
To appear in Journal of Systems and Software

Fault Localization through Evaluation Sequences I,II

Zhenyu Zhanga, Bo Jianga, W.K. Chanb, T.H. Tsea,1, Xinming Wangc

aDepartment of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong
bDepartment of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong

cDepartment of Computer Science and Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong

Abstract

Predicate-based statistical fault-localization techniques find fault-relevant predicates in a program by contrasting

the statistics of the evaluation results of individual predicates between failed runs and successful runs. While short-

circuit evaluations may occur in program executions, treating predicates as atomic units ignores this fact, masking

out various types of useful statistics on dynamic program behavior. In this paper, we differentiate the short-circuit

evaluations of individual predicates on individual program statements, producing one set of evaluation sequences per

predicate. We then investigate experimentally the effectiveness of using these sequences to locate faults by comparing

existing predicate-based techniques with and without such differentiation. We use both the Siemens program suite and

four real-life UNIX utility programs as our subjects. The experimental results show that the proposed use of short-

circuit evaluations can, on average, improve predicate-based statistical fault-localization techniques while incurring

relatively small performance overhead.

Key words:

fault localization, Boolean expression, predicate, evaluation sequence

I c© 2009 Elsevier Inc. This material is presented to

ensure timely dissemination of scholarly and technical work.

Personal use of this material is permitted. Copyright and all

rights therein are retained by authors or by other copyright

holders. All persons copying this information are expected to

adhere to the terms and constraints invoked by each author’s

copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

Permission to reprint/republish this material for advertising

or promotional purposes or for creating new collective works

for resale or redistribution to servers or lists, or to reuse any

copyrighted component of this work in other works must be

obtained from Elsevier Inc.
IIA preliminary version of this paper (Zhang et al., 2008) has been

presented at the 32nd Annual International Computer Software and

Applications Conference (COMPSAC 2008).

This project is supported in part by the General Research Fund of

the Research Grants Council of Hong Kong (project nos. 111107 and

716507).

Email addresses: zyzhang@cs.hku.hk (Zhenyu Zhang),

bjiang@cs.hku.hk (Bo Jiang), wkchan@cs.cityu.edu.hk

(W.K. Chan), thtse@cs.hku.hk (T.H. Tse), rubin@cse.ust.hk

(Xinming Wang)
1All correspondence should be addressed to Prof. T. H. Tse at

Department of Computer Science, The University of Hong Kong,

Pokfulam, Hong Kong. Tel: (+852) 2859 2183. Fax: (+852) 2858

4141. Email: thtse@cs.hku.hk.

1. Introduction

Software debugging is a crucial development activity,

which may easily take up a significant amount of

resources in a typical software development project. It

has at least three major tasks, namely, fault localization,

fault repair, and regression testing of the repaired

program. Among them, fault localization has been

recognized as the hardest, most tedious, and most time-

consuming (Vessey, 1985). Using an effective fault-

localization technique to assist programmers to find

bugs is a long-standing trend to alleviate the problem.

Many kinds of fault-localization technique have been

proposed. One of them is to apply a statistical approach

to correlating program entities (such as statements or

predicates) with failures. A key insight is based on

the assumption that certain dynamic feature of program

entities is more sensitive to the difference between the

set of failed runs and the set of all (or successful) runs.

Thus, there are two key elements underlying the suc-

cessful applications of such class of dynamic analysis

techniques: First, a technique should use a feature (or

a set of features) to measure sensitivity. Second, the

technique should have a function to compare sensitivity

Preprint submitted to Journal of Systems and Software

Administrator
 HKU CS Tech Report TR-2009-20

values. The function essentially ranks the sensitivity

values in a total order. For example, techniques such

as Liblit et al. (2005) and Liu et al. (2006) produce

a real number value to represent sensitivity, and sort

these values in ascending or descending order. The

relative magnitudes of sensitivity values (rather than

their absolute values, since the value ranges can be

unbounded in general) are popularly used when ranking

the program entities. By mapping the relative order of

the sensitivity values back to the associated program

entities, the techniques can produce a ranked list of

program entities accordingly.

One strategy (Liblit et al., 2005, Liu et al., 2006) is

to use predicates as program entities, and the execution

counts and execution results as the dynamic features.

They are used to estimate the difference between the

probability of failed runs and that of successful runs,

and then sort the program entities accordingly. By

sampling selected predicates, rather than all predicates

or statements, this strategy reduces the overhead in col-

lecting debugging information. It also avoids disclosing

a particular aspect of every execution, such as which

statements have been executed. Hence, it lowers the risk

of information leakage, which is a security concern.

Such a strategy, however, needs to summarize the

execution statistics of individual predicates. A com-

pound predicate may be executed in one way or another

owing to short-circuit evaluations over different sub-

terms of the predicate. The execution statistics of a

compound predicate is, therefore, the summary of a

collection of lower-tier evaluations over different sub-

terms (Zhang et al., 2008). Is differentiating such lower-

tier evaluations beneficial in improving the effectiveness

of predicate-based fault-localization techniques? This

paper conducts a controlled experiment to investigate

the impact of the use of short-circuit evaluation se-

quences to improve statistical fault-localization tech-

niques.

We first give a few preliminaries. A passed test

case is one that shows no failure, and a failure-causing

test case is one identified to have detected a failure.

A typical program contains numerous predicates in

branch statements such as if- and while-statements.

(Some programming languages like C further allow

predicates on assignment statements.) These predi-

cates are in the form of Boolean expressions, such

as “*j <= 1 || src[*i+1] == ’\0’”, which may

comprise further conditions, such as “*j <= 1” and

“src[*i+1] == ’\0’”.

Previous studies on statistical fault localization (Li-

blit et al., 2005, Liu et al., 2006) find the fault-relevant

predicates in a program by counting the number of times

(nt) a predicate is evaluated to be true in an execution

as well as the number of times (n f) it is evaluated to

be false, and then comparing these counts in various

ways. The evaluation bias nt
nt+n f

of a predicate (Liu et

al., 2006) is the percentage that it is evaluated to be true

among all evaluations in a run.

The SOBER approach (Liu et al., 2006) proposes

to contrast the differences between a set of evaluation

biases due to passed test cases and that due to failure-

causing ones for every predicate in the program. It

hypothesizes that, the greater is the difference between

such a pair of sets of evaluation biases, the higher

will be the chance that the corresponding predicate

is fault-relevant. The CBI approach (Liblit et al.,

2005) proposes a heuristic that measures the increase in

probability that a predicate is evaluated to be true in a

set of failure-causing test cases, compared to the whole

set of (passed and failure-causing) test cases. These

proposals are particularly interested in the evaluation

results of predicates. They use the resultant values of

the predicates to determine the ranks.

A predicate can be semantically modeled as a

Boolean expression. As mentioned above and to

be discussed in Section 2, the resultant values of a

Boolean expression may be calculated from different

evaluation sequences or from the whole predicate as

one unit. If we ignore the information on evaluation

sequences, we may be masking out useful statistics for

effective fault localization. In this paper, we investigate

whether the effect of a lower-tier concept — evaluation

sequences — of predicates can be a significant factor

affecting the effectiveness of predicate-based statistical

fault localization. We set up a controlled experiment

to study this question. We further investigate the

performance overhead of our technique using programs

of different scales, analyze the complexity of our

technique, and report empirical results regarding the

time-cost of applying our technique.

The major contribution of this paper is twofold:

(i) We provide the first set of experimental results

regarding the effect of short-circuit evaluations on sta-

tistical fault localization. (ii) We show that short-circuit

evaluation has a significant impact on the effectiveness

of predicate-based fault-localization techniques.

We will illustrate the potential of using evaluation

sequences for fine-grained statistical fault localization

in Section 2, which casts a scene for us to formulate

the research questions in Section 3, followed by the

associated experiment in Section 4. We will then review

related work in Section 5. Section 6 concludes the

paper.

2

2. A Motivating Study

This section shows a motivating study we have

conducted. It enables readers to have a feeling of how

the distribution of evaluation biases at the evaluation

sequence level can be used to pinpoint a fault-relevant

predicate (which also happens to be a faulty predicate in

this example).

The upper part of Figure 1 shows a code fragment

excerpted from the original version (version v0) of

print tokens2 from the Siemens suite of programs (Do

et al., 2005). We have labeled the three individual

conditions as C1, C2, and C3, respectively. The

lower part of the same figure shows the code fragment

excerpted from a faulty version (version v8) of the

Siemens suite, where a fault has been seeded into the

predicate by adding an extra condition “ch == ’\t’”.

We have labeled this condition as C4.

Because of the effect of short-circuit rules of the

C language on Boolean expressions, a condition in a

Boolean expression may be evaluated to be true or

false, or may not be evaluated at all (⊥). Furthermore,

in terms of evaluations, the conditions on a Boolean

expression can be seen as an ordered sequence. In

most cases, when a preceding condition in an evaluation

sequence is not evaluated, by the short-circuit rule, no

succeeding condition in the evaluation sequence will be

evaluated.

For the faulty Boolean expression in the fragment

shown in Figure 1, there are five legitimate evaluation

sequences es1 to es5, as shown in Table 1. The columns

under the individual conditions C1 to C4 represent the

evaluation outcomes of the respective conditions based

on the short-circuit rules of the programming language.

In the column entitled v0, it shows the respective

resultant values of the predicate in the original version

of the program. In this column, the last two grids are

merged because the two evaluation sequences (es4 and

es5) make no difference in the original program. The

column entitled v8 shows the respective resultant values

in the faulty program. The rightmost column shows

whether the original and faulty predicates give the same

values.

To gain an idea of whether short-circuit rules can

be useful for fault localization, we have run an ini-

tial experiment. We apply the whole test pool for

the program from the Software-artifact Infrastructure

Repository (SIR) (Do et al., 2005), and record the

counts of each of the five evaluation sequences for each

test case. Following Liu et al. (2006), we use the

formula nt
nt+n f

in Section 1 to calculate the evaluation

biases for the set of passed test cases, and those for

(a) Results of evaluation sequence es1

(b) Results of evaluation sequence es2

(c) Results of evaluation sequence es3

(d) Results of evaluation sequence es4

Figure 2: Comparisons of distributions of evaluation biases for

evaluation sequences es1, es2, es3, and es4 (x-axis: evaluation bias;

y-axis: no. of test cases).

the set of failure-causing test cases. The results are

shown as the histograms in Figures 2 and 3. The

distribution of evaluation biases over passed test cases

and that over failure-causing test cases are shown side

by side for comparison. Figures 2(a) to 2(d) are

the comparative distributions of the five evaluation

sequences. Figures 3(b) and 3(c) are the comparative

distributions for the whole predicate (when evaluated to

be true and when evaluated to be false, respectively),

as used in Liu et al. (2006).

From the histograms in Figures 2 and 3, we observe

that the distribution of evaluation biases for es4 on

passed test cases is drastically different from that of the

failure-causing ones. Indeed, it is the most different

one among all pairs of histograms shown in the figures.

We also observe from Table 1 that the fault in the code

fragment can only be revealed when es4 is used, and the

fault does not affect the values in the other alternatives.

Our initial study indicates that it may be feasible to

use evaluation sequences to identify a faulty predicate

more accurately. When a fault is not on the pred-

icate, most predicate-based techniques facilitate fault

localization by ranking the predicates in order of their

3

/* Original Version v0 */

if(

C1
︷ ︸︸ ︷

ch == ’ ’ ||

C2
︷ ︸︸ ︷

ch == ’\n’ ||

C3
︷ ︸︸ ︷

ch == 59)

return(true);

/* Faulty Version v8 */

if(

C1
︷ ︸︸ ︷

ch == ’ ’ ||

C2
︷ ︸︸ ︷

ch == ’\n’ ||

C3
︷ ︸︸ ︷

ch == 59 ||

C4
︷ ︸︸ ︷

ch == ’\t’)
return(true);

Figure 1: Code excerpts from versions v0 and v8 of print tokens.

Evaluation
C1 C2 C3 C4 v0 v8 v0 = v8?

sequence

es1 true ⊥ ⊥ ⊥ true true yes

es2 false true ⊥ ⊥ true true yes

es3 false false true ⊥ true true yes

es4 false false false true
false

true no

es5 false false false false false yes

Table 1: Evaluation sequences of code fragments.

(a) Results of evaluation sequence es5

(b) Results when whole predicate is false

(c) Results when whole predicate is true

Figure 3: Comparisons of distributions of evaluation biases for

evaluation sequences es5 and the whole predicate (x-axis: evaluation

bias; y-axis: no. of test cases).

relations to the fault. In such a case, our technique

also works by finding the fault-relevant predicates rather

than the actual faulty statement. However, it is still

uncertain how much the use of evaluation sequences

will be beneficial to fault localization. We will

formulate our research questions in the next section and

then investigate them experimentally in Section 4.

3. Research Questions

In this section, we will discuss the research ques-

tions to be addressed by our controlled experimental

study. We refer to a predicate-based statistical fault-

localization technique as a base technique, and refer to

the use of evaluation sequences in predicate execution

counts as the fine-grained version of the base technique.

RQ1: In relation to the base technique, is the use of eval-

uation sequences for statistical fault localization

effective?

RQ2: If the answer to RQ1 is true, is the effectiveness

of using evaluation sequences significantly better

than the base technique?

RQ3: Do the execution statistics of different evaluation

sequences of the same predicate differ signifi-

cantly?

3.1. Performance Evaluation

Performance metrics are widely used to facilitate

comparisons among different approaches. Renieris and

Reiss (2003) propose a metric (T-score) for measuring

their fault-localization technique. The method is also

adopted by Cleve and Zeller (2005) and Liu et al. (2006)

to evaluate other fault-localization techniques.

For ease of comparison with previous work, we

also use the T-score metric to evaluate the fine-

grained evaluation sequence approach in relation to the

4

corresponding base techniques. We select two base

techniques for study, namely SOBER (Liu et al., 2006)

and CBI (Liblit et al., 2005), because they are repre-

sentative predicate-based fault-localization techniques.

Both of them take Boolean expressions in conditional

statements and loops as predicates and generate a

ranked list showing, in descending order, how much

each of these predicates is estimated to be related to

a fault. Both techniques have been evaluated in a

previous study (Liu et al., 2005) using the T-score

metric (Renieris and Reiss, 2003) and compared with

other fault-localization techniques. Follow-up studies

such as Arumuga Nainar et al. (2007) have been derived

from these techniques. Since the follow-up work is

based on the same framework and hence similar in

nature, we will only use the base versions to investigate

whether we may improve on them using our approach.

If our approach may indeed improve on the two base

techniques, their derived versions should also benefit.

In brief, the T-score metric takes a program P, its

marked faulty statements S, and a sequence of most

suspected faulty statements S′ as inputs, and produces

a value V as output. The procedure to compute the T-

score is as follows: (i) Generate a Program Dependence

Graph (PDG) G for P. (ii) Using the dependence

relations in the PDG as a measure of distance among

statements, do a breadth-first search starting with the

statements in S′, until some statement in S is reached.

(iii) Return the percentage of searched statements (with

respect to the total number of statements in P) as the

value V . If the original S′ consists of k most suspicious

faulty statements, the final result is known as the top-k

T-scores.

This measure is useful in assessing objectively

the quality of proposed ranking lists of fault-relevant

predicates and the performance of fault-localization

techniques. Since the evaluation sequence approach

is built on top of base techniques (such as SOBER

and CBI), we also use T-scores to compare different

approaches in our controlled experiment to answer the

research questions.

3.2. Enabling Fine-Grained View of Base Techniques

As we are interested in studying the impact of short-

circuit evaluations and evaluation sequences for statisti-

cal fault localization, we need a method to incorporate

the fine-grained view into a base technique. Intuitively,

this will provide execution statistics that may help statis-

tical fault-localization techniques identify the locations

of faults more accurately.

We note that a base technique, such as SOBER or

CBI, conducts sampling of the predicates in a subject

program to collect run-time execution statistics, and

ranks the fault relevance of the predicates. To assess

the effectiveness of the selected set of predicates to

locate faults, researchers may use the T-score metric to

determine the percentage of code examined in order to

discover the fault. As such, given a set of predicates

applicable to a base technique, we identify all the poten-

tial evaluation sequences for each of the predicates. We

then insert probes at the predicate locations to collect

the evaluation outcomes of atomic conditions in these

predicates. Based on the evaluation outcomes of the

atomic conditions, we can determine the evaluation

sequence that takes place for every predicate. For each

individual evaluation sequence, we count the number

of times it is executed with respect to every test case.

By treating each evaluation sequence as a distinct (fine-

grained) predicate in the base technique, the ranking

approach in the base technique can be adopted to rank

these fine-grained predicates.

On the other hand, from the developers’ viewpoint,

it may be more convenient to recognize (through their

eyeballs) the occurrence of an original predicate from

the code, rather than an evaluation sequence of the

predicate. Hence, it is to the benefit of developers to

map the ranked evaluation sequences to their respective

predicates and thus the corresponding statements.

Some measures need to be taken in the above

mapping procedure. Different evaluation sequences

may receive different ranks. A simple mapping may

thus result in a situation where a predicate occurs

more than once in a ranking list. We choose to

use the highest rank of all evaluation sequences for

each individual predicate as the final rank of that

predicate. This strategy also aligns with the basic

idea of predicate ranking in SOBER and CBI. We

refer to the fine-grained approach as Debugging through

Evaluation Sequences (DES). Let us take the motivating

example in Section 2 as an illustration. In previous

predicate-based approaches such as SOBER (Liu et al.,

2005), the Boolean expression “ch == ’ ’ || ch ==
’\n’ || ch == 59 || ch == ’\t’” is used as one

predicate. When the Boolean expression is true or

false, previous techniques evaluate the predicate as

true or false, respectively, and records its evaluation

biases accordingly. In our approach, we form a finer-

grained viewpoint and investigate four atomic Boolean

expressions “ch == ’ ’”, “ch == ’\n’”, “ch ==
59”, and “ch == ’\t’” as shown in Table 1. The

evaluation sequence es2, for instance, shows the case

where “ch == ’ ’” is evaluated to be false, “ch ==
’\n’” is evaluated to be true, and the evaluations of

the other two atomic Boolean expressions “ch == 59”

5

and “ch == ’\t’” are short-circuited. Each time the

Boolean expression is evaluated, it must fall into one

(and only one) of the evaluation sequences es1 to es5.

We regard the “falling into” or “not falling into” each

evaluation sequence by the Boolean expression as a

kind of predicate for that evaluation sequence. For

example, if the evaluation of the Boolean expression

falls into the evaluation sequence es2, we regard the

corresponding predicate with respect to es2 as evaluated

to be true; and if the evaluation of the Boolean

expression falls into another evaluation sequence, we

regard the corresponding predicate with respect to es2

as evaluated to be false. We record the evaluation

biases for this kind of predicate accordingly, and adapt

previous techniques to work on the evaluation sequence

level.

4. Controlled Experiment

This section presents a controlled experiment and its

results and analyses.

4.1. Subject Programs and Test Cases

In this study, we choose the Siemens suite of

programs as well as four UNIX utility programs to

conduct our experiment.

The Siemens programs were originally created to

support research on data-flow and control-flow test

adequacy (Hutchins et al., 1994). Our version of

the Siemens programs is obtained from the Software-

artifact Infrastructure Repository (SIR) (Do et al., 2005)

at http://sir.unl.edu. The Siemens suite consists of

seven programs as shown in Table 2. A number of

faulty versions are attached to each program. In our

experiment, if any faulty version comes with no failure-

causing cases, we do not include it in the experiment,

since the base techniques (Liblit et al., 2005, Liu et

al., 2006) require failure-causing test cases. We use

a UNIX tool, gcov, to collect the execution statistics

needed for computation. Six faulty versions that cannot

be processed by gcov are excluded. As a result, we use

126 faulty versions in total.

Since the Siemens programs are of small sizes and

the faults are seeded manually, we also use medium-

sized real-life UNIX utility programs with real and

seeded faults as further subjects to strengthen the

external validity of our experiment. These programs,

also from SIR, include flex, grep, gzip, and sed as

shown in Table 2. Each of these programs has one

or more versions and each version contains dozens of

single faults. We create one faulty program for each

single fault, apply the same strategy above to exclude

problematic ones, and use a total of 110 faulty versions

as target programs.

Each of the Siemens and UNIX programs is equipped

with a test pool. According to the authors’ original

intention, the test pool simulates a representative subset

of the input domain of the program, so that test suites

should be drawn from such a test pool (Do et al., 2005).

In the experiment, we follow the work of Liu et al.

(2006) to input the whole test pool to every technique

to rank predicates or their evaluation sequences.

Table 2 shows the statistics of the subject programs

and test pools that we use. The data with respect to each

subject program, including the executable lines of code

(column “LOC”), the number of faulty versions (col-

umn “# of Versions”), the size of the test pool (column

“# of Cases”), the number of Boolean expressions (col-

umn “# of Bools”), the average percentage of Boolean

expression statements with respect to all statements

(column “% of Boo”), and the average percentage of

compound Boolean expression statements with respect

to all Boolean expression statements (column “% of

Com”), are obtained from SIR (Do et al., 2005) as

at January 10, 2008. Since the subject programs

print tokens and print tokens2 have similar structures

and functionality, and each has only a few faulty

versions (which cannot give meaningful statistics), we

show their combined results in the figure. (By the same

token, the combined results of schedule and schedule2

are shown in Figure 7.) For instance, there are 10 faulty

versions for the print tokens2 program. Their sizes vary

from 350 to 354 LoC, and their test pool contains 4115

test cases. On average, 5.4% of the Boolean expression

statements in these faulty versions contain compound

Boolean expressions. Other rows can be interpreted

similarly. We note that many faults in these faulty

versions do not occur in predicates.

We observe from the column “% of Com” that,

in each subject program, the percentage of predicates

having more than one atomic condition is low. This

makes the research questions even more interesting: We

would like to see whether such a low percentage would

affect the performance of a base technique to a large

extent.

4.2. Setup of Controlled Experiment

In this section, we describe the setup of the con-

trolled experiment. Using our tool, we produce a

set of instrumented versions of the subject programs,

including both the original and faulty versions. Based

on the instrumentation log as well as the coverage files

created by gcov, we calculate the execution counts for

6

Program LOC
of # of # of % of % of

Versions Cases Bools Bools Compounds

print tokens
341–354 17 4130 81 23.7 1.7

(2 programs)

replace 508–515 31 5542 66 12.9 2.0

schedule
261–294 14 2710 43 16.4 1.0

(2 programs)

tcas 133–137 41 1608 11 8.1 2.4

tot info 272–274 23 1052 46 16.8 5.6

Average 310 18 3115 55 16.9 3.0

flex (2.4.7–2.5.4) 8571–10124 21 567 969 10.3 5.5

grep (2.2–2.4.2) 8053–9089 17 809 930 10.9 14.1

gzip (1.1.2–1.3) 4081–5159 55 217 591 12.7 11.6

sed (1.18–3.02) 4756–9289 17 370 552 7.8 11.6

Average 7390 28 491 761 10.4 10.7

Legion:

LOC: executable lines of code.

of Versions: no. of faulty versions.

of Cases: no. of test cases in the test pool.

of Bools: average no. of Boolean expressions.

% of Bools: average percentage of Boolean expression statements

with respect to all statements.

% of Compounds: average percentage of compound Boolean expressions

with respect to all Boolean expressions.

Table 2: Statistics of subject programs.

the evaluation sequences, and finally rank the Boolean

expression statements according to the description pre-

sented in Section 3. We also calculate the number

of faults successfully identified through the examined

percentage of code at different T-scores (see Section 3).

The experiment is carried out on a DELL PowerEdge

1950 server with two 4-core Xeon 5355 (2.66Hz)

processors, 8GB physical memory and 400GB hard disk

equipped, serving Solaris UNIX with the kernel version

of Generic 120012-14.

Our experimental platform is constructed using the

tools of flex++ 2.5.31, bison++ 1.21.9-1, CC 5.8, bash

3.00.16(1)-release (i386-pc-solaris2.10), and sloccount

2.26.

4.3. Results and Analysis

In this section, we present the experimental results,

compare the relative improvements in effectiveness

of the integrated approach with respect to the base

techniques, and address the research questions one by

one.

4.3.1. Overall results of DES-enabled techniques

Figure 4(a) compares the results by SOBER and

DES-enabled SOBER on all 11 programs, and Fig-

ure 4(b) compares those by CBI and DES-enabled CBI

on the same programs. For ease of discussion, we refer

to DES-enabled SOBER as DES SOBER, and DES-

enabled CBI as DES CBI.

The x-axis of each plot in these two figures shows

the T-scores, each of which represent the percentage of

statements of the respective faulty program version to be

examined. The y-axis is the percentage of faults located

within the given code-examination range. According

to Liu et al. (2006), the use of the top 5 predicates in

the ranked list will produce the best results for both

SOBER and CBI. For a fair comparison with previous

work, we also adopt the use of the top 5 predicates in

the controlled experiment. In the remaining parts of the

paper, therefore, we will always compare the top-5 T-

scores for DES SOBER and DES CBI against those for

SOBER and CBI.

We observe from Figure 4(a) that DES SOBER

consistently achieves better average fault-localization

results (that is, more faults for the same percentage

7

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on all programs

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on all programs

Figure 4: Comparisons of DES-enabled techniques with base techniques on all programs.

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on print tokens and

print tokens2 programs

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on print tokens and

print tokens2 programs

Figure 5: Comparisons of DES-enabled techniques with base tech-

niques on print tokens and print tokens2 programs.

of examined code) than SOBER. For example, when

examining 10 percent of the code, DES SOBER can

find about 5% more faults than SOBER. As the

percentage of examined code increases, however, the

difference shrinks. This is understandable because,

when an increasing amount of code has been examined,

the difference between marginal increases of located

faults will naturally be diminished. When all the faults

are located or all the statements are examined, the two

curves will attain the same percentage of located faults.

We also observe from Figure 4(b) that DES CBI also

outperforms CBI. When examining 10 percent of the

code, DES CBI can find about 10% more faults than

CBI.

4.3.2. Individual results of DES-enabled techniques

To further verify whether the above results generally

hold for all the programs, we examine the outcomes of

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on replace program

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on replace program

Figure 6: Comparisons of DES-enabled techniques with base tech-

niques on replace program.

each individual program, as shown in Figures 5 to 13.

Let us first focus on Figure 5. It shows the results

of CBI, DES CBI, SOBER, and DES SOBER on the

print tokens and print tokens2 programs. For these

two programs, DES SOBER outperforms SOBER for

almost the entire code-examination range from 0 to 100

percent, except two short ranges around 10 percent and

30 percent. Similarly, DES CBI performs better than

CBI almost throughout the range from 0 to 100 percent.

Let us move on to the replace program. DES SOBER

and DES CBI again exhibit advantage over SOBER and

CBI, respectively, almost throughout the entire range

from 0 to 100 percent.

For the programs schedule and schedule2, neither

DES SOBER nor SOBER shows advantage over each

other. However, for the same programs, DES CBI

shows advantage over CBI throughout the range from

0 to 100 percent.

For the tcas program, DES SOBER and DES CBI

obviously perform better than SOBER and CBI, respec-

8

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on schedule and

schedule2 programs

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on schedule and sched-

ule2 programs

Figure 7: Comparisons of DES-enabled techniques with base tech-

niques on schedule and schedule2 programs.

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on tcas program

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on tcas program

Figure 8: Comparisons of DES-enabled techniques with base tech-

niques on tcas program.

tively, except that DES CBI is caught up by CBI when

examining more than 60% code.

For the tot info program, DES SOBER shows great

advantage over SOBER in the code-examination range

from 20 to 30 percent. DES SOBER also shows

continuous and steady advantage over SOBER in the

range from 50 to 90 percent. In the remaining ranges,

DES SOBER and SOBER perform comparably. At the

same time, DES CBI shows observable advantage over

CBI.

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on tot info program

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on tot info program

Figure 9: Comparisons of DES-enabled techniques with base tech-

niques on tot info program.

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on flex program

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on flex program

Figure 10: Comparisons of DES-enabled techniques with base

techniques on flex program.

We next move to the flex program. DES SOBER

outperforms SOBER in the code-examination range of

0 to 45 percent, after which they show comparable

effectiveness. However, for the same program flex,

neither CBI nor DES CBI shows consistent advantage

over each other. CBI is more effective than DES CBI in

the code-examination range of about 35 to 55 percent.

In other ranges, DES CBI is more effective than CBI.

On average, they perform comparably to each other.

For the grep program, DES CBI noticeably outper-

forms CBI, while there is no obvious difference between

DES SOBER and SOBER. In the first 10 percent code-

9

90%

100%

50%

60%

70%

80%
a

u
lt

s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on grep program

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on grep program

Figure 11: Comparisons of DES-enabled techniques with base

techniques on grep program.

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on gzip program

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on gzip program

Figure 12: Comparisons of DES-enabled techniques with base

techniques on gzip program.

examination range, SOBER locates more faults than

DES SOBER, but is caught up when examining 10 to

20 percent of the code. For both DES SOBER and

SOBER, all the faults in the faulty versions of grep can

be located when examining up to 40 percent of the code.

In short, their effectiveness is also comparable.

For the gzip program, both DES SOBER and

DES CBI locate more faults than SOBER and CBI,

respectively, in the entire code-examination range.

The comparison results for the sed program are like

those for the extsfflex program. DES SOBER shows

an observable advantage over SOBER, while neither

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_SOBER

SOBER
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(a) SOBER on sed program

90%

100%

50%

60%

70%

80%

a
u

lt
s
 l

o
c
a

te
d

10%

20%

30%

40%

%
 o

f
fa

DES_CBI

CBI

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of code examined

(b) CBI on sed program

Figure 13: Comparisons of DES-enabled techniques with base

techniques on sed program.

DES CBI nor CBI shows steady advantage over each

other. CBI catches up with DES CBI only in the code-

examination range of 10 to 30 percent. DES CBI

always locates more faults than CBI in other code-

examination ranges.

In summary, we observe that, on average, the DES-

enabled techniques are comparable to, if not more

effective than, their respective base techniques for the

programs under study.

4.3.3. Answering RQ1: Is DES effective?

From the results of the Siemens suite of programs

(Figures 5 to 9), we have just observed that the DES-

enabled techniques are at least comparable to their base

counterparts. However, the Siemens programs are small

in size. To further generalize our findings, we have

also studied the DES approach on four UNIX utility

programs. The results are similar. Since both SOBER

and CBI are deemed as effective techniques in previous

studies (Liu et al., 2005), we can, therefore, answer the

first research question — the DES approach is effective.

4.3.4. Answering RQ2: Is DES better?

Our intuitive observation above, drawn from Fig-

ures 5 to 13, is that the DES approach is comparable

to, if not more effective than, the respective base fault-

localization technique. We are interested in finding out

whether, on average, there is significant advantage in

using the DES-enhanced fault-localization techniques

over the base techniques.

To do that, we compare for each program the relative

improvements in effectiveness of the DES-enabled

10

Program

Mean relative Stdev of relative

improvement improvement

in effectiveness in effectiveness

print tokens (2 programs) 145% 561%

replace 38% 170%

schedule (2 programs) 94% 377%

tcas 30% 221%

tot info 12% 132%

flex –3% 31%

grep 22% 96%

gzip –4% 22%

sed –10% 94%

Weighted average 24% 119%

Unweighted average 35% 189%

Table 3: Statistics on relative improvements in effectiveness.

versions with respect to the base techniques, as shown in

Table 3. For each program having n faulty versions, we

use Ci, DCi, Si, and DSi to represent the T-scores of CBI,

DES CBI, SOBER, and DES SOBER for the i-th faulty

version. We compute (Ci −DCi)/Ci and (Si −DSi)/Si

to estimate the relative improvements in effectivensss

when the respective techniques are DES-enabled. We

then calculate the mean and standard deviation for the

full set of these values (that is, {(C1 −DC1)/C1, (S1 −
DS1)/S1, (C2 − DC2)/C2, (S2 − DS2)/S2, . . . , (Cn −
DCn)/Cn, (Sn−DSn)/Sn}). We note that each mean and

standard deviation are averaged over both DES SOBER

and DES CBI. From the table, we observe that in 8

programs out of 11, the mean effectiveness of the DES-

enabled techniques outperforms that of the respective

base techniques.

We also show the weighted averages and unweighted

averages for these statistical parameters. The former

means averaging the statistical parameters (means or

standard deviations) of each program with weights

equal to the number of faulty versions of that pro-

gram. The latter means directly averaging the statistical

parameters for each program. In either case, there

is, on average, at least a relative increase of 24% in

effectiveness by the DES-enabled versions with respect

to base techniques SOBER and CBI. However, the

effectiveness improvements are not uniform.

Since, on average, there are effectiveness improve-

ments from a base technique to its DES-enabled version,

we want to know whether such improvements are

statistically significant. We would like to find out the

answer to the following hypothesis:

“H0: Does a technique enabled with the eval-

uation sequence approach have no significant

difference from the base technique?”

If the answer is false, we are confident that the DES

approach is significantly different from the base fault-

localization technique. Considering our previous ob-

servation that the DES approach, on average, improves

its base version, we may then regard a DES approach

as significantly more effective than its base fault-

localization technique.

We perform two-tailed Mann-Whitney U-tests to

compare the DES-enabled techniques with the corre-

sponding base techniques with respect to every indi-

vidual subject program. The p-values for hypothesis

testing on the programs are listed in Table 4.

From the results, we observe that all but one of the

p-values are smaller than 0.05, which indicates that the

null hypothesis can be successfully rejected at the 5%

significance level. (The only exception is the Mann-

Whitney U-test between DES SOBER and SOBER on

grep, which has a p-value of 0.09.) In conclusion, the

test result of our null hypothesis H0 implies that DES-

enabled techniques are significantly more effective than

their base counterparts. Therefore, our answer to RQ2

is that DES-enabled techniques are significantly more

effective than their respective counterparts. The answer

to RQ2 also confirms that short-circuit evaluation rules

do have significant positive impacts on statistical fault

localization. 2

Besides, we also notice that the DES-enabled tech-

niques are marginally less effective than their base

counterparts for the gzip and flex programs. One

2 We are conservative about the conclusion because it is subject to

external threats to validity to generalize the results.

11

Program CBI SOBER

print tokens (2 programs) 1.04×10−15 2.67×10−10

replace 2.84×10−9 1.89×10−16

schedule (2 programs) 9.80×10−11 3.00×10−3

tcas 4.17×10−10 3.90×10−15

tot info 1.79×10−13 4.86×10−8

flex 3.18×10−4 4.00×10−11

grep 2.08×10−4 9.08×10−2

gzip 1.57×10−27 4.76×10−26

sed 2.13×10−2 2.23×10−2

Table 4: p-values of U-tests on Siemens programs and UNIX programs.

may anticipate that our approach will have more im-

provements on the base techniques for programs with

higher percentages of compound Boolean expressions

(as shown in Table 2) than for programs with lower

percentages of compound Boolean expressions. This

is because our fine-grained approach especially im-

proves the ranking accuracy for compound Boolean

expressions. On the other hand, we observe that the

DES-enabled techniques perform better on small-sized

(Siemens) programs than on medium-sized (UNIX)

programs. We notice that the average percentage of

compound Boolean expressions (with respect to all

expressions) in the UNIX programs is higher than that

in the Siemens programs. This unexpected discrepancy

can be explained as follows: When we analyze the faults

in the Siemens and UNIX programs, we find that higher

percentages of faults in the Siemens subjects are on

or close to predicate statements, whereas only a few

faults in UNIX subjects are on or close to predicate

statements. For example, 8 out of 10 faults associated

with print tokens2 are on the Boolean expressions of

predicate statements, while only 4 out 17 faults asso-

ciated with version 3 of flex are on Boolean expressions

of predicate statements.

4.3.5. Answering RQ3: Do different evaluation se-

quences give the same result?

To answer RQ3, we collect the execution statistics

of all the evaluation sequences for each Boolean ex-

pression in the Siemens suite of programs to calculate

the statistical differences between passed and failure-

causing test cases. (Owing to our resource limitation,

we do not repeat this part of the experiment on the

UNIX subject programs.)

We perform a U-test between the evaluation biases

for the sets of evaluation sequences over the same

predicate in passed and failure-causing test cases. The

results of the U-test show that, for 59.12% of the

evaluation sequences, there is a significant difference (at

the 5% significance level) between the evaluation biases

of passed and failure-causing test cases. In other words,

59.12% of the evaluation sequences are useful fault

location indicators, while the remaining 40.87% are

not useful standalone fault predicators to differentiate

failure-causing test cases from passed ones.

The answer to RQ3 is that different evaluation

sequences of the same predicate may have different

potentials for fault localization.

4.4. Discussion

Like existing predicate-based fault-localization tech-

niques, our DES technique is also developed on top of

predicate evaluation. Unlike them, however, it works at

a finer granularity. All such class of techniques (includ-

ing ours) use predicates to indicate the neighborhoods

in which faults may reside. The effectiveness of these

techniques generally depends on the locations of the

faults and how well predicates surround such faults. In

this section, we will elaborate on why DES-enabled

techniques are more effective than the respective base

techniques by taking a closer look at two important

cases in faulty programs. We will further discuss

other factors that may affect the performance of our

techniques. We will also analyze the time complexity

and study the empirical performance overheads when

applying our technique.

4.4.1. Case 1: Fault on compound predicate

We discuss a fault on a compound predicate in the

first case study. The fault is taken from faulty version

v9 of the print tokens2 program. It is in a decision

statement on line 218. The code fragments of the

original version and the faulty version are shown in

Figure 14.

This fault is caused by adding a Boolean expression

headed by an “or” operator to the end of the original

12

/* Original Version

v0 */

if(ch == ’\n’)

/* Faulty Version

v9 */

if(ch == ’\n’ || ch ==
’\t’)

Figure 14: Code excerpts from versions v0 and v9 of print tokens2.

compound predicate. The fault will be activated only if

the original predicate is evaluated to be false and the

extra Boolean expression is evaluated to be true (that

is, only if the short-circuit evaluation sequence of the

resultant expression is 〈false, true〉).
DES-enabled techniques divide test cases into two

groups, namely, test cases that exercise the evaluation

sequence 〈false, true〉 (thus, triggering the fault that

leads to a program failures), and test cases that do not

trigger the fault. As a result, this evaluation sequence

is ranked as highly fault-relevant and its corresponding

predicate is deemed to be highly related to the program

failure. In our experiment, the rank of the faulty

predicate is 10 by DES SOBER and 11 by DES CBI.

For the corresponding base techniques, however,

test cases with evaluation sequences 〈true〉 and

〈false, true〉 have been mixed up and treated as

similar. As a result, the faulty predicate is perceived

by base techniques as less fault-relevant than by DES-

enabled techniques. In our experiment, the rank of the

faulty predicate is 56 by SOBER and 218 by CBI.

From this case study, we see how a fine-grained anal-

ysis technique enables more precise fault localization.

4.4.2. Case 2: Fault on atomic predicate

Let us further focus on a second case, where a fault

is seeded on a predicate having an atomic Boolean

expression. Specifically, we take this fault from faulty

version v8 of the tot info program. It is a computational

fault seeded to an atomic predicate on line 201, as

shown in Figure 15. For ease of reference, we call this

predicate ap1.

The whole faulty version includes 46 predicates, only

two of which contain compound Boolean expressions.

We refer to the first one (on line 57) as cp2 and the

second one (on line 308) as cp3, as listed in Figure 16. In

this example, we use ap1 to denote an atomic predicate,

and cp2 and cp3 to denote two compound predicates.

For each of the other 44 atomic Boolean expressions

(including ap1), both CBI and DES CBI give the same

ranking score. The rationale is that the predicates are

/* Original Version v0 */

ap1: return sum * exp(-x + a * log(x)

- LGamma(a))

/* Faulty Version v8 */

ap1: return sum * exp(x + a * log(x)

- LGamma(a))

Figure 15: Code excerpts from versions v0 and v8 of tot info.

cp2: for (p=line; *p != ’\0’ &&

isspace((int) *p); ++p)

cp3: if (rdf <= 0 || cdf <= 0)

Figure 16: Code excerpts from versions v0 and v8 of tot info.

atomic, and hence there is no possibility of a short-

circuit evaluation.

However, CBI gives ranks of 46 and 25 to predicates

cp2 and cp3, respectively, while our DES CBI technique

gives ranks of 46 and 45, respectively. This is

because these two are compound predicates and CBI

and DES CBI may generate different ranking scores

(and hence different ranks) for them. Finally, the faulty

predicate ap1 is ranked as 24 by CBI, and ranked

as 23 by DES CBI. Thus, DES CBI make a more

correct assessment that cp2 and cp3 are less fault-

relevant than ap1, whereas CBI mistakenly gives higher

suspiciousness to cp3 than ap1.

A similar phenomenon is observed for SOBER and

DES SOBER. SOBER gives ranks of 20 and 7 to pred-

icates cp2 and cp3, respectively, while DES SOBER

gives ranks of 38 and 41, respectively. For each of

the other 44 atomic predicates (including ap1), both

SOBER and DES SOBER generate the same relative

ranking. The faulty predicate ap1 is ranked as 22 by

SOBER and 20 by DES SOBER. Thus, DES SOBER

make a more correct assessment that cp2 and cp3 are less

fault-relevant than ap1, whereas CBI mistakenly gives

higher suspiciousness to cp2 and cp3 than ap1.

In cases where faults are on atomic predicates, there

may also exist other predicates that contain compound

Boolean expressions. From our previous case study

about faults on compound Boolean predicates, we know

that DES-enabled techniques may give more accurate

ranking results on these compound predicates than

SOBER and CBI do. Thus, the noise (possible inac-

curate ranking results) from other compound predicates

can be reduced. The present case study confirms that

DES-enabled techniques may produce a more accurate

ranking of predicates even if the faulty predicate is

atomic.

13

4.4.3. Time complexity, actual time-cost, and other

discussions

Let p1, p2, . . . , pm be the Boolean predicates of

the program, and k1, k2, . . . , km be the numbers of

atomic Boolean expressions in the respective predicates.

Suppose the time complexity for applying a base

technique to investigate one predicate is Obase. The

time complexity for applying a base technique to the

program will be O(Obase ×m). The time complex-

ity of the corresponding DES-enabled technique will

then be O(Obase ×∑
m
i=1 ki). This is because a DES-

enabled technique uses the same algorithm as the base

technique, and the only difference is that the DES-

enabled technique works on evaluation sequences while

the base technique works on predicates. Thus, for each

evaluation of a predicate, in the worst case, it will

evaluate all the atomic components of the predicate, and

call an invocation of the base algorithm every time.

Thus, the time complexity of applying DES on a

base technique is higher than that of the base technique.

It is easy to figure out that the increase of the time

complexity from the base technique to its DES-enable

version is 1
m ∑

m
i=1 ki. This number is the average number

of atomic expressions inside the Boolean expressions

in the program. We are confident that it is not a large

number in realistic programs. For instance, this number

is always less than 5 in the Siemens and UNIX programs

used in our experiment.

In addition, the data structure of the evaluation

sequence needs to be kept during evaluation. What if

we translate each Boolean expression into binary code

(or lower level representation) and perform a statement-

level fault-localization technique on each assembly

instruction? Using such a transformation, every atomic

component in a compound Boolean expression can be

considered, say, as a complete assembly instruction,

and the construction of evaluation sequences can be

avoided. However, the executions of such instruction

statements are not independent of one another, and

hence separately estimating their suspiciousness from

their execution status may not be accurate. One

may further argue to correlate a set of predicates

(or statements) to improve the effectiveness of fault

identification. We argue, however, that finding such

a set of predicates is the exactly basic idea behind

our approach. An evaluation sequence contains the

information of the legitimate value combinations of

atomic predicates that developers compose in the code.

We believe that it is a natural and objective criterion to

find out such a set of correlating predicates in programs.

What if a technique uses the full combination of

truth values of each atomic Boolean expression, but

does not consider the evaluation sequences? Suppose

b1⊕b2⊕·· ·⊕bn (where ⊕ stands for a logical operator)

is a compound Boolean expression. Since each atomic

Boolean expression bi may have a truth value of either

true or false, the full combination of truth values

of these n atomic Boolean expressions is a set of 2n

elements. The time complexity of such a proposal

will be O(Obase ×2n), and some value combinations

are very likely to be illegitimate in actual program exe-

cutions. Consider, for instance, a Boolean expression

“p != null && p[0] != null”. The value combi-

nation of 〈false, true〉 cannot appear in any actual

program execution owing to the short-circuit evaluation

logic in the C language. Compared with the fault

indicators above, evaluation sequences of predicates

are natural, objective, and effective program entities to

extract dynamic features for fault localization.

An empirical study of the actual performances of

the DES-enabled techniques compared with those of

the respective base techniques is listed in Table 5.

The actual time-cost in each step is small enough for

practical applicability.

4.5. Threats to Validity

We briefly summarize below the threats to validity in

our controlled experiment.

Construct validity is related to the platform depen-

dence issues when using the Siemens suite of programs

in SIR (Do et al., 2005). Since every program in SIR has

a fault matrix file to specify the test verdict of each test

case (that is, whether it is a passed or failure-causing

test case), we also create a fault matrix file for our test

results and carefully verify each test verdict against the

corresponding one supplied by SIR. We observe that

there are only minor differences in test verdicts between

the two fault matrix files. We have thoroughly verified

our setting, and believe that the difference is due to

platform dependence issues.

Internal validity is related to the risk of having

confounding factors that affects the observed results.

Following Liu et al. (2006), in the experiment, each

technique uses all the applicable test cases to locate

fault-relevant predicates in each program. The use of a

test suite with a different size may give a different result

(Liu et al., 2006). Evaluations on the impact of different

test suite sizes on our technique would be welcome.

Another important factor is the correctness of our tools.

Instead of adopting existing tools used in the literature,

we have implemented our own tools in C++ for the

purpose of efficiency. To avoid errors, we have adhered

to the algorithms in the literature and implemented and

14

Time-cost

DES Base

Siemens UNIX Siemens/UNIX

Programs Programs Programs

Instrumentation comparable to gcc compilation time

Exe. statistics collection about 1/10 of program execution time

Statement ranking
0.1×10−3 to 16.8×10−3 to

less than 0.1 s
15.7×10−3 s 120.7×10−3 s

Locating fault using 7.0×10−6 to 18.0×10−6 to
less than 0.1 s

generated ranking list 50.0×10−6 s 823.0×10−6 s

Table 5: Timing statistics in the experiment.

tested our tools carefully. To align with previous work,

we use the T-score metric to compute the results of

this experiment. The use of other metrics may produce

different results.

Internal validity is also related to any affecting factors

we may or may not have realized. As shown in

Section 4.3.4, we have listed the related statistics and

explained the reason why our technique appears to be

more effective on the small-sized subject programs than

the medium-sized subject programs. There may be

other implicit factors that may affect the effectiveness

of our technique and other predicate-based techniques.

External validity is the degree to which the results

can be generalized to test real-world systems. We

use the Siemens suite and four UNIX utility programs

in the experiment to verify the research questions

because they are commonly used by researchers in

testing and debugging studies with a view to comparing

different work more easily. Further applications of our

approach to medium-to-large-sized real-life programs

would strengthen the external validity of our work.

Each of the faulty versions in our subject programs

contains one fault. Despite the competent programmer

hypothesis, real-life programs may contain more than

one fault. Although Liu et al. (2005) have demonstrated

that predicate-based techniques can be used to locate

faults in programs that contain more than one fault, their

effectiveness in this scenario is not well discussed. We

will address this threat in future work.

5. Related Work

There are rich categories of techniques in statisti-

cal fault localization. There are others besides the

predicate-based category (Liblit et al., 2005, Liu et al.,

2006). Since these two techniques have been explained

in previous sections of this paper, we do not repeat the

introduction here.

Delta Debugging (Cleve and Zeller, 2005, Zeller

and Hildebrandt, 2002) isolates failure-inducing input

components, produces cause-effect chains, and locates

suspicious faults through the analysis of program state

changes during a failed execution against a successful

one. It isolates the relevant variables and values by

systematically reducing the state differences between

a failed run and a successful one. Other techniques

also use a pair of passed test case and failed test case

to debug programs. For instance, Renieris and Reiss

(2003) find the difference in execution traces between a

failed execution and its “nearest neighbor” successful

execution. However, coincidental correctness may

occur in a successful execution (Wang et al., 2009). A

poorly chosen successful run may adversely affect the

effectiveness of the above technique and the like. On

the other hand, DES may suffer less by having multiple

runs to reduce the adverse effect of individual runs and

improve the overall reliability.

Other techniques also use the difference in state

values for fault localization. For example, Jeffrey et

al. (2008) improve Tarantula by considering dataflow

information. Their technique collects all possible values

of each program variable in all runs, iteratively replaces

the value of each program variable in turn in each

run, estimates the probability that such replacement

converts a failure-causing test case into a passed test

case, and then estimates the suspiciousness of state-

ments accordingly. The value replacement concept is

interesting. To cast the technique to DES, should a

similar replacement idea on atomic predicate evaluation

or Boolean expression evaluations be useful? The

question has partially been answered by Zhang et al.

(2006), in which values of program predicates are

switched between false and true to see whether such

a switching converts a failed run into a successful

one. Any influencing predicate possibly pinpoints the

location of a fault that causes the program to crash.

In their work, the test oracle is limited to detecting

15

executions that crash a given program. For failed runs in

general, it would be interesting to know whether a fine-

grained predicate switching, in the sense of evaluation

sequence, can be useful.

DES is a kind of statistical fault-localization tech-

nique. Thus, we further compare DES with other

representative techniques in this category. Jones et

al. (2002) propose Tarantula, which estimates the ratio

between the percentages of failure-causing and passed

test cases that execute each statement. It then ranks

program statements according to their relevance to pro-

gram faults. A subsequent evaluation (Liu et al., 2005)

shows that SOBER and Tarantula cannot outperform

each other. In this paper, we have used the same

evaluation subjects (the Siemens suite of programs) as

in the controlled experiment presented in Liu et al.

(2005). Our results show that DES outperforms SOBER

on these subject programs. Another difference is that

Tarantula ranks individual program entities whereas

DES combines multiple fine-gained entities into one

during statistical evaluation.

An inherent advantage of producing a ranked se-

quence of program entities is that developers can con-

servatively follow the rank to check program entities in

turn. However, it is also a limitation due to suppressed

parallelism. Jones et al. (2007) use a hierarchical

clustering technique to improve the situation. It groups

a given set of failed test cases into sub-clusters by using

unsupervised learning, and then pairs each cluster of

failed test cases with the set of passed test cases when

applying Tarantula. DES has not explored parallelism.

Recently, there is further work on empirical evalu-

ation of statistical fault-localization techniques. Yu et

al. (2008) examine the impact of test suite reduction on

different statement-based fault-localization techniques.

Like the controlled experiment results presented in Liu

et al. (2005), their results show that reducing the size of

test suites have significant deterioration effect on fault

localization. On the other hand, Abreu et al. (2009)

report that the performance of Tarantula can be largely

independent of how test sets are composed and the use

of a small number of failed test cases can be very ef-

fective in achieving almost optimal diagnosis accuracy.

Our DES approach distinguishes different executions

that previous techniques have mixed up. Compared with

the base techniques, DES inherently reduces the number

of executions applicable to each evaluation sequence.

We believe that the result of Abreu et al. (2009) hints

a potential way to improve the effectiveness of DES

by, for instance, first checking whether a few failed

test cases have executed every evaluation sequence,

followed by the generation of additional failed test

cases for those evaluation sequences that do not involve

sufficient failed executions. However, given the mixed

results in previous empirical studies, and given that it

is more robust to use non-parameter techniques (Zhang

et al., 2009), additional empirical studies are needed to

confirm our belief.

Studies of test suite sizes highlight the importance

of efficiency. Baudry et al. (2006) introduce dynamic

basic blocks of a program, which are covered by exactly

the same test cases. The lack of variation in the count

statistics may not help Tarantula differentiate program

statements. They propose a bacteriological approach

to finding a subset of a test suite that maximizes the

number of dynamic basic blocks. They report that the

technique can use fewer test cases than Tarantula to

achieve the same effectiveness in fault localization. The

same approach may also be applied to DES-enhanced

techniques by considering predicates instead of program

statements. Intuitively, the concept of maximizing the

number of dynamic basic blocks can be adapted to

maximize the variations in the predicates or evaluation

sequences. We are, however, uncertain before actual

experimentation whether such an approach may signifi-

cantly improve DES.

Another way to reduce cost is to control which test

cases to be executed by the program. Jiang et al.

(2009) investigate the changes in the effectiveness in

fault localization when only a prioritized fragment of

a test suite is available. It shows that random test

case prioritization to support statistical fault localization

can be cost-effective. Their approach is on selected

statement-based fault-localization techniques, whereas

DES enhances predicate-based fault-localization tech-

niques. Obviously, more follow-up studies are needed

to see whether DES can integrate well with other types

of test case prioritization/reduction techniques.

6. Conclusion

Program debugging is time-consuming but important

in software development. A major task in debugging

is to locate faults. A common approach in statistical

fault localization aims at locating program predicates

that are close to faulty statements. This relaxes the

requirement to pinpoint a fault location and has been

shown empirically to be quite effective.

Following this popular trend, we explore a better

way to measure and rank predicates with respect to

fault relevance. We observe that the fault-localization

capabilities of various evaluation sequences of the same

Boolean expression are not identical. Because of short-

circuit evaluations of Boolean expressions in program

16

execution, different evaluation sequences of a predicate

may produce different resultant values. This inspires us

to investigate the effectiveness of using Boolean expres-

sions at the evaluation sequence level for statistical fault

localization. The experiment on the Siemens programs

and UNIX utility programs shows that our approach is

promising. Our future work will include locating faults

in multi-fault programs using representative test suites,

and investigating the effect of coincidental correctness

on the performance of our technique. Another future

direction is to enhance and develop our work in a

continuous integration environment and investigate the

result of test suite properties, such as test suite size

and coverage information, on the effectiveness of fault-

localization techniques.

References

Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.J.C., 2009. A

practical evaluation of spectrum-based fault localization. Journal

of Systems and Software. doi:10.1016/j.jss.2009.06.035.

Arumuga Nainar, P., Chen, T., Rosin, J., Liblit, B., 2007. Statistical

debugging using compound Boolean predicates. In: Proceedings

of the 2007 ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2007). ACM Press, New York, NY,

pp. 5–15.

Baudry, B., Fleurey, F., Le Traon, Y., 2006. Improving test suites

for efficient fault localization. In: Proceedings of the 28th

International Conference on Software Engineering (ICSE 2006).

ACM Press, New York, NY, pp. 82–91.

Chilimbi, T., Liblit, B., Mehra, K., Nori, A., Vaswani, K., 2009.

Holmes: effective statistical debugging via efficient path profiling.

In: Proceedings of the 31st International Conference on Software

Engineering (ICSE 2009). IEEE Computer Society Press, Los

Alamitos, CA, pp. 34–44.

Cleve, H., Zeller, A., 2005. Locating causes of program failures.

In: Proceedings of the 27th International Conference on Software

Engineering (ICSE 2005). ACM Press, New York, NY, pp. 342–

351.

Dallal, G.E., 2007. Why P = 0.05? Available at

http://www.tufts.edu/ gdallal/p05.htm.

Do, H., Elbaum, S.G., Rothermel, G., 2005. Supporting controlled

experimentation with testing techniques: an infrastructure and its

potential impact. Empirical Software Engineering 10 (4), 405–435.

Griesmayer, A., Staber, S., Bloem, R., 2007. Automated fault

localization for C programs. Electronic Notes in Theoretical

Computer Science 174 (4), 95–111.

Hutchins, M., Foster, H., Goradia, T., Ostrand, T., 1994. Exper-

iments on the effectiveness of dataflow- and controlflow-based

test adequacy criteria. In: Proceedings of the 16th International

Conference on Software Engineering (ICSE ’94). IEEE Computer

Society Press, Los Alamitos, CA, pp. 191–200.

Jeffrey, D., Gupta, N., Gupta, R., 2008. Fault localization using value

replacement. In: Proceedings of the 2008 ACM SIGSOFT Inter-

national Symposium on Software Testing and Analysis (ISSTA

2008). ACM Press, New York, NY, pp. 167–178.

Jiang, B., Zhang, Z., Tse, T.H., Chen, T.Y., 2009. How well do test

case prioritization techniques support statistical fault localization.

In: Proceedings of the 33rd Annual International Computer

Software and Applications Conference (COMPSAC 2009), vol. 1.

IEEE Computer Society Press, Los Alamitos, CA, pp. 99–106.

Jones, J.A., Harrold, M.J., Bowring, J.F., 2007. Debugging in

parallel. In: Proceedings of the 2007 ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA 2007).

ACM Press, New York, NY, pp. 16–26.

Jones, J.A., Harrold, M.J., Stasko, J., 2002. Visualization of test

information to assist fault localization. In: Proceedings of the 24th

International Conference on Software Engineering (ICSE 2002).

ACM Press, New York, NY, pp. 467–477.

Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I., 2005.

Scalable statistical bug isolation. In: Proceedings of the 2005

ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI 2005), ACM SIGPLAN Notices 40 (6),

15–26.

Liu, C., Fei, L., Yan, X., Midkiff, S.P., Han, J., 2006. Statistical de-

bugging: a hypothesis testing-based approach. IEEE Transactions

on Software Engineering 32 (10), 831–848.

Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.P., 2005. SOBER:

statistical model-based bug localization. In: Proceedings of

the Joint 10th European Software Engineering Conference and

13th ACM SIGSOFT International Symposium on Foundation

of Software Engineering (ESEC 2005/FSE-13), ACM SIGSOFT

Software Engineering Notes 30 (5), 286–295.

Renieris, M., Reiss, S.P., 2003. Fault localization with nearest

neighbor queries. In: Proceedings of the 18th IEEE International

Conference on Automated Software Engineering (ASE 2003).

IEEE Computer Society Press, Los Alamitos, CA, pp. 30–39.

Vessey, I., 1985. Expertise in debugging computer programs: a

process analysis. International Journal of Man-Machine Studies 23

(5), 459–494.

Wang, X., Cheung, S.C., Chan, W.K., Zhang, Z., 2009. Taming

coincidental correctness: refine code coverage with context

pattern to improve fault localization. In: Proceedings of the 31st

International Conference on Software Engineering (ICSE 2009).

IEEE Computer Society Press, Los Alamitos, CA, pp. 45–55.

Yu, Y., Jones, J.A., Harrold, M.J., 2008. An empirical study of the

effects of test-suite reduction on fault localization. In: Proceedings

of the 30th International Conference on Software Engineering

(ICSE 2008). ACM Press, New York, NY, pp. 201–210.

Zeller, A., Hildebrandt, R., 2002. Simplifying and isolating failure-

inducing input. IEEE Transactions on Software Engineering 28 (2),

183–200.

Zhang, X., Gupta, N., Gupta, R., 2006. Locating faults through

automated predicate switching. In: Proceedings of the 28th

International Conference on Software Engineering (ICSE 2006).

ACM Press, New York, NY, pp. 272–281.

Zhang, Z., Chan, W.K., Tse, T.H., Hu, P., Wang, X., 2009.

Is non-parametric hypothesis testing model robust for statisti-

cal fault localization? Information and Software Technology.

doi:10.1016/j.infsof.2009.06.013.

Zhang, Z., Jiang, B., Chan, W.K., Tse, T.H., 2008. Debugging

through evaluation sequences: a controlled experimental study. In:

Proceedings of the 32nd Annual International Computer Software

and Applications Conference (COMPSAC 2008). IEEE Computer

Society Press, Los Alamitos, CA, pp. 128–135.

Zheng, A.X., Jordan, M.I., Liblit, B., Naik, M., Aiken, A., 2006.

Statistical debugging: simultaneous identification of multiple bugs.

In: Proceedings of the 23rd International Conference on Machine

Learning (ICML 2006). ACM Press, New York, NY, pp. 1105–

1112.

17

