper.   
 
3. Authenticated and Restorable MPI Communication layer 
 
3.1. Client-Server Message Redirection Model  
 

The restorable MPI communication service is based on a client-server model. This 
layer is implemented as a group of MPI daemons in all participating processing nodes in all 
Grid sites. It is a bridge between Java-MPI communication API and underlying native MPI 
libraries. The Java-MPI communication API is the interface for parallel Java processes to 
send requests to MPI daemons. The MPI daemon running on each node of Grid sites is 
responsible for sending messages and receiving messages on behalf of the calling Java 
programs in the same node. The Java programs and the MPI daemon in the same node 
communicate through one or several message queues reserved by the middleware. 

  In order to provide efficient MPI communication, inter-node or inter-site 
communication done by MPI daemons are through the native MPI library. Instead of linking 
the Java program directly with the native MPI library, the native MPI library is linked by the 
MPI daemon such that MPI communication is used exclusively by MPI daemons in different 
nodes for their communication. This approach requires no modification of the existing MPI 
library. The implementation of MPI library we use is MPICH-G2. MPICH-G2 uses services 
provided by the Globus Toolkit to coordinate work and enable authenticated inter-site 
communication in the Grid environment. And it can automatically convert data in messages 
sent between machines of different architectures and supports multi-protocol communication 
by automatically selecting TCP for inter-machine messaging and vendor-supplied MPI (where 
available) for intra-machine messaging.  
 
3.2. Authenticated Communication services 
 
     In the Grid environment, security becomes an important issue. This characteristic is 
one of most significant differences between traditional clusters with Grid. Thus, any sharing 
mechanism must have the ability to authenticate the user’s or job’s identity and determine 
whether the user is authorized to request the resource. The restorable MPI communication 
services can also be taken as a kind of shared resource. Like normal Globus jobs, the 
processes of a Java-MPI job can access normal resources on a user’s half with their delegated 
credentials associated with the user’s credential. However, our MPI communication layer, as 
a server, aims to provide communication services to multiple Java-MPI jobs which may 
belong to the same user or different users. Therefore, to identify different Java-MPI jobs, we 
especially introduce another kind of credential (called Java-MPI job credential) associated 
with a particular Java-MPI job. Through this credential, the processes belonging to the same 
Java-MPI job can identify and authenticate each other, therefore do authenticated 
communication.  

This credential has two versions of implementations, among which one is for the 
server (MPI communication layer), another for each Java-MPI process. (1) The sever-side 
credential is implemented as a table which is shared among all servers in the global range. It 
consists of a globally unique identity key (identifying this Java-MPI job) signed by the MPI 
communication layer, the process distribution information, and the communication record 



 5

information for those processes residing in this node. The communication record information 
may include the sending and receiving message sequence numbers of those processes. This 
information is important for the global communication integrity. (2) The client-site credential 
is used for the processes to interface with the server. Most time it is used per-message, so that 
is implemented as a message envelop. Especially this kind of credential encloses the Java-
MPI credential together with the corresponding process rank which exclusively identifies that 
single process. This credential also encloses that process’s message sequence information for 
the message integrity. Every process will get a credential signed by the underlying MPI 
communication layer during the job start-up. 

     
The authentication process consists of two stages. Fig. 2 shows the basic idea. In first 

stage, the Globus security mechanism checks the user program’s identity using its 
authentication algorithm which is defined by Secure Socket Layer Version 3 (SSLv3) 
protocol. Usually this stage is needed for only one time. With proxy credentials and 
delegation, processes running on the user’s behalf can access all resources other than MPI 
communication resource. In the second stage, the MPI communication layer checks the 
particular Java-MPI job’s identity when the processes of this job attempt to request MPI 
communication service. Then the processes use their own process rank to identify with each 
other during inter-process communication. The most common requests on MPI 
communication service are sending and receiving an MPI message. The second stage of 
authentication is associated with the communication, therefore, this stage happens in per-
message level. Basically, the authentication process involves the following five events: 

(1) user credential authentication  
(2) allocate resource (new process creation)  
(3) request for Java-MPI communication services  
(4) signing a Java-MPI job credential for process(CDJ)  
(5) request of sending or receiving a MPI message with CDJ 

    

 

 

 

 

 

 

Fig. 2. Authentication Process: CUP: user proxy credential. CR: resource credential. CJS: 
Java-MPI job credential in server-side. CDU: delegated user credential. CJC: 
Java-MPI job credential for process (in client-side). 

 
    Therefore, in G-JavaMPI, each Java-MPI process belonging to a user’s application 
has a set of two credentials including the delegated credential associated with the user and the 
job credential associated with the particular Java-MPI job and process. 
 
3.3 Restorable Communication Channel 
 
     In authenticated communication services, the Java-MPI job credential is mainly used by 
the processes to authenticate their identities to the underlying MPI communication layer, 
therefore get authorized interprocess communication with their peers. Except for that 
function, the Java-MPI job credential also provides important support for re-constructing 
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communication channel for the migrated process. In the global Grid system, a Java-MPI job 
credential identifies one unique G-JavaMPI job. A G-JavaMPI job may consist of many 
parallel processes which are distributed on different local nodes of all Grid points. When a 
process is migrated from one location to another location, its physical location changes. But 
its peer processes will not know this change as this migration mechanism is transparent to 
high-level applications. The migrated process will re-construct the communication channels 
with its peer processes through the abstract interface provided by its job credential. Because 
the job credential is constant and in the global range, the migrated process can always get 
contact with its peers in any physical location.  
 
4. Transparent Migration Layer 

 
4.1. State Capturing using JVMDI 

 
The Java Virtual Machine Debugger Interface (JVMDI) [15] is a native interface 

available  for the JVM since Java 2, and is used typically by debuggers. It defines the standard 
services that a JVM must provide for debugging. There are ways to inspect the state and to 
control the execution of applications. On the one hand, we can obtain the runtime information 
of threads, stack frames, local variables, classes, objects, and methods. On the other hand, 
JVMDI can be used to control threads, to set local variables, and to receive notifications of 
events such as method exit/entry and frame pop-up. JVMDI is called by the JVMDI client 
running in the same virtual machine as the application program being debugged. The 
application runs continuously if no debugging requests have been issued.  
     In G-JavaMPI, we make use of JVMDI to capture process states, as this can be done 
much more easily than other existing approaches. The migration layer is implemented as a 
JVMDI client. All the actions performed by the JVMDI client are transparent to the 
applications. In addition, the capturing mechanism is all on top of an ordinary JVM so that no 
modifications of the JVM are required. 
     Although JVMDI functions can inspect information on threads, stack frames, local 
variables, classes, objects, and methods, no functions are provided to extract and rebuild 
operand stacks. And data in the operand stack are JVM-dependent. In addition, when the 
execution point is inside the native method (frame), the local data in the frame are machine-
dependent. All these factors make it very hard to capture and restore operand stacks and also 
destroy the portability of the middleware. Therefore we introduce an approach to makes sure 
that all operand stacks are empty and the execution point is outside of a native method at the 
time of migration. This is achieved through setting Migration Safe Point and bytecode 
rearrangement.  

Migration Safe Point is defined as any execution point on the first bytecode 
instruction of each source code line only in a Java method. If the execution point which a Java 
process reaches to when migration instruction is received is in the middle of executing a Java 
source code line or inside a native method, the point is not safe for migration. In these two 
conditions, the migration will be delayed until reaching the next migration safe point. 
However, this source -code -level migration granularity only assures the empty operand 
stack in the current frame. The bytecode rearrangement introduces some new local variables 
to store those intermediate values in the program’s bytecode file before execution. Therefore, 
the combination of the source-code-level granularity and bytecode rearrangement can make 
the operand stacks of all frames always empty during migration.  

 
4.2. State Restoring using Exception Handler 
 

For the state restoration, we basically follow the same mechanism used in M-
JavaMPI [18]. For the sake of completeness, the working mechanisms are briefly 
discussed here. 
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This mechanism is to add the capacity of restoration exception handling to the 
application’s bytecode in advance, so that the new process can perform restoration of 
execution state with the help of migration layer. Restoration functions are inserted as 
exception handlers to perform restoration under the control of migration layer. Exception 
handlers are inserted in each of the methods. The exception handlers catch and react to 
restoration exceptions. Inside these exception handlers, local variables of the called methods 
are pre-set with the saved information, and a “jump” command is issued to branch to the 
position saved during capturing.  

During restoration, a breakpoint is set at the start of each method associated with 
stack frmes. When any breakpoint is caught, the migration layer will throw a restoration 
exception. Then, in the corresponding method, the exception is caught by the Restoration 
Exception Handler where local variables of the method are restored to the saved values. A 
“branch” command is then performed to jump to the last executed location of the current 
frame. This action is repeated for each frame of the program until the last frame is re-
established. Then the program will execute again from the last executed position.  
 
4.3. Delegation of Credentials During Migration 

 
Apart from the execution state capture and restoration, the migration process also 

involves stopping the old process and creating a new process at the remote destination site. 
Unlike those in a cluster environment, the remote process creation cannot be done simply 
through remote shell or other mechanism without specialized protection of security. In G-
JavaMPI, the security mechanism for the remote process creation is an extension from the 
mechanism provided by GSI (Globus Security Infrastructure) in the Globus toolkit. The 
extension is mainly for the delegation of Java-MPI job credentials. Fig. 3. shows the basic 
operations. 

 
 
 
 
 
 
 
 
  
 

 
 

 Fig. 3. Delegation of Credentials During Migration: CDU : delegated user credential     
CJC  : Java-MPI job credential in client-side. CR : resource credential.  CJS: Java-MPI job 

credential in server-side. CDJC: Delegated Java-MPI job credential 
 

     In fig.3, the process in site 1 will be migrated to site 2. Before the process in site 1 is 
stopped completely, it sends requests to the resources in the remote site 2 with its set of 
credentials. The requests include the request for the new process creation to normal resource 
and the request for the MPI communication services to the Java-MPI communication resource 
(Java-MPI Authenticated & Restorable Communication Layer). On one hand, the new process 
creation is authorized after the authentication check of the delegated user credential. On the 
other hand, the new process created gets a delegated Java-MPI job credential (CDJC) from the 
old process, and then is authorized to use the MPI communication resource with this 
delegated credential. After that, the old process in site 1 can be stopped safely, and the new 
process continues the execution in remote site 2, on behalf of the original process. The 
underlying restorable communication layer will help to re-construct the communication 
channel between the new process with all other processes. 
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4.4. Migration Process 
 

The migration process is like the following. When starting JVM, the JVMDI client is 
started as well to wait any migration instruction from the middleware control block. When 
receiving a migration instruction, the initialization for migration is firstly done. The 
initialization process mainly checks whether the execution point is on the Migration Safe 
Point. When migration is ready to occur, the client suspends the execution of that process. 
And at the same time it sends a message to the local MPI daemon to notify it of the migration. 
After that, it inspects and saves all the Java stack frames created by the migrating Java 
process. For each frame, local variables, referenced objects, the name of the classes and the 
class methods, and the program counter need to be saved into a package using object 
serialization. After the saving, the captured data package is sent to the destination node. And 
before the JVM where the migrated process resides in is stopped, the process sends a request 
of new process creation to the destination node resource with its own set of two credentials. 
After passing the authentication, a new Java-MPI process is created with its own set of two 
credentials that are both delegated from the original process.  

In the destination node, when the data package is received by the MPI daemon, the 
MPI daemon sends a notification message to the migration layer. Then the migration layer 
throws a Restoration Exception to the newly created instance of the process. The Restoration 
Exception handler inserted in each method reads values from the data package using 
mechanisms provide by object serialization and restores those values to local variables. After 
all frames finish restoration, the thread can be resumed to continue its execution.  
 
5. Performance Evaluation  

The implementation of G-JavaMPI involves three system softwares: (1) Java 
Development Kit : Sun JDK 1.4.1 [21] (2) MPI library : MPICH-G2 [3] (3) Grid toolkit: 
Globus Toolkit 2.0 [12]. The introduction of our middleware may have an impact on the 
performance of both the computation and communication parts. The computation part could 
be affected by the state-capturing and state-restoring actions and the use of JVMDI, while the 
communication part could be affected by the authenticated & restorable MPI communication 
mechanism. We divide the evaluations into two important modules: evaluation of the 
performance of the MPI communication layer among intra-sites or inter-sites, evaluation of 
the performance of the process state-capturing and restoring mechanism. 

The experiments were conducted on two 16-node clusters. Each cluster is taken as a 
Grid point. All PCs in a cluster are connected by a 24-port Fast Ethernet switch. The two 
clusters are connected by a single 100Mb/s fast Ethernet link. Each PC has a 733MHz 
Pentium III processor and 392MB of memory, running Linux 2.2.14 with Sun JDK 1.4.1 and 
MPICH 1.2.4. All Java programs were executed in full-speed debugging mode which is new 
feature provided by Sun Java Hotspot JVM in Sun JDK1.4.1 [20]. 

We have tested the communication bandwidths attained respectively for inter-site 
communication and intra-site communication. The fig.4 and fig.5 show the performance 
difference caused by different communication mechanisms. Inter-site communication has 
caused extra latency delay based on intra-site (about 48-52 ms for short messages with size of 
1-32 bytes) and lower bandwidth (lost 7.54% of the peak bandwidth of the intra-site 
communication at 2KB). As the physical network bandwidth inside a grid point and between 
two grid points are basically the same in our experiment, the communication performance gap 
between intra-site and inter-site is mainly caused by the different communication mechanism 
inside a Grid point and between two Grid points. Intra-site communication is done by the MPI 
implementation, while inter-site communication is done through TCP communication. In 
addition, for the security purpose in the underlying Globus service, the inter-site TCP 
communication must go through the local Grid point job-manager to the remote Grid point. 
We think this kind of mechanism cause part of the performance lost. And we analyze that the 
amount of lost bandwidth should be somewhat bigger than 7.54% in the real Grid 
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environment, as this inter-site communication performance will be slowed down by the real 
WAN communication environment. 
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Fig.4. Bandwidth comparison between inter-site and intra-site communication with the 
installation of the MPI communication layer. 
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Fig.5. Latency comparison for small messages between intra-site and inter-site 
communication with the installation of the MPI communication layer. 

 
The migration cost equals to the sum of time spent in capturing state in the source 

node, the time spent in restoring state in the destination node, and the time spent in starting 
the JVM and loading the program in the destination node. We evaluated the time spent in 
capturing state separately on the objects and the frames. Similarly, the time spent in restoring 
state includes two parts: time spent in restoring the objects and time spent in restoring the 
frames. The times spent in restoring both objects and frames are also evaluated. 

Fig.6.shows the time needed in capturing and restoring objects of different sizes. In 
this test, objects that were used are arrays with variable  type “byte”. The data size of a “byte” 
is 1 byte. The minimum overheads in capturing and restoring objects are 1.01 and 0.175 ms 
respectively. The capturing time is about 0.158 µs/bytes and the restoring time is about 0.038 
µs/bytes. 
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Fig.7 shows the time needed in capturing and restoring frames. In this test, no local 
variables were defined in each frame. Hence, the measured time is the minimum overhead in 
capturing and restoring different number of frames. The capturing time is about 4.5ms/frame 
and the restoring time is about 2.68ms/frame. The overhead is mainly caused by the process 
of retrieving the frame information and storing the data structure describing that frame. 
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Fig.6. Time spent in capturing and restoring objects 
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Fig.7. Time spent in capturing and restoring frames 
 

 
Related Work 
 

The Message Passing Interface (MPI) is a widely adopted communication library for 
parallel and distributed computing. There have been efforts to provide MPI for Java language 
[9,10,11,13,14]. Existing approaches to MPI for Java can be grouped into two main types: (1) 
native MPI bindings where the some native MPI library is called by Java programs through 
Java wrappers [9,10,11], and (2)  pure Java implementations [13,14]. The native MPI binding 



 11

approach provides efficient MPI communication through calling native MPI methods. 
Conflicts could arise on the use of system resources such as signals between the MPI library 
and the JVM. The pure Java implementation approach on the other hand can provide a 
portable MPI implementation since the whole MPI library is rewritten in Java, but the MPI 
communication would be relatively less efficient since Java operates at a higher level. All of 
them however did not include any restorable message-passing communication feature. 
Moreover, our Java-MPI layer is “MPI-implementation-independent,” which makes our 
system more portable . All those researches only support the execution in the cluster 
environment, and our middleware is Grid-enabled so that it provides necessary mechanisms 
for the security protection (authentication and authorization) and message integrity.   
     There are systems, such as JESSICA [1], Ara [6], and among others [5,7], that 
provide state-capturing and restoring of Java programs, but these systems need to modify the 
JVM. Some work [4,17] has been done to allow state-capturing and restoring via pre-
processing of bytecode. Our approach is different from this in that extra bytecode is added 
only for state-restoring but not for capturing execution state. Besides, in their approaches, 
code is added to change the original program flow in order to do state-capturing and restoring. 
This could translate into considerable  amount of overhead during runtime. In our approach, 
code is inserted as exception handlers which will only be executed during restoring.  
  Our Grid security mechanism is based on GSI (Grid Security Infrastructure)[8, 19]. 
GSI, a key component of the Globus Toolkit [12], greatly simplifies the usage of multiple 
machines in Grid environment through user single sign-on mechanism. Different from this, 
our mechanism is specially providing the security protection and message integrity for the 
communication-toward applications running across Grid points. Its special support for the 
global-range communication enables those communicating processes to move anywhere 
freely and transparently, therefore enabling better resource sharing. 
 
7. Conclusion 
 

In this paper, we have presented a new middleware for the Grid with Java-MPI 
communication and transparent process migration features. This middleware enable people to 
write MPI-style programs in Java language easily in the Grid environment. The transparent 
Java process migration mechanism will help the user applications to exploit and use the most 
appropriate resources. This will also support the development of any dynamic load balancing 
policy or fault tolerance mechanism. All these features will help Grid applications to utilize 
the Grid resource more efficiently and survive from the poor WAN bandwidth in the Grid 
environment. In future, we will make more evaluation on the Grid applications’ behavior to 
help developing efficient dynamic load balancing policy. 
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