Cooper ative Game Approachesto Measuring Networ k
Reliability Considering Paradoxes

W.Y. Szeto
Department of Civil Engineering, The University of Hong Kong, Hong Kong

Abstract Traditionally, game-theoretic approaches to meagutiansport net-
work reliability have relied on the outcome of argaplayed between on the one
hand users who seek minimum cost routes, and oottiter hand, one or more
evil entities or demons that seek to maximize ttal texpected network cost to
the users by damaging links in the network. Asddémons are assumed to be non-
cooperative, this approach has been criticizeditltainnot produce the worst-case
solution for reliability analysis, contradicting ethoriginal purpose of adopting
game-theoretic approaches. In this paper, two aatipge game formulations, the
Stackelberg-Nash formulation and the partial-coafreg Nash formulation, are
proposed to determine travel cost reliability. Threlationships are analyzed and
their properties are examined. This paper alsosiiyates under what condition(s)
the classical non-cooperative demon behavior caah te the worst-case solution.
Numerical studies are provided to demonstrateh@) effects of the number of
coalitions formed by demons on total network expeéatost and network/Origin-
Destination (OD) travel cost reliability; (ii) thgaradoxical phenomena that if one
adds a road to a network then all the travelers beaworse off in terms of ex-
pected network travel cost and network travel celbility respectively, and (iii)
the possibility of the classical game-theoretic rapph of overestimating net-
work/OD travel cost reliability.

1. Introduction

In the past decade, transport network reliabilias meceived much attention.
This has occurred for at least two reasons. Rinstexperience of events such as
the Kobe earthquake of 1995 have led many researt¢bddentify the transport
network as a critical element in acting as a lifelto ferry emergency services to
and from the scene of a major incident in the nétw&econd, increased eco-
nomic activity worldwide has led to an increaseha values of time and require-
ment on the network performance, especially undsruptions like adverse
weather, traffic accidents, breakdowns, signalfas, road-works, landslides, and
terrorist attacks.

Many dimensions of transport network reliabilitybabeen addressed in the li-
terature. They include but not limited to the fallag:
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= Connectivity reliability is defined as the probdtilthat specific OD
pairs in a network remain connected when linkssafgiect to complete
failures (lida and Wakayabashi, 1989). Capacitystaints and travel
time are not considered in this reliability. As kuthis measure is most
appropriate for the modeling of extreme events sicharthquakes.
= Capacity reliability is defined as the probabilityat the transportation
system can accommodate a given demand level atcapiable level of
service, while taking the route choice behaviooiatcount (Chen et a.
1999; 2002). This reliability can include connetittiveliability as a spe-
cial case.
= Travel time reliability is normally concerned withe probability that a
trip on a particular path can be made successitlyin a given accept-
able time threshold (Asakura and Kashiwadani, 199kjs concept has
been generalized, refined, and extended to consph, origin-
destination and network travel times (or cost).
= Travel demand satisfaction reliability is concerneith the probability
that the ratio of the equilibrium to latent trawldmand is not less than
certain acceptable value (Heydecker et al., 200Fg.travel demand sat-
isfaction reliability can be extended to includdetreliability measures
such as travel time reliability under certain cdioas.
= Behavior reliability considers the effect of trawghe reliability in the
route choice behavior of travelers. Very often,hbtite mean and vari-
ance of travel times are incorporated in an equilih framework to de-
pict route choice behavior under travel time uraaty. Some example
works include Lo and Tung (2003), Lo et al. (200&m et al. (2008),
and Siu and Lo (2008).
Among them, travel time reliability or its extensjotravel cost reliability, re-
ceived most attention in the past (e.g., Asakum leashiwadani, 1991; Taylor,
1999; Yang et al., 2000; Chen et al., 2002, 20@¥;2002; Al-Deek and Emam,
2006; Nie and Fan, 2006; Sumalee et al., 2006; Kapet al., 2008; Shao et al.,
2008; Sumalee and Watling, 2008; Higatani et &I09D.

The travel time/cost reliability can be studiedotigh the game-theoretic ap-
proach (e.g., Bell, 2000; Bell and Cassir, 2002t8zt al., 2006, 2007) which
does not require statistical distributions for lipgrformance (such as delay, travel
time or capacity). This approach is very attractspecially when the distribu-
tions are absent or inaccurate. In addition, theegtheoretic approach can deter-
mine links where the risk-averse network usergtaemost vulnerable to link ca-
pacity degradation. The approach can also providmative measures of network
reliability for pointing out the most vulnerabletaral nodes, paths, and OD pairs
and comparison of different designs as mentioneBdily(2000).

The main idea behind the game-theoretic approablassed on the notion of a
fictitious game played between on the one handsuaéiro seek minimum cost
routes, and on the other hand, one or more evilientor demons that seek to
maximize the total expected network cost to thesubg damaging links in the
network. Traditionally, this game consists of twdogproblems: the user problem



and the demon problem. The user problem desciiteesdn-cooperative behavior
of network users, whereas the demon problem desctiire evil behavior in the
sense of trying to cause maximum damage to thesu$bese two problems are
solved simultaneously to obtain solutions and/dialbdities. One may criticize
that this classical approach can only give a narpecative Nash equilibrium so-
lution and cannot give the worst-case network bdlig and most vulnerable links
and nodes, especially when there is more than ensod. The demons should
work together to maximize the damage so that thestazase scenario can be ana-
lyzed and the worst-case performance measuresdi&Enetwork cost and travel
time reliability can be determined. Moreover, like traditional user-equilibrium
assignment, the users are non-cooperative. Oneaslayhether some paradoxi-
cal phenomena similar to Braess’ paradox (Brae¥&8)lcan be observed.

To address the criticism and query, this paper @ggep two game-theoretic
formulations to measuring network reliability, ndynéhe Stackelberg-Nash for-
mulation and the partial-cooperative Nash formalati Like classical game-
theoretic formulations for measuring network religp each of the two formula-
tions consists of two problems: the demon problech the user problem. For the
Stackelberg-Nash formulation, the demon probletiésupper level problem. In
this problem, the demons are assumed to be coometatmaximize the impact to
the users by taking their responses into accountwe no direct control on their
route choice. The overall damage strategies ararassto be coordinated by one
demon coordinator. The user problem is the loweellproblem which describes
the risk-averse route selection behavior of thes)jggven the damage information
from the upper level problem. For the partial coatige-Nash formulation, the
demon problem assumes that there is one coordit@tooordinate the demons’
link selection strategies to maximize the impadhi® users but does not take their
reaction into account. The user problem is idehticdahat of the classical game-
theoretic formulations but assumes that all thesupkay a non-cooperative Nash
game with the coordinator.

This paper examines the properties of the two gtir@eretic formulations, and
discusses the relationships between the two prdpfaseulations and the multi-
demon formulation proposed in Szeto et al. (200@)particular, this paper inves-
tigates under what condition(s), the multi-demonmfolation and the two pro-
posed formulations will give the same worst-caseilte This paper also conducts
a brief study to demonstrate the existence of tmalagues of Braess’ paradox for
expected network travel cost and network travet oglgbility in both the classi-
cal and proposed game-theoretic approaches, nastathastic Braess’ paradox
and travel cost reliability paradox, that if onelac road to a network then all the
travelers may be worse off in terms of expectedvagk travel cost and network
travel cost reliability respectively. Numerical dieis are also performed to illus-
trate the effects of the number of coalitions fodny demons on total network
expected cost and network/Origin-Destination (Ofayel cost reliability, and the
possibility of the classical approach of overestinganetwork/OD travel cost re-
liability.



The remainder of this paper is organized as follo®ection 2 proposes and
analyzes the Stackelberg-Nash formulation. Se@idiscusses the proposed par-
tial-cooperative Nash formulation and its relatioipswith the Stackelberg-Nash
formulation. Section 4 examines some propertiethefmulti-demon formulation
and its relationship with the two proposed formiolag. Section 5 defines the ma-
thematical conditions of the two paradoxes. SecBiatetails the numerical stud-
ies. Finally, section 7 provides some concludingagks.

2. The Stackelberg-Nash Formulation

Consider a general transportation network with iplgtOD pairs,N™ ho-
mogenous users between each OD paiand M homogenous demons. Th¢"®
homogenous users are assumed to seek their minempetted cost routes in a
non-cooperative manner. Thd homogenous demons have the freedom to roam
the network without restriction and the capabitityselect any link to damage, in-
cluding links already selected for damage by otteanon(s). Their intention is to
maximize the expected travel costs of the usergldiyaging link(s) in the net-
work. However, unlike Szeto et al. (2007), théelemons are allowed to be co-
operative with each other when selecting linksdamage so that every demon
will be better off by forming coalitions. Moreoverhen they cooperatively select
a set of links to damage, they are assumed toitdieaccount of the reaction of
the users and create the worst-case scenariodardtrs in terms of the total ex-
pected travel cost of all users (i.e., total expeéatetwork cost). With this setting,
the first proposed problem can be expressed agexddiproblem as described be-
low.

2.1 The Upper Level Problem: The Cooperative DePrailem

The upper level problem is the demon problem, wladrdemons aim to max-
imize their individual payoff by selecting linksrfdamage. Their payoffs are all
equal to the total expected network cd&NCdivided by the number of demons
M. They are also free to form coalitions to coopeelyi select links for damage
without losing any payoff. As more cooperation betw demons can result in
higher individual payoff in general (as shown i thumerical study later), the
natural outcome for aM demons is to form one coalition so that all demcaus
cooperatively select links to damage, thereby méaiirg all demons’ payoffs si-
multaneously. When all demons’ payoffs are maxiahjzthe total payoff to all
demons must also be maximized. Hence, the demabigon can be simplified as
the one where there is one demon coordinator wheztsea mixed strategy over
all possible scenarios (defined as the combinatafri;ks selected by aM de-



mons) to maximize the total payoff®) to all the demons taking the user reaction
into account.
The total payoff can be mathematically formulated a

TP=TENC=Y'Y V(Y g 1)

a=1 k=1
wherev," is the optimal flow on linka taking the user reaction into account;

t, () denotes the travel cost on lirkin scenarid; g, is the probability of sce-

nariok; n andK denote the numbers of links in the network andhages respec-
tively.
By definition, the scenario probability, in (1) must satisfy:

> q,-1=0,and (2)

k

0, 20,0k. (3)

2.2 The Lower-Level Problem: The Non-CooperatigertProblem

The user problem can be viewed as a non-coopergdire in which each ho-
mogenous player tries to select the route with mimh expected cost given

o} =[qk]. This user problem can be approximated to detaéstignuser equilib-

rium assignment when the number of homogenous usdesge (see Bell and
Cassir, 2002). The formulation of this problemsdalows:

min Z = > q<'|‘ova(h) t, (X dx (4)
a k

subject to

v, =>>9,.h°, Oa, (5)

s j

Nrs =Za-jrshrs'|]rs' (6)

]



h®* =0,0rs, j, (7)

whereh is the route flow vectory, is the flows on linka; h® is the flows on
route j between OD pairs; J,, is the route-link incidence indicator which is 1
if link a is on pathj, and O otherwiseg® is the route-OD incidence indicator.
o7 =1if j connects OD pairs, and J;° =0 otherwise.

Equation (5) depicts the relationship between rawig link flows. Equatioii6)
states that the demand of an OD pair is equal to sluthe flows on the paths
connecting the OD pair. Condition (7) is the nogatévity constraint.

Let O(2) be the set of outbound links emanating from nadand | (z) be

the set of inbound links feeding into node Equations (5) and (6) can then be to-
tally replaced by the flow conservation equatiohslbnodes (except the origin
nodes as those equations are redundant):

> v,- > v -Q =00z (8)

aldo( 2) B11( 9

- N®, ifz=5s
whereQ, =< s Moreover, (7)is replaced by
0, otherwise

v, 20,0a. (9)

Hence, the problem (4)-(7) can be rewritten basetink flows as decision vari-
ables.

The existence and uniqueness of solutions to twerléevel problem depends
on the choice of link cost functions.

Proposition 1: For a givery :[qk] from the upper level problem, the lower

level problem (4), (8) and (9) has at least onémal link flow pattern if the link
travel cost is continuous with respect to its ffldws.

Proof: As the travel cost function is a continuéwsction of its link flows, the
definite integral and their linear combinations atgo continuous with respect to
link flows. Hence, the objective function is a danbus function of link flows.
Moreover, the solution set (8) - (9) is non-empiyl @ompact. By Weierstrass’
Theorem, a solution exists to the lower level peail4), (8) and (9)]

At least two link cost functions can lead to théstence of solutions. The first
one is the separable and continuously differergifinhction used in Bell and Cas-
sir (2002) and Szeto et al. (2006, 2007):



tak (Va) = aa+ﬁa(;/_aJ a 1 (10)

ak

wherea, >0 is the free-flow travel cost of linla; £, >0 and y, >1 are the de-
lay parameter for linka respectively;c,, is the capacity of linka in scenariok ,

which equals the normal capacity when no demorctethis link for damage in
this scenario, and equals reduced capacity othenWiee reduced capacity de-
pends on the assumptions adopted. The two comnsumgions used in Szeto et
al. (2007) are as follows:
1. The reduced capacity is always 50% of the normphcity regardless of
the number of demons selecting the link for damagd,
2. The capacity is either linear or nonlinear decrggsiith the number of
demons selecting the link for damage.
The second link travel cost function is:

ty (Vo) =22, (11)

which is independent of link flows. This one is tpeneralization of the link cost
function in Bell (2000).

Proposition 2: If the link cost function is sepalabincreasing, and differenti-
able with respect to its link flow, the lower lepebblem (4), (8) and (9) has only

one link flow solution for each givem=|q,].

. H dtak (Va) —_ dtak (Va)
Proof: Under the assumphonT =0,azb andd— > 0. Moreover,
Vb Va

by the definition of probability, there is at leashe g, >0 . Therefore,

d taqj
0z? [Zk: KK

ov, v, - dv,

a

0 otherwise

nite and the objective functichis strictly convex.

As the feasible solution set formed by linear caists is convex, and the un-
ion of the positive orthant and a convex set ig alsnvex, the feasible region is
convex.

Since the problem has a convex objective functioth @ convex solution set,
the problem has a unique link flow solutionl

>0 for a=Db; Hence, the Hessian & is positive defi-

Proposition 2 implies that when the link cost fuoct(10) is adopted, the lower
level problem has a unique link flow solution. Howsg like standard user equi-



librium, the route flow solutions are not uniqueganeral, as the Hessian of
with respect to path flows may not be positive wigdi

The optimality conditions of the problem (4)-(7eahe risk-averse traffic as-
signment conditions as in Szeto et al. (2007):

W{Zﬂﬁ@)q—g&}:aumj. (12)
k

> g (h)q - g3, 20,0rs |, (13)
k

rs

where g, in (12) and (13) is the Lagrangian multiplier agated with (6);

O (h) represents the travel cost of routebetween OD pairs in scenariok

based on the flow vectdr and equals the sum of the travel cost on evekydim
this route:

g5 (h)=2.07°0,t, (v).0rs, j. (14)

According to (12), if routej connecting OD pairs carries flow mjrs >0), the
corresponding expected route travel cdsig;; (h) g, must be equal to the La-
k

grangian multiplierg,;,, , as the term inside the square brackets in (12} egual
zero. If routej carries no flow f° =0), the corresponding expected route travel

cost must be greater than or equal to the Lagrangialtiplier based on (13).
Hence, the Lagrangian multiplier can be interpretedhe minimum expected tra-

min

vel cost between OD pais. That is, g, = n”!jin(z i (h) ok], whered is the
k

minimum expected travel cost route between OD pairSince free flow travel
cost is positive, the Lagrangian multiplier mustgoeater than zero:

g, >0. (15)

2.3. The Stackelberg-Nash Problem

The Stackelberg-Nash problem can be expressedi@asgo



mqaxTP = Zn:ZK: VL, ( \7a) q

a=1 k=1

subject to (2)-(3), where, is the optimal vector obtained from
Min Z = > okjoa t () dx
a k

subject to (8)-(9), where :[va] is the link flow vector. The lower level problem
can also be replaced by

min Z = > ok'fova(h) t, (X dx

subject to (5)-(7).

These bilevel problems must have a solution ancgdtigtion is well-defined,
because

1. the lower level problem has a uniqué for each giverg (proposition
2);

2. the feasible solution set for the upper level peabis non-empty, convex
and bounded, and;

3. the objective function in the upper level problentontinuous.
The Stackelberg-Nash problem can also be expressed

maxTP=33 v (w) a =X X3 K 6i(h) q

subject to (2)-(3), (5)-(7), (12)-(15), whegg,, =[ gm, |-

The first-order conditions of the Stackelberg-Ngsioblem include con-
straints (2)-(3), (6)-(7), (12)-(15), and the falimg:

q{ﬂq DN g;i(h)} =0,0k, (16)

-2, 2 h g5 (h) 20,0k, (17)
s j

agy (h
h}{Zq[g}i(h)}ZZZ 2% gm0 (18)

ohe
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Sa[wn]- sy L0, -

ef | i (19)
| Tara- ¢ |-urzo0m

u'® {Z gr(h)a-g° } =0,0rs j, (20)
k

Z(vgS hf* + U{S) =0,0rs, and (21)

u®<0,0rs, j, (22)

whererz,, 4, v, andu?® are the Lagrangian multipliers of (2), (6), (1apd
(13), respectively.

In (16) and (17),>_> h*gy (h) is the total expected network cost in scenario
s

k or the total payoff of all the demons when the damator selects coordination

strategyk. This total expected cost is obtained%}-;E. The multiplier 7z, in (16)

k
and (17) can be interpreted as the maximum totgffiar hen, according to equa-
tion (16), when the coordinator selects coordimastrategyk, the corresponding
total payoff must be equal to the maximum paygft Condition (17) states that

any coordinator's strategy cannot produce the to&gloff larger than the maxi-
mum total payoff.

ef
In (18) and (19),qu[g;i(h)]+zzzhef‘wékT£h) q is the marginal ex-
k k ef | i

pected path cost with respect to route flows (i.e., %). In particular, equa-

i
tion (18) states that the marginal expected pa#itscon all used routes must be
equal at optimality. Condition (19) implies thaétimarginal expected path cost on
any unused route can be greater than, equal tonalles than that on the used

route.
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Condition (20) has a very similar form with (12)hieh implies thath® =0 if
and only ifu® =0, and thath®and ui® have opposite signs. Equation (21) de-
scribes the relationships betweBfi, u® andv;®. Constraint (22) is the sign re-

striction for u}s )

3. ThePartial-cooperative Nash Formulation

The second proposed problem, namely the partigh@@tive Nash problem, is
similar to the Stackelberg-Nash problem except thatcoordinator does not take
the user reaction into account. The partial-codpargproblem is to findg to
maximize TP and h to minimizeZ simultaneously subject to (2)-(3), and (5)-(7).
The first-order conditions include (2)-(3), (5)-(@nd (12)-(17).

Proposition 3: When all link travel costs are flamdependent, the Stackel-
berg-Nash solution is identical to the solutiontllé Nash game played between
the coordinator and the whole user group, and tbkition of the Nash game
played between the coordinator and all the users.

Proof: When link costs are flow independ-

ent, Z=>>" aK'[OV ti(X)dx=>">" qt, = TF. The Stackelberg-Nash formula-
a k a k

tion can be rewritten as the following Max-Min faukation:
MaxMin TP
q h
subject to (2)-(3), and (5)-(7).
By the minimax theoreml,\/l(;';\x Mhin TP= Mhin MéiX TP. Then, the following

Nash equilibrium conditions between the coordinatadt the whole user group are
obtained:
TP(h',q") = max minTP2 TP g)and
q

TP(h',q ) = min maxTP< TPh q)
q

whereTP(h,q) is the payoff at(h,q). As all the users are non-cooperative with

each other, all the users and the coordinator @mecooperative with each other in
this gamel]

Note that when link cost functions are flow-deperidan optimal solution to
the partial-cooperative Nash problem may not béggitto the Stackelberg-Nash
problem as the solution may not satisfy (18)-(2%)wever, this optimal solution
is feasible to the Stackelberg-Nash problem asdtatlow:
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Proposition 4: Any optimal solution to the partiedoperative Nash problem is
a feasible solution to the Stackelberg-Nash problem

Proof: As any optimal solution of the partial-coogtéze Nash problem must
satisfy (2)-(3), (6)-(7), and (12)-(17), the optinsalution must be feasible to the
Stackelberg-Nash problem which has fewer conssa(@)-(3), (6)-(7), and (12)-
(15).0

4. TheMulti-demon For mulation

For completeness, the multi-demon problem in Seet. (2007) is briefly re-
viewed here. The multi-demon problem consists o subproblems: the user
problem and the demon problem. The user probledessribed by the first-order

conditions (5)-(7) and (12)-(14) where the scengmiobability g, and g5, in
(12)-(14) are respectively defined as follows:

M
o =[]0, and (23)

m=

ot =min( T3 (n)a . (20

where p,"m1 is the probability of demom selecting linkl , to damage.

The demon problem describes the objective of eachcooperative demon.
Each demon seeks its mixed strategy to maximizexipected pay-ofP:

pP= ; : Zl{m o j[z bt (V) 4 }} : (25)

where t,, (v) denotes the flow-dependent cost on liakin scenario

k=(l,....l,,...]y) with demonm selecting linkl,, for damage.
Let

P _ M
Hm - = L 26
i aﬂ: i=1ji#m Hi ( )
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be the expected payoff to demam (or the total expected network cost to the us-
ers) when demom selects linkl , to damage and considers the link selection

strategies of all other demons. Let also

"= rr|1ax9|:‘ (27)

The demon problem can then be described by theoly conditions:

p‘:{ﬂm—é’,m’"}=0,m=1,...,M,Lq= 1..n, (28)
" -g"20m=1..M | = 1..n, (29)
pr=20,m=1..,M| = 1..n and (30)
lZg"m“ -1=0,m=1,...,.M. (31)

The multi-demon problem is to find the link selecti probability vector
p= [ p,”m‘] and the route flow vectdn to satisfy (5)-(7), (12)-(14), and (23)-(31)

simultaneously. The solution is actually a Nashildarium solution. Three prop-
erties of this problem that have not been mentidneatie literature are given be-
low:

Proposition 5: All the demons in the multi-demonlgem must have the same
expected payoff at optimality.

Proof: From (25), we can observe that all the desn@teive the same ex-
pected payoff. Therefore, their maximum expecteygoffa, which are the ex-
pected payoff evaluated at Nash equilibrium, mesthe samel

Proposition 6: The set of optimal link selectiomlpabilities of the multi-demon
problem (5)-(7), (12)-(14and (23)-(31) is identical to that of the revisedltn
demon problem with the payoff functigi® , where /> 0.

Proof: The revised formulation consists of (5)-({02)-(14), (23), (24), (26),
(27), (30), (31), and the following:

P=py..y {(ﬁ o j[z bt (V)Y }} : (32)

=1 I, =1
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pl”m‘{,un'“—,ue,:} =0,m=1..,M | =1..n, and (33)

pr = pg"20m=1,...M |, =1..n. (34)
As 1 >0, (33) and (34) can be respectively rewritten as:

p::{ﬂm—ﬂmm} =0,m=1,..,.M |, =1..n and (35)

#n_HI,:ﬂZO:m:]-.---,M ’Im =1,..n. (36)

The formulation (5)-(7), (12)-(14), (23), (24), (2627), (30)-(32), (35) and
(36) is actually the same as the formulation (5)-(22)-(14), and (23)-(31).
Therefore the two formulations have the same Bltloselection probabilities.

Proposition 7: Any optimal solution of the multiden formulation is a feasi-
ble solution to both the Stackelberg-Nash problamd ¢he partial-cooperative
Nash problem under definition (23).

Proof: As mentioned before, under (28 three user problems are equivalent.
Hence, we only need to show that the optimal lielection probability vector

[p{: *} satisfies the constraints (2) and (3) in both$keckelberg-Nash and Par-
M
tial-cooperative Nash problems. Ag'* 20,01, m, q, = l_l pr* =0 . That is,
) is satisfied. Moreover, since Z p,”m1 *-1=0,0m ,
Im

M

qu = Zn:i(ﬁ o} *j = H(Zn: p’n‘j*) =1. Therefore, (2) is also satisfied.
k L=l 1y =1\ m= =

Im=1

When ¢ =1/M , the payoff function of each demon in the two peats is the
same. However, the revised multi-demon problem may give the maximal
TENCas the optimal solution of the revised multi-denfmmulation is a feasible
solution to the Stackelberg-Nash problem accordingroposition 7 but may not
be an optimal solution to the Stackelberg-Nash lprab

Proposition 8: Assume P is locally concavepﬁmf at optimality. Then, at least

one optimal solution to the multi-demon problenmhwtite payoff function P gives
an optimal solution to the partial-cooperative Ngsioblem.
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Proof: AsTP is a linear function ofj, , TP must be concave at optimality and

the necessary optimality conditions for the pat@bperative Nash problem are
also the sufficient optimality conditions. Moreoyeinder the given assumption,
the necessary optimality conditions for the mudtitbn problem are also the suf-
ficient optimality conditions. Therefore, we onlged to show that the first-order
conditions of the partial-cooperative Nash problanply those of the multi-
demon problem. By comparing the two sets of sudfitioptimality conditions, we
found that most of them are the same. Thereforepnle need to show that (16)-
(17) imply (28)-(29).

A7) = (29):
By chain rule, oTP ZaTPaq‘;n . AsTP =P,
pIm dg,. 0n
oP 0TP dq,.
6p,m ;aqk. apm
s s aT
From (17),> > h*gp (h) = < 17,. Hence,
s jop™ k
P 3, aq,
<> m =7 < (38)
op kZ o q; op

M
From (23), :s; =>..) Z( D p,‘lj wherek =(1,...l,,..],) . Hence
(" i=1j#m

L liEm

I i #Zm Im

(38) becomesaa—P< TT, {Z > Z[ ﬂ ﬂ , which be rewritten as
p I I Zm

6P

o= ﬂm{z p, ) (39)

Substituting (31) into (39) gets

oP
<

—< (40)
op”
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oP

According to (26) and 277" = rqaxa—m. Because of (40),
m plm
n’“:maxap =7,. (412)
- op)
Substituting (41) into (40) gets
P (42)
op;,
Hence, AL <z, implies 9P <.
00, op;,

(16) = (28):

Without loss of generality, the link selection pabidities can be classified into
two groups, zero and positive. The link selectioobabilities are positive if they
constitute at least one scenario with a positivbability, and zero otherwise. Let

p,r:* be the positive probability of demamselecting linkl , to damage. Then, by
definition of probability,

P =1,0m. (43)
Im

Then, consider mutually exclusive two cases of phebability of scenario
k=(l,..ly.,.ly): G >0 andq, =0. If g, >0, all the link selection probabili-

M
ties that constitute, =[] p", must be positive. That is,

M
qk:l_,lg:>0:> p|:>0:|:|m- (44)

Moreover, ifg, >0 and p >0,

aq, i
- >0 ,0m. (45)
op| I_nl P

m

Furthermore, by (16),
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. rs rs 0TP
if g, >0, 7, :ZZhj i (h) = 2 (46)
rs k

(45) and (46) imply

ALigs T, whena—q'nj>0, p" > 00m andg > 47)
00, op, "

m

If g, =0, some link selection probabilities that constitateis zero. In par-
ticular, if g, =0 but p" >0,

- aqk _ 0g, _
= = —_ _— . 48
Ok |'| ﬂ“[ﬂ!ﬁi o0 =>ag: (48)

In addition, from (16) and (17) ,

6TP <7, . (49)

if =0,
qk aqk q

(48) and (49) imply

aTPs 7, when 99 _
0q, op”

=0, p| >00m andg = (50)

m

Let K* and K° be the sets of scenarios that have positive arm m@babili-
ties respectively given thab,"m“ >0. Then, from (37), we have

P 0TPAG,. -« dTPAq, dTPAq,
__z =y S %

< <. (51)
op; a9, an kor 00 ORT (5o 0 O

If qk >0 and plm >0, (51) can be simplified via conditions (47) areD) as

Z , which can be further simplified as
ap| KOK*
a k' v i+ u i+
Fenyen 2---2---2[ NI I
|m kOK* L li#m 1y \i=liZm i=1j#zm\_ |;
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Substituting (43) and (41) into (52) gives

oP

m

6pIm

=7, (53)

As g, >0 implies bothp™ >0,0m (from (44)) andaa—F:1 =" (from (53)), we
" Y

m

haveaa—F:n =" when p" >0,0m, which is the alternative expression of (28).
D m

m

The above proposition implies that the partial-aragtive Nash problem seeks
the optimal Nash solution that yields the maximGENC In addition, if an opti-
mal Nash equilibrium solution is also an optimattjigd-cooperative Nash solution
and satisfies conditions (18)-(22), then the Nashut®n is also an optimal
Stackelberg-Nash solution, and the Stackelberg-Nashlem can be viewed as
seeking the optimal Nash solution that satisfiesdd@mns (18)-(22) and yield the
maximumTENC One example in Section 6 illustrates this poifhe following
two propositions discuss two special cases.

Proposition 9: Assume P is locally concavepgf at optimality and all the op-

timal solutions to the multi-demon problem give shene payoff. Then, all the op-
timal solutions to the multi-demon problem with gagoff function P give an op-
timal solution to the partial-cooperative Nash plein.

Proof: This follows directly from Proposition 8.

Proposition 10: Assume P is locally concavepﬁm‘f at optimality and all the

optimal solutions to the multi-demon problem gikie same payoff and satisfy
(18)-(22). Then, all the optimal solutions to theltinkdemon problem with the
payoff function P give an optimal solution to thacgelberg-Nash problem.

Proof: This follows from Proposition 8 and the fdeat a Nash solution pro-
duces an optimal Stackelberg-Nash solution whenotitenal Nash equilibrium
solution is also an optimal partial-cooperative lNaslution and satisfies condi-
tions (18)-(22)0
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5. The Stochastic Braess Paradox and Travel Cost Reliability
Paradox

Two analogues of Braess’ paradox for total expecietivork cost and travel
cost reliability in the proposed problems, namedbckastic Braess’ paradox and
reliability-paradox, are mathematically definedhis section.

The stochastic Braess paradox refers to the phemothat if one adds a road
to a network then all the travelers may be wordeiroterms of total expected
network cost. This paradox occurs wWh&ENC,, - TENG,,.>0 , where

TENG,. and TENGC,,., are respectively the total expected network cbefere

and after link addition.

The travel cost reliability paradox is the phenom#érat if one adds a road to a
network then all the travelers may be worse oteims of network travel cost re-
liability. This paradox occurs wheR,,,, — R.,.<0, whereR ., and R, are

the network travel cost reliability before and afiak addition. The network tra-

vel cost reliability is defined as the probabildf/the total expected network cost
to be less than the predefined tolerance.

6. Numerical Studies

6.1 Stackelberg-Nash Solutions and Partial-coopeeaiash
Solutions as Special Nash Solutions

This example is set up to show the existence oftipheiNash solutions where
some of them can be Stackelberg-Nash solutiongartihl-cooperative Nash so-
lutions. The network with one OD pair and threeniiteal parallel links, links 1-3,
is adopted for this purpose. We consider three agsmuamely demons 1, 2 and 3.
This leads to three cases: 1) one coalition (ak.demons cooperate with each
other), 2) two coalitions (i.e., two demons coopergainst the third one) and 3)
three coalitions (i.e., all demons are non-cooparptin all cases, it is assumed
that the capacity of each link is reduced by Haditileast one demon selects that
link for damage. The following parameters are addgor illustrative purposes:

. *=8000;

e a,=a,=a,=%10;

* B =p=B=%15;

. VW=Vo=Vs= 4

. _ [4000 vph iflinka is selected by any demy
. {2000 vph otherwise.
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The result for case 1 is obtained by solving thetigdacooperative Nash prob-
lem whereas the results for cases 2 and 3 arenebitdy solving the multi-demon
formulation. Note that for case 2, we assume thartet is a coordinator for deter-
mining the link selection strategies for the tword@s and the coordinator is as-
sumed to compete with the third demon.

When all demons are non-cooperative (case 3), thié-demon formulation
indeed gives seven Nash solutions as shown in Tlal#®lutions 2-7 can actually
produce the partial-cooperative Nash solutions inbthin case 1, and give a
probability of 1 for the scenario where the threendns select different links for
damage. This means that some Nash solutions carbalthe partial-cooperative
Nash solutions. However, in terms of payoff, sao$ 2-7 give the maximum
payoff to each demon while solution 1 gives a stibagd payoff to each demon.
Not surprisingly, solutions 2-7 are also the solusi to case 2 and the payoff of
each demon is maximal.

Tablel
Multiple link selection probabilities
a) Solution 1 b) Solution 2

Link1 | Link2 | Link3 Link1 | Link2 | Link3
Demonl1 | 1/3 1/3 1/3 Demonfl 1 0 0
Demon2 | 1/3 1/3 1/3 DemonP O 1 0
Demon 3| 1/3 1/3 1/3 DemonB3 O 0 1
¢) Solution 3 d) Solution 4

Link1 | Link2 | Link 3 Link1 | Link2 | Link3
Demonl| O 0 1 Demonl O 1 0
Demon2| 1 0 0 Demon2 1 0 0
Demon3| 0 1 0 Demon3 O 0 1
e) Solution 5 f) Solution 6

Link1 | Link2 | Link 3 Link1 | Link2 | Link3
Demonl| O 0 1 Demonl O 1 0
Demon2| O 1 0 Demon2 O 0 1
Demon3| 1 0 0 Demon3 1 0 0
g) Solution 7

Link1 | Link2 | Link 3
Demonl| 1 0 0
Demon2| O 0 1
Demon3| 0O 1 0

As the three parallel links are identical, all gathust carry equal flows and
conditions (18)-(21) must be satisfied at optinyalincluding the equal marginal




21

expected path cost condition. Hence, the partiapecative Nash solution is also
a Stackelberg-Nash solution. This has been chebitesblving the Stackelberg-
Nash problem directly via an existing global optiation software package.

To sum up, this example shows that Stackelberg-Nakltions and partial co-
operative Nash solutions can be obtained via thecomperative Nash formula-
tion like the multi-demon formulation. However, whéehere is more than one
Nash solution, there is no guarantee that StackglRash solutions and partial-
cooperative Nash solutions can be obtained by sglthe multi-demon formula-
tion once.

6.2 The Effect of Demon Coalitions to Total Expgdletwork Cost
and Network Travel Cost Reliability

This example considers the same scenario as iprthdous example but fo-
cuses on demonstrating the effect of demon coaéitto the demons’ payoffs (i.e.,
total network expected cost) and network travet celiability. The tolerance used
in reliability is equal to 1.2 times the user etilm’s total network cost as in
Cassir et al. (2003). The minimum payoff of eaclde under each case is shown
in Table 2. This table clearly shows that the mimmpayoff increases with a de-
creasing number of coalitions, as the extent ofpeoation increases with a de-
creasing number of coalitions in our example. Thgoff is increased marginally
(2%) when any two demons form one coalition andadinks non-cooperatively
against the third one. In the extreme case, whHereetis only one coalition, the
payoff is increased by 20% when compared with tba-ecooperative case. In
terms of network travel cost reliability, the rdliity decreases from 0.11 to 0
when the number of coalitions increases from 1 to 3

Table2
The effect of the extent of cooperation to the desh@ayoff and network travel
cost reliability

Number of coalitions Minimum payoff of each dempn eliRbility
3 $35797 0.11
2 $36675 0
1 $43280 0

The three cases result in different link selecttrategies. When all demons are
non-cooperative, each demon selects a link for demth a probability of 1/3.
However, when all demons cooperate together, atlaaes will cooperatively se-
lect different links for damage with a probabiliy 1 so as to maximize the pay-
off. It is because the capacity of a link will i reduced further if one additional
demon selects the same link for damage. Therefloeebest strategy is not to let
more than one demon to select a link for damage=Where are two demons co-
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operating against the third one, the third onec¢gleach link for damage with a
probability of 1/3 and the demon coordinator salezch combination of two dif-
ferent links for damage with a probability of 11his means there are at least two
links selected for damage but all links may nosbkected for damage simultane-
ously. Hence, the payoff of each demon is lowen ttieat of the single coalition
case because of the possibility of two demons setethe same link for damage.
One interesting observation is that even if two desnform one coalition against
the third demon, the payoffs of all three demomrstagher than their payoff when
no demon works together. That is, the third demnleo eeceives some benefit re-
sulting from the cooperation between the other demons.

If the free-flow travel cost of one link were inesed, the minimum payoff also
increased with a decreasing number of coalitiomss Thows that more coopera-
tion will increase the minimum payoff of each denamd the total expected net-
work cost regardless of the geometry of the network

This example implies that the multi-demon appro@leht assumes no coopera-
tion between demons) can underestimate the wossfs#otal expected network
cost and overestimate the worst case’s the netwadidbility when the Stackel-
berg-Nash solution is not obtained. One should eynfile proposed Stackelberg-
Nash formulation to determine the worst case’sl texpected network cost and
reliability.

6.3 Stochastic Braess’ Paradox and Travel CostaRdity Paradox

This example demonstrates the existence of stdchBsdiess’ paradox and a
travel cost reliability paradox in the proposedc®&berg-Nash problem, the pro-
posed partial-cooperative Nash problem and thesiclalspure-Nash game prob-
lem. The example network together with its link tchmctions are shown in Fig-
ure 1. This network is similar to the classical &® network but all free-flow
travel costs are positive and the performance fonstare nonlinear. For illustra-
tive purposes, the number of users and demonseapectively set to equal 1000
and 1, although other numbers can be used tordlasthe existence of the para-
doxes. Like previous example, the capacity of danthis assumed to be reduced
by half if the demon selects the link for damagel the tolerance used is equal to
1.2 times the user equilibrium’s total network cost

Under the above setting, the two proposed problgines the same solution as
the classical pure Nash game problem. Before liadiiteon, both routes carry
equal flows, and the demon selects links 3 and 4ldnage with the correspond-
ing link selection (or scenario) probabilitigg >0 and g, =1-g, 2 0. The resul-

tant total expected network co$tEHNQ is $66500 and the network (or OD) travel
cost reliability is 1.

After link addition, all the users use the new eut-3-4-2 although the demon
selects the same two links for damage with the samoleabilities as before. Con-
sequently, the resultamENC decreases to $76000 (or by 14%) and the stochastic
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Braess paradox occurs. In terms of network (or @@)el cost reliability, it drops
to 0 and the reliability paradox occurs.

The main reason of the occurrence of the two paesics that the users are
non-cooperative between themselves. Thereforeptkeall system performance
in terms of either reliability or expected coshist necessarily improved when the
capacity of the network is improved, or vice versa.

In fact, the existence of these paradoxes dependsiany factors. Like the
classical Braess paradox, their occurrence depamtise geometry, the functional
form of link cost function, and the number of usgrs., demand level). Unlike the
classical Braess paradox, their occurrence alseritkpon the number of demons
and the extent of cooperation. In particular, tbeuorence of the reliability para-
dox also depends on the tolerance used in defthiageliability. Due to space li-
mitation, the examples are not shown here.

The implication of this example is that thi&NC and network travel cost reli-
ability should be considered in network designvoid the occurrence of the sto-
chastic Braess and reliability paradoxes. Othervaster network expansion, the
network performance may be worse off in term3¥BNC and the network can be
less reliable in terms of network travel cost feility.

Destination a

(a) Braess' network before im- (b) Braess' network after im-

provement provement

Fig. 1. Braess’ network.
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7. Conclusions

This paper develops two game-theoretic formulatioased on cooperative game
theory. The properties of the formulations are drach This paper also discusses
under what conditions, the multi-demon formulateam produce the same solu-
tion as the two proposed formulations. The relatidms between the three formu-
lations are examined. Numerical examples are peovid study the effects of the
level of cooperation on total network expected @osl travel cost reliability and
illustrate two paradoxical phenomena in terms xgdeeted network travel cost
and network travel cost reliability. Further insighinto the implications for reli-
able network design are provided if these paradexesgnored and/or classical
game-theoretic methods are adopted. As a remaskpdiper suggests to adopt the
Stackelberg-Nash approach to measuring the wosst-natwork reliability as it
takes the user behavior into account when detengittie worst-case network
performance.

This paper opens up many future research directieinst, the very important
guestion of how many demons are appropriate tonassamains unanswered. Ex-
tensive studies on real networks involving datgmevious incidents are required
to rectify this. Second, it is not clear whetheg titcurrence of stochastic Braess’
paradox implies the occurrence of reliability panadnd vice versa. This is left to
future studies. Finally, efficient global optimikat methods for the proposed
formulations have not been developed yet. Devetpfivem is one of the impor-
tant and challenging future research directions.
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