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Abstract   Traditionally, game-theoretic approaches to measuring transport net-
work reliability have relied on the outcome of a game played between on the one 
hand users who seek minimum cost routes, and on the other hand, one or more 
evil entities or demons that seek to maximize the total expected network cost to 
the users by damaging links in the network. As the demons are assumed to be non-
cooperative, this approach has been criticized that it cannot produce the worst-case 
solution for reliability analysis, contradicting the original purpose of adopting 
game-theoretic approaches. In this paper, two cooperative game formulations, the 
Stackelberg-Nash formulation and the partial-cooperative Nash formulation, are 
proposed to determine travel cost reliability. Their relationships are analyzed and 
their properties are examined. This paper also investigates under what condition(s) 
the classical non-cooperative demon behavior can lead to the worst-case solution. 
Numerical studies are provided to demonstrate (i) the effects of the number of 
coalitions formed by demons on total network expected cost and network/Origin-
Destination (OD) travel cost reliability; (ii) the paradoxical phenomena that if one 
adds a road to a network then all the travelers may be worse off in terms of ex-
pected network travel cost and network travel cost reliability respectively, and (iii) 
the possibility of the classical game-theoretic approach of overestimating net-
work/OD travel cost reliability.   

1.  Introduction 

In the past decade, transport network reliability has received much attention. 
This has occurred for at least two reasons. First, the experience of events such as 
the Kobe earthquake of 1995 have led many researchers to identify the transport 
network as a critical element in acting as a lifeline to ferry emergency services to 
and from the scene of a major incident in the network. Second, increased eco-
nomic activity worldwide has led to an increase in the values of time and require-
ment on the network performance, especially under disruptions like adverse 
weather, traffic accidents, breakdowns, signal failures, road-works, landslides, and 
terrorist attacks.  

Many dimensions of transport network reliability have been addressed in the li-
terature. They include but not limited to the following: 



2  

� Connectivity reliability is defined as the probability that specific OD 
pairs in a network remain connected when links are subject to complete 
failures (Iida and Wakayabashi, 1989). Capacity constraints and travel 
time are not considered in this reliability. As such, this measure is most 
appropriate for the modeling of extreme events such as earthquakes.  

� Capacity reliability is defined as the probability that the transportation 
system can accommodate a given demand level at an acceptable level of 
service, while taking the route choice behavior into account (Chen et a. 
1999; 2002). This reliability can include connectivity reliability as a spe-
cial case. 

� Travel time reliability is normally concerned with the probability that a 
trip on a particular path can be made successfully within a given accept-
able time threshold (Asakura and Kashiwadani, 1991). This concept has 
been generalized, refined, and extended to consider path, origin-
destination and network travel times (or cost). 

� Travel demand satisfaction reliability is concerned with the probability 
that the ratio of the equilibrium to latent travel demand is not less than 
certain acceptable value (Heydecker et al., 2007) . The travel demand sat-
isfaction reliability can be extended to include other reliability measures 
such as travel time reliability under certain conditions. 

� Behavior reliability considers the effect of travel time reliability in the 
route choice behavior of travelers. Very often, both the mean and vari-
ance of travel times are incorporated in an equilibrium framework to de-
pict route choice behavior under travel time uncertainty. Some example 
works include Lo and Tung (2003), Lo et al. (2006), Lam et al. (2008), 
and Siu and Lo (2008).  

Among them, travel time reliability or its extension, travel cost reliability, re-
ceived most attention in the past (e.g., Asakura and Kashiwadani, 1991; Taylor, 
1999; Yang et al., 2000; Chen et al., 2002, 2007; Lo, 2002; Al-Deek and Emam, 
2006; Nie and Fan, 2006; Sumalee et al., 2006; Kaparias et al., 2008; Shao et al., 
2008; Sumalee and Watling, 2008; Higatani et al., 2009).   

The travel time/cost reliability can be studied through the game-theoretic ap-
proach (e.g., Bell, 2000; Bell and Cassir, 2002; Szeto et al., 2006, 2007) which 
does not require statistical distributions for link performance (such as delay, travel 
time or capacity). This approach is very attractive especially when the distribu-
tions are absent or inaccurate. In addition, the game-theoretic approach can deter-
mine links where the risk-averse network users are the most vulnerable to link ca-
pacity degradation. The approach can also provide normative measures of network 
reliability for pointing out the most vulnerable/critical nodes, paths, and OD pairs 
and comparison of different designs as mentioned by Bell (2000).  

The main idea behind the game-theoretic approach is based on the notion of a 
fictitious game played between on the one hand users who seek minimum cost 
routes, and on the other hand, one or more evil entities or demons that seek to 
maximize the total expected network cost to the users by damaging links in the 
network. Traditionally, this game consists of two sub-problems: the user problem 
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and the demon problem. The user problem describes the non-cooperative behavior 
of network users, whereas the demon problem describes the evil behavior in the 
sense of trying to cause maximum damage to the users. These two problems are 
solved simultaneously to obtain solutions and/or reliabilities. One may criticize 
that this classical approach can only give a non-cooperative Nash equilibrium so-
lution and cannot give the worst-case network reliability and most vulnerable links 
and nodes, especially when there is more than one demon. The demons should 
work together to maximize the damage so that the worst-case scenario can be ana-
lyzed and the worst-case performance measures like total network cost and travel 
time reliability can be determined. Moreover, like the traditional user-equilibrium 
assignment, the users are non-cooperative. One may ask whether some paradoxi-
cal phenomena similar to Braess’ paradox (Braess, 1968) can be observed.  

To address the criticism and query, this paper proposes two game-theoretic 
formulations to measuring network reliability, namely the Stackelberg-Nash for-
mulation and the partial-cooperative Nash formulation. Like classical game-
theoretic formulations for measuring network reliability, each of the two formula-
tions consists of two problems: the demon problem and the user problem. For the 
Stackelberg-Nash formulation, the demon problem is the upper level problem. In 
this problem, the demons are assumed to be cooperative to maximize the impact to 
the users by taking their responses into account but have no direct control on their 
route choice. The overall damage strategies are assumed to be coordinated by one 
demon coordinator. The user problem is the lower level problem which describes 
the risk-averse route selection behavior of the users, given the damage information 
from the upper level problem. For the partial cooperative-Nash formulation, the 
demon problem assumes that there is one coordinator to coordinate the demons’ 
link selection strategies to maximize the impact to the users but does not take their 
reaction into account. The user problem is identical to that of the classical game-
theoretic formulations but assumes that all the users play a non-cooperative Nash 
game with the coordinator. 

This paper examines the properties of the two game-theoretic formulations, and 
discusses the relationships between the two proposed formulations and the multi-
demon formulation proposed in Szeto et al. (2007).  In particular, this paper inves-
tigates under what condition(s), the multi-demon formulation and the two pro-
posed formulations will give the same worst-case result. This paper also conducts 
a brief study to demonstrate the existence of two analogues of Braess’ paradox for 
expected network travel cost and network travel cost reliability in both the classi-
cal and proposed game-theoretic approaches, namely stochastic Braess’ paradox 
and travel cost reliability paradox, that if one adds a road to a network then all the 
travelers may be worse off in terms of expected network travel cost and network 
travel cost reliability respectively. Numerical studies are also performed to illus-
trate the effects of the number of coalitions formed by demons on total network 
expected cost and network/Origin-Destination (OD) travel cost reliability, and the 
possibility of the classical approach of overestimating network/OD travel cost re-
liability.  
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The remainder of this paper is organized as follows: Section 2 proposes and 
analyzes the Stackelberg-Nash formulation. Section 3 discusses the proposed par-
tial-cooperative Nash formulation and its relationship with the Stackelberg-Nash 
formulation. Section 4 examines some properties of the multi-demon formulation 
and its relationship with the two proposed formulations. Section 5 defines the ma-
thematical conditions of the two paradoxes. Section 6 details the numerical stud-
ies. Finally, section 7 provides some concluding remarks.  

2. The Stackelberg-Nash Formulation 

Consider a general transportation network with multiple OD pairs, rsN  ho-

mogenous users between each OD pair rs  and M  homogenous demons. The rsN  
homogenous users are assumed to seek their minimum expected cost routes in a 
non-cooperative manner. The M  homogenous demons have the freedom to roam 
the network without restriction and the capability to select any link to damage, in-
cluding links already selected for damage by other demon(s). Their intention is to 
maximize the expected travel costs of the users by damaging link(s) in the net-
work. However, unlike Szeto et al. (2007), these M demons are allowed to be co-
operative with each other when selecting links for damage so that every demon 
will be better off by forming coalitions. Moreover, when they cooperatively select 
a set of links to damage, they are assumed to take into account of the reaction of 
the users and create the worst-case scenario for the users in terms of the total ex-
pected travel cost of all users (i.e., total expected network cost). With this setting, 
the first proposed problem can be expressed as a bi-level problem as described be-
low.  

2.1 The Upper Level Problem: The Cooperative Demon Problem 

The upper level problem is the demon problem, where all demons aim to max-
imize their individual payoff by selecting links for damage. Their payoffs are all 
equal to the total expected network cost TENCdivided by the number of demons 
M. They are also free to form coalitions to cooperatively select links for damage 
without losing any payoff. As more cooperation between demons can result in 
higher individual payoff in general (as shown in the numerical study later), the 
natural outcome for all M demons is to form one coalition so that all demons can 
cooperatively select links to damage, thereby maximizing all demons’ payoffs si-
multaneously. When all demons’ payoffs are maximized, the total payoff to all 
demons must also be maximized.  Hence, the demon problem can be simplified as 
the one where there is one demon coordinator who selects a mixed strategy over 
all possible scenarios (defined as the combinations of links selected by all M de-
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mons) to maximize the total payoff (TP) to all the demons taking the user reaction 
into account.  

The total payoff can be mathematically formulated as:  

( )* *

1 1

,
n K

a ak a k
a k

TP TENC v t v q
= =

= =∑∑  (1) 

where *
av  is the optimal flow on link a  taking the user reaction into account; 

( ).akt  denotes the travel cost on link a  in scenario k; kq  is the probability of sce-

nario k; n  and K denote the numbers of links in the network and scenarios respec-
tively. 

By definition, the scenario probability kq  in (1) must satisfy:  

1 0k
k

q − =∑ , and (2) 

0,kq k≥ ∀ . (3) 

2.2  The Lower-Level Problem: The Non-Cooperative User Problem 

The user problem can be viewed as a non-cooperative game in which each ho-
mogenous player tries to select the route with minimum expected cost given 

[ ]kq=q . This user problem can be approximated to deterministic user equilib-

rium assignment when the number of homogenous users is large (see Bell and 
Cassir, 2002). The formulation of this problem is as follows: 

( )( )

0
min  

av

k ak
a k

Z q t x dx=∑∑ ∫
h

h
 (4) 

subject to 

,rs
a ja j

rs j

v h aδ= ∀∑∑ , (5) 

,rs rs rs
j j

j

N h rsδ= ∀∑ , (6) 
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0, ,rs
jh rs j≥ ∀ , (7) 

where h  is the route flow vector; av is the flows on link a ; rs
jh  is the flows on 

route j  between OD pair rs ; jaδ  is the route-link incidence indicator which is 1 

if link a  is on path j , and 0 otherwise; rs
jδ  is the route-OD incidence indicator. 

1rs
jδ =  if j  connects OD pair rs , and 0rs

jδ =  otherwise. 

Equation (5) depicts the relationship between route and link flows. Equation (6) 
states that the demand of an OD pair is equal to sum of the flows on the paths 
connecting the OD pair. Condition (7) is the non-negativity constraint. 

Let ( )O z  be the set of outbound links emanating from node z  and ( )I z  be 

the set of inbound links feeding into node z . Equations (5) and (6) can then be to-
tally replaced by the flow conservation equations at all nodes (except the origin 
nodes as those equations are redundant): 

( )( )
0,  a b z

a O z b I z

v v Q z
∈ ∈

− − = ∀∑ ∑ ,  (8) 

where 
, if ;

0, otherwise.

rs

s
z

N z s
Q

− == 


∑
  Moreover,   (7) is replaced by 

0,av a≥ ∀ .  (9) 

Hence, the problem (4)-(7) can be rewritten based on link flows as decision vari-
ables.  

The existence and uniqueness of solutions to the lower level problem depends 
on the choice of link cost functions.  

 
Proposition 1: For a given [ ]kq=q  from the upper level problem, the lower 

level problem (4), (8) and (9)  has at least one optimal link flow pattern if the link 
travel cost is continuous with respect to its link flows. 

Proof: As the travel cost function is a continuous function of its link flows, the 
definite integral and their linear combinations are also continuous with respect to 
link flows. Hence, the objective function is a continuous function of link flows. 
Moreover, the solution set (8) - (9) is non-empty and compact. By Weierstrass’ 
Theorem, a solution exists to the lower level problem (4), (8) and (9) .□ 

 
At least two link cost functions can lead to the existence of solutions.  The first 

one is the separable and continuously differentiable function used in Bell and Cas-
sir (2002) and Szeto et al. (2006, 2007): 



7 

( )
a

a
ak a a a

ak

v
t v

c

γ

α β
 

= +  
 

, (10) 

where 0aα >  is the free-flow travel cost of link a ; 0aβ >  and 1aγ >  are the de-

lay parameter for link a  respectively; akc  is the capacity of link a  in scenario k , 

which equals the normal capacity when no demon selects this link for damage in 
this scenario, and equals reduced capacity otherwise. The reduced capacity de-
pends on the assumptions adopted. The two common assumptions used in Szeto et 
al. (2007) are as follows: 

1. The reduced capacity is always 50% of the normal capacity regardless of  
the number of demons selecting the link for damage, and  

2. The capacity is either linear or nonlinear decreasing with the number of 
demons selecting the link for damage. 

The second link travel cost function is:  

( ) ak
ak a

ak

t v
c

β
= ,  (11) 

which is independent of link flows. This one is the generalization of the link cost 
function in Bell (2000). 
 

Proposition 2: If the link cost function is separable, increasing, and differenti-
able with respect to its link flow, the lower level problem (4), (8) and (9) has only 
one link flow solution for each given [ ]kq=q . 

Proof: Under the assumption, 
( )

0,ak a

b

dt v
a b

dv
= ≠  and 

( )
0ak a

a

dt v

dv
> . Moreover, 

by the definition of probability, there is at least one 0kq > . Therefore,  

2

0 for  ;

0 otherwise.

ak k
k

aa b

d t q
Z

a b
dvv v

  
  ∂    > == ∂ 


∑
 Hence, the Hessian of Z is positive defi-

nite and the objective function Z is strictly convex.  
As the feasible solution set formed by linear constraints is convex, and the un-

ion of the positive orthant and a convex set is also convex, the feasible region is 
convex.  

Since the problem has a convex objective function and a convex solution set, 
the problem has a unique link flow solution. □ 

 
Proposition 2 implies that when the link cost function (10) is adopted, the lower 

level problem has a unique link flow solution. However, like standard user equi-
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librium, the route flow solutions are not unique in general, as the Hessian of Z 
with respect to path flows may not be positive definite. 

The optimality conditions of the problem (4)-(7) are the risk-averse traffic as-
signment conditions as in Szeto et al. (2007):  

( ) min 0, ,rs rs rs
j jk k

k

h g q g rs j
 − = ∀ 
 
∑ h , (12) 

( ) min 0, ,rs rs
jk k

k

g q g rs j− ≥ ∀∑ h , (13) 

where  min
rsg  in (12) and (13) is the Lagrangian multiplier associated with (6); 

( )rs
jkg h  represents the travel cost of route j  between OD pair rs  in scenario k  

based on the flow vector h  and equals the sum of the travel cost on every link on 
this route: 

( ) ( ), ,rs rs
jk j ja ak a

a

g t v rs jδ δ= ∀∑h . (14) 

According to (12), if route j  connecting OD pair rs  carries flow ( 0rs
jh > ), the 

corresponding expected route travel cost ( )rs
jk k

k

g q∑ h  must be equal to the La-

grangian multiplier min
rsg , as the term inside the square brackets in (12) must equal 

zero. If route j  carries no flow ( 0rs
jh = ), the corresponding expected route travel 

cost must be greater than or equal to the Lagrangian multiplier based on (13).  
Hence, the Lagrangian multiplier can be interpreted as the minimum expected tra-

vel cost between OD pair rs . That is, ( )min
d

minrs rs
dk k

k

g g q
 =  
 
∑ h , where d  is the 

minimum expected travel cost route between OD pair rs . Since free flow travel 
cost is positive, the Lagrangian multiplier must be greater than zero: 

min 0rsg > .  (15) 

 

2.3. The Stackelberg-Nash Problem 

The Stackelberg-Nash problem can be expressed as follows: 
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( )* *

1 1

max
n K

a ak a k
a k

TP v t v q
= =

=∑∑
q

 

subject to (2)-(3), where *av  is the optimal vector obtained from  

( )
0

Min  
av

k ak
a k

Z q t x dx=∑∑ ∫v
 

subject to (8)-(9), where [ ]av=v  is the link flow vector. The lower level problem 

can also be replaced by  

( )( )

0
min  

av

k ak
a k

Z q t x dx=∑∑ ∫
h

h
 

subject to (5)-(7).  
These bilevel problems must have a solution and the solution is well-defined, 

because 
1. the lower level problem has a unique *v  for each given q  (proposition 

2);  
2. the feasible solution set for the upper level problem is non-empty, convex 

and bounded, and;  
3. the objective function in the upper level problem is continuous. 

The Stackelberg-Nash problem can also be expressed as: 

( ) ( )
, ,

1 1 1

max
n K K

rs rs
a ak a k j jk k

a k rs j k

TP v t v q h g q
= = =

= =∑∑ ∑∑∑
minq h g

h  

subject to (2)-(3), (5)-(7), (12)-(15),  where min
rsg =  ming . 

The first-order conditions of the Stackelberg-Nash problem include con-
straints (2)-(3), (6)-(7), (12)-(15), and the following: 

( ) 0,rs rs
k q j jk

rs j

q h g kπ
 

− = ∀ 
 

∑∑ h , (16) 

( ) 0,rs rs
q j jk

rs j

h g kπ − ≥ ∀∑∑ h , (17) 

( ) ( )
0, ,

ef
lkrs rs ef rs

j k jk l krs
k k ef l j

g
h q g h q rs j

h
µ

 ∂
  + − = ∀   ∂  

∑ ∑∑∑
h

h , (18) 
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( ) ( )

( )
min

 0, , ,

ef
lkrs ef

k jk l krs
k k ef l j

rs rs rs rs
j jk k

k

g
q g h q

h

v g q g rs jµ

∂
  + −  ∂

 − − ≥ ∀ 
 

∑ ∑∑∑

∑

h
h

h

 (19) 

( )
min

0, ,rs rs rs
j jk k

k

u g q g rs j
 − = ∀ 
 
∑ h , (20) 

( ) 0,rs rs rs
j j j

j

v h u rs+ = ∀∑ , and (21) 

0, ,rs
ju rs j≤ ∀ , (22)  

where qπ , rsµ , rs
jv , and rs

ju  are the Lagrangian multipliers of (2), (6), (12), and  

(13),  respectively. 

In (16) and (17), ( )rs rs
j jk

rs j

h g∑∑ h  is the total expected network cost in scenario 

k or the total payoff of all the demons when the coordinator selects coordination 

strategy k. This total expected cost is obtained by 
k

TP

q

∂
∂

. The multiplier qπ  in (16) 

and (17) can be interpreted as the maximum total payoff. Then, according to equa-
tion (16), when the coordinator selects coordination strategy k, the corresponding 
total payoff must be equal to the maximum payoff qπ . Condition (17) states that 

any coordinator’s strategy cannot produce the total payoff larger than the maxi-
mum total payoff.  

In (18) and (19), ( ) ( )ef
lkrs ef

k jk l krs
k k ef l j

g
q g h q

h

∂
  +  ∂∑ ∑∑∑

h
h  is the marginal ex-

pected path cost with respect to route flows rs
jh  (i.e., 

rs
j

TP

h

∂
∂

).  In particular, equa-

tion (18) states that the marginal expected path costs on all used routes must be 
equal at optimality. Condition (19) implies that the marginal expected path cost on 
any unused route can be greater than, equal to or smaller than that on the used 
route.  
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Condition (20) has a very similar form with (12), which implies that 0rs
jh =  if 

and only if 0rs
ju = , and that rs

jh and rs
ju  have opposite signs. Equation (21) de-

scribes the relationships between rs
jh , rs

ju  and rs
jv . Constraint (22) is the sign re-

striction for rs
ju . 

3.  The Partial-cooperative Nash Formulation  

The second proposed problem, namely the partial-cooperative Nash problem, is 
similar to the Stackelberg-Nash problem except that the coordinator does not take 
the user reaction into account. The partial-cooperative problem is to find q  to 

maximize TP and h  to minimize Z simultaneously subject to (2)-(3), and (5)-(7). 
The first-order conditions include (2)-(3), (5)-(7), and (12)-(17). 

 
Proposition 3: When all link travel costs are flow-independent, the Stackel-

berg-Nash solution is identical to the solution of the Nash game played between 
the coordinator and the whole user group, and the solution of the Nash game 
played between the coordinator and all the users.   

Proof: When link costs are flow independ-

ent, ( )
0

 
av

k ak k ak a
a k a k

Z q t x dx q t v TP= = =∑∑ ∑∑∫ . The Stackelberg-Nash formula-

tion can be rewritten as the following Max-Min formulation: 
 Max Min  TP

hq
  

subject to (2)-(3), and (5)-(7).  
By the minimax theorem, Max Min  Min Max  TP TP=

h hq q
. Then, the following 

Nash equilibrium conditions between the coordinator and the whole user group are 
obtained: 

* * *( , ) max min ( , )TP TP TP= ≥
hq

h q h q  and 

* * *( , ) min max ( , )TP TP TP= ≤
h q

h q h q ,  

where ( , )TP h q  is the payoff at ( , )h q . As all the users are non-cooperative with 

each other, all the users and the coordinator are non-cooperative with each other in 
this game.  
 

Note that when link cost functions are flow-dependent, an optimal solution to 
the partial-cooperative Nash problem may not be optimal to the Stackelberg-Nash 
problem as the solution may not satisfy (18)-(22). However, this optimal solution 
is feasible to the Stackelberg-Nash problem as stated below: 
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Proposition 4: Any optimal solution to the partial-cooperative Nash problem is 
a feasible solution to the Stackelberg-Nash problem. 

Proof: As any optimal solution of the partial-cooperative Nash problem must 
satisfy (2)-(3), (6)-(7), and (12)-(17), the optimal solution must be feasible to the 
Stackelberg-Nash problem which has fewer constraints: (2)-(3), (6)-(7), and (12)-
(15).  

4.  The Multi-demon Formulation  

For completeness, the multi-demon problem in Szeto et al. (2007) is briefly re-
viewed here. The multi-demon problem consists of two subproblems: the user 
problem and the demon problem. The user problem is described by the first-order 

conditions (5)-(7) and (12)-(14) where the scenario probability kq  and min
rsg  in 

(12)-(14) are respectively defined as follows: 

1
m

M
m

k l
m

q p
=

= ∏ , and (23) 

( )min
d

minrs rs
dk k

k

g g q
 =  
 
∑ h ,  (24) 

where 
m

m
lp  is the probability of demon m  selecting link ml  to damage.  

The demon problem describes the objective of each non-cooperative demon. 
Each demon seeks its mixed strategy to maximize its expected pay-off P:  

( )
1

1

, ..., ,...,
1 1 1

i m M

M

Mn n
i
l a l l l a

l l ai

P p t v
= = =

    =     
   

∑ ∑ ∑∏ v… , (25) 

where  ( )
1, ..., ,...,m Ma l l lt v  denotes the flow-dependent cost on link a  in scenario 

( )1,..., ,...,m Mk l l l=  with demon  m  selecting link ml  for damage.  

Let  

m
1,

i

m

M
m i
l lm

i i ml

P
p

p
θ

= ≠

∂= =
∂ ∏  (26) 
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be the expected payoff to demon m  (or the total expected network cost to the us-
ers) when demon m  selects link ml  to damage and considers the link selection 

strategies of all other demons. Let also 

m
m

maxm m
l

l
π θ= .  (27) 

The demon problem can then be described by the following conditions:  

{ } 0, 1,..., , 1,...,
l mm

m m m
l mp m M l nπ θ− = = = , (28) 

0, 1,..., , 1,...,
m

m m
l mm M l nπ θ− ≥ = = , (29) 

0, 1,..., , 1,...,
m

m
l mp m M l n≥ = = , and (30) 

1 0, 1,...,
m

m

m
l

l

p m M− = =∑ . (31) 

The multi-demon problem is to find the link selection probability vector 

m

m
lp =  p  and the route flow vector h   to satisfy (5)-(7),  (12)-(14), and (23)-(31) 

simultaneously. The solution is actually a Nash equilibrium solution. Three prop-
erties of this problem that have not been mentioned in the literature are given be-
low: 

 
Proposition 5: All the demons in the multi-demon problem must have the same 

expected payoff at optimality. 
Proof: From (25), we can observe that all the demons receive the same ex-

pected payoff. Therefore, their maximum expected payoffs, which are the ex-
pected payoff evaluated at Nash equilibrium, must be the same. 

 
Proposition 6: The set of optimal link selection probabilities of the multi-demon 

problem (5)-(7), (12)-(14) and (23)-(31) is identical to that of the revised multi-
demon problem with the payoff function Pµ , where 0µ > . 

Proof: The revised formulation consists of (5)-(7), (12)-(14), (23), (24), (26), 
(27), (30), (31),  and the following: 

( )
1

1

, ..., ,...,
1 1 1

i m M

M

Mn n
i
l a l l l a

l l ai

P p t vµ
= = =

    =     
   

∑ ∑ ∑∏ v… , (32) 
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{ } 0, 1,..., , 1,...,
l mm

m m m
l mp m M l nµπ µθ− = = = , and (33) 

0, 1,..., , 1,...,
m

m m
l mm M l nµπ µθ− ≥ = = . (34) 

As 0µ > , (33) and (34) can be respectively rewritten as:  

{ } 0, 1,..., , 1,...,
l mm

m m m
l mp m M l nπ θ− = = = , and (35) 

0, 1,..., , 1,...,
m

m m
l mm M l nπ θ− ≥ = = . (36) 

The formulation (5)-(7), (12)-(14), (23), (24), (26), (27), (30)-(32), (35) and 
(36) is actually the same as the formulation (5)-(7), (12)-(14), and (23)-(31). 
Therefore the two formulations have the same  set of link selection probabilities.  

 
Proposition 7: Any optimal solution of the multi-demon formulation is a feasi-

ble solution to both the Stackelberg-Nash problem and the partial-cooperative 
Nash problem under definition (23). 

Proof: As mentioned before, under (23), the three user problems are equivalent. 
Hence, we only need to show that the optimal link selection probability vector 

*
m

m
lp    satisfies the constraints (2) and (3) in both the Stackelberg-Nash and Par-

tial-cooperative Nash problems. As * 0, ,
m

m
l mp l m≥ ∀ , 

1

* 0
m

M
m

k l
m

q p
=

= ≥∏ . That is, 

(3) is satisfied. Moreover, since * 1 0,
m

m

m
l

l

p m− = ∀∑ , 

1 1 1 11 1

... * * 1
m m

M m

M Mn n n
m m

k l l
k l l lm m

q p p
= = == =

  = = =       
∑ ∑ ∑ ∑∏ ∏ . Therefore, (2) is also satisfied.  

When 1/Mµ = , the payoff function of each demon in the two problems is the 

same. However, the revised multi-demon problem may not give the maximal 
TENC as the optimal solution of the revised multi-demon formulation is a feasible 
solution to the Stackelberg-Nash problem according to proposition 7 but may not 
be an optimal solution to the Stackelberg-Nash problem. 
 

Proposition 8: Assume P is locally concave of 
m

m
lp  at optimality. Then, at least 

one optimal solution to the multi-demon problem with the payoff function P gives 
an optimal solution to the partial-cooperative Nash problem.  
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Proof: As TP is a linear function of kq , TP must be concave at optimality and 

the necessary optimality conditions for the partial-cooperative Nash problem are 
also the sufficient optimality conditions. Moreover, under the given assumption, 
the necessary optimality conditions for the multi-demon problem are also the suf-
ficient optimality conditions. Therefore, we only need to show that the first-order 
conditions of the partial-cooperative Nash problem imply those of the multi-
demon problem. By comparing the two sets of sufficient optimality conditions, we 
found that most of them are the same. Therefore, we only need to show that (16)-
(17) imply (28)-(29). 

 
(17) ⇒  (29): 

By chain rule, '

' 'm m

k
m m

k kl l

qTP TP

qp p

∂∂ ∂=
∂∂ ∂∑ .  As TP = P,  

'

' 'm m

k
m m

k kl l

qP TP

qp p

∂∂ ∂=
∂∂ ∂∑ .  (37) 

From (17), ( )
rs

rs rs
j jk q

rs j P k

TP
h g

q
π

∈

∂= ≤
∂∑ ∑ h . Hence,  

' '

' '
m m m

k k
q qm m m

k kl l l

q qP

p p p
π π∂ ∂∂ ≤ =

∂ ∂ ∂∑ ∑ .  (38) 

From (23), 
1 , 1,

i

i Mm

M
ik
lm

l l i m l i i ml

q
p

p ≠ = ≠

 ∂
=  ∂  
∑ ∑ ∑ ∏… …  where ( )1,..., ,...,m Mk l l l= . Hence 

(38) becomes 
1 , 1,

i

i Mm

M
i

q lm
l l i m l i i ml

P
p

p
π

≠ = ≠

  ∂ ≤   ∂    
∑ ∑ ∑ ∏… … , which be rewritten as  

1,
i

im

M
i

q lm
li i ml

P
p

p
π

= ≠

 ∂ ≤   ∂  
∑∏ . (39) 

Substituting (31) into (39) gets  

m

qm
l

P

p
π∂ ≤

∂
.  (40) 
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According to (26) and (27), max
m

m

m
ml
l

P

p
π ∂=

∂
. Because of (40),  

max
m

m

m
qml

l

P

p
π π∂= =

∂
.  (41) 

Substituting (41) into (40) gets  

m

m
m
l

P

p
π∂ ≤

∂
.  (42) 

Hence, q
k

TP

q
π∂ ≤

∂
 implies 

m

m
m
l

P

p
π∂ ≤

∂
. 

 
(16) ⇒ (28): 

Without loss of generality, the link selection probabilities can be classified into 
two groups, zero and positive. The link selection probabilities are positive if they 
constitute at least one scenario with a positive probability, and zero otherwise.  Let 

m

m
lp +  be the positive probability of demon m selecting link ml  to damage. Then, by 

definition of probability, 

1,
m

m

m
l

l

p m+ = ∀∑ .   (43) 

Then, consider mutually exclusive two cases of the probability of scenario 

( )1,..., ,...,m Mk l l l= : 0kq >  and 0kq = . If 0kq > , all the link selection probabili-

ties that constitute 
1

,
m

M
m

k l
m

q p
=

= ∏  must be positive. That is, 

1

0
m

M
m

k l
m

q p
=

= > ⇒∏ 0,
m

m
lp m> ∀ .   (44) 

Moreover, if 0kq >  and 0
m

m
lp > , 

 0 , 
i

m

ik
lm

i ml

q
p m

p ≠

∂
= > ∀

∂ ∏ .  (45)  

Furthermore, by (16),  
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if 0kq > , ( )rs rs
q j jk

rs j k

TP
h g

q
π ∂= =

∂∑∑ h .   (46) 

(45) and (46) imply  

q
k

TP

q
π∂ =

∂
 when 0,    0,  and 0

m

m

mk
l km

l

q
p m q

p

∂
> > ∀ >

∂
.  (47) 

If 0kq = , some link selection probabilities that constitute kq  is zero. In par-

ticular, if 0kq =  but 0
m

m
lp > ,  

0 0
i m i m

m m

i m i m k k
k l l l l m m

i i m l l

q q
q p p p p

p p≠

∂ ∂
= = = = ⇒ =

∂ ∂∏ ∏ .  (48) 

In addition, from (16) and (17) ,  

if 0kq = , q
k

TP

q
π∂ ≤

∂
.  (49) 

(48) and (49) imply 

 q
k

TP

q
π∂ ≤

∂
 when 0,   0,   and 0

m

m

mk
l km

l

q
p m q

p

∂
= > ∀ =

∂
. (50) 

Let K +  and 0K  be the sets of scenarios that have positive and zero probabili-
ties respectively given that 0

m

m
lp > . Then, from  (37),  we have 

0

' ' '

' ' '' ' 'm m m m

k k k
m m m m

k k K k Kk k kl l l l

q q qP TP TP TP

q q qp p p p+∈ ∈

∂ ∂ ∂∂ ∂ ∂ ∂= = +
∂ ∂ ∂∂ ∂ ∂ ∂∑ ∑ ∑ .   (51) 

If  0kq >  and 0
m

m
lp > ,  (51) can be simplified via conditions (47) and (50) as 

'

'm m

k
qm m

k Kl l

qP

p p
π

+∈

∂∂ =
∂ ∂∑ , which can be further simplified as  

1

'

, 1, 1,'
i i

i M im m

M M
i ik

q q l q lm m
l l i m l li i m i i mk Kl l

qP
p p

p p
π π π

+

+ +

≠ = ≠ = ≠∈

    ∂∂ = = =      ∂ ∂      
∑ ∑ ∑ ∑ ∑∏ ∏… … .  (52) 
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Substituting (43) and (41) into (52) gives 

m

m
m
l

P

p
π∂ =

∂
.  (53)  

As 0kq >  implies both 0,
m

m
lp m> ∀  (from (44)) and 

m

m
m
l

P

p
π∂ =

∂
 (from (53)), we 

have 
m

m
m
l

P

p
π∂ =

∂
 when 0,

m

m
lp m> ∀ , which is the alternative expression of (28).  

 
The above proposition implies that the partial-cooperative Nash problem seeks 

the optimal Nash solution that yields the maximum TENC. In addition, if an opti-
mal Nash equilibrium solution is also an optimal partial-cooperative Nash solution 
and satisfies conditions (18)-(22), then the Nash solution is also an optimal 
Stackelberg-Nash solution, and the Stackelberg-Nash problem can be viewed as 
seeking the optimal Nash solution that satisfies conditions (18)-(22) and yield the 
maximum TENC. One example in Section 6 illustrates this point.  The following 
two propositions discuss two special cases. 

 
Proposition 9: Assume P is locally concave of 

m

m
lp  at optimality and all the op-

timal solutions to the multi-demon problem give the same payoff. Then, all the op-
timal solutions to the multi-demon problem with the payoff function P give an op-
timal solution to the partial-cooperative Nash problem.  

Proof: This follows directly from Proposition 8.  
 

Proposition 10: Assume P is locally concave of 
m

m
lp  at optimality and all the 

optimal solutions to the multi-demon problem give the same payoff and satisfy 
(18)-(22). Then, all the optimal solutions to the multi-demon problem with the 
payoff function P give an optimal solution to the Stackelberg-Nash problem.  

Proof: This follows from Proposition 8 and the fact that a Nash solution pro-
duces an optimal Stackelberg-Nash solution when the optimal Nash equilibrium 
solution is also an optimal partial-cooperative Nash solution and satisfies condi-
tions (18)-(22).  
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5. The Stochastic Braess Paradox and Travel Cost Reliability 
Paradox 

Two analogues of Braess’ paradox for total expected network cost and travel 
cost reliability in the proposed problems, namely stochastic Braess’ paradox and 
reliability-paradox, are mathematically defined in this section.  

The stochastic Braess paradox refers to the phenomena that if one adds a road 
to a network then all the travelers may be worse off in terms of total expected 
network cost. This paradox occurs when 0after beforeTENC TENC− > , where 

beforeTENC  and afterTENC  are respectively the total expected network costs before 

and after link addition. 
The travel cost reliability paradox is the phenomena that if one adds a road to a 

network then all the travelers may be worse off in terms of network travel cost re-
liability. This paradox occurs when 0after beforeR R− < , where beforeR  and  afterR  are 

the network travel cost reliability before and after link addition. The network tra-
vel cost reliability is defined as the probability of the total expected network cost 
to be less than the predefined tolerance. 

6. Numerical Studies 

6.1 Stackelberg-Nash Solutions and Partial-cooperative Nash 
Solutions as Special Nash Solutions  

This example is set up to show the existence of  multiple Nash solutions where 
some of them can be Stackelberg-Nash solutions and partial-cooperative Nash so-
lutions. The network with one OD pair and three identical parallel links, links 1-3, 
is adopted for this purpose. We consider three demons, namely demons 1, 2 and 3. 
This leads to three cases: 1) one coalition (i.e., all demons cooperate with each 
other), 2) two coalitions (i.e., two demons cooperate against the third one) and 3) 
three coalitions (i.e., all demons are non-cooperative). In all cases, it is assumed 
that the capacity of each link is reduced by half if at least one demon selects that 
link for damage. The following parameters are adopted for illustrative purposes: 

• rsN = 8000; 
• 1 2 3 $10α α α= = = ; 

• 1 2 3 $1.5β β β= = = ; 

• 1 2 3 4γ γ γ= = = ; 

• 
4000 vph if link  is selected by any demon;

2000 vph otherwise.ak

a
c


= 

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The result for case 1 is obtained by solving the partial-cooperative Nash prob-
lem whereas the results for cases 2 and 3 are obtained by solving the multi-demon 
formulation. Note that for case 2, we assume that there is a coordinator for deter-
mining the link selection strategies for the two demons and the coordinator is as-
sumed to compete with the third demon.  

When all demons are non-cooperative (case 3), the multi-demon formulation 
indeed gives seven Nash solutions as shown in Table 1. Solutions 2-7 can actually 
produce the partial-cooperative Nash solutions obtained in case 1, and give a 
probability of 1 for the scenario where the three demons select different links for 
damage. This means that some Nash solutions can also be the partial-cooperative 
Nash solutions. However, in terms of payoff, solutions 2-7 give the maximum 
payoff to each demon while solution 1 gives a suboptimal payoff to each demon. 
Not surprisingly, solutions 2-7 are also the solutions to case 2 and the payoff of 
each demon is maximal.  
 
Table 1 
Multiple link selection probabilities 
a) Solution 1        b) Solution 2 
 Link 1 Link 2 Link 3   Link 1 Link 2 Link 3 
Demon 1 1/3 1/3 1/3  Demon 1 1 0 0 
Demon 2 1/3 1/3 1/3  Demon 2 0 1 0 
Demon 3 1/3 1/3 1/3  Demon 3 0 0 1 

 
c) Solution 3        d) Solution 4 
 Link 1 Link 2 Link 3   Link 1 Link 2 Link 3 
Demon 1 0 0 1  Demon 1 0 1 0 
Demon 2 1 0 0  Demon 2 1 0 0 
Demon 3 0 1 0  Demon 3 0 0 1 

 
e) Solution 5        f) Solution 6 
 Link 1 Link 2 Link 3   Link 1 Link 2 Link 3 
Demon 1 0 0 1  Demon 1 0 1 0 
Demon 2 0 1 0  Demon 2 0 0 1 
Demon 3 1 0 0  Demon 3 1 0 0 

 
g) Solution 7      
 Link 1 Link 2 Link 3 
Demon 1 1 0 0 
Demon 2 0 0 1 
Demon 3 0 1 0 

 
As the three parallel links are identical, all paths must carry equal flows and 

conditions (18)-(21) must be satisfied at optimality, including the equal marginal 
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expected path cost condition. Hence, the partial-cooperative Nash solution is also 
a Stackelberg-Nash solution. This has been checked by solving the Stackelberg-
Nash problem directly via an existing global optimization software package. 

To sum up, this example shows that Stackelberg-Nash solutions and partial co-
operative Nash solutions can be obtained via the non-cooperative Nash formula-
tion like the multi-demon formulation. However, when there is more than one 
Nash solution, there is no guarantee that Stackelberg-Nash solutions and partial-
cooperative Nash solutions can be obtained by solving the multi-demon formula-
tion once. 

6.2 The Effect of Demon Coalitions to Total Expected Network Cost 
and Network Travel Cost Reliability 

This example considers the same scenario as in the previous example but fo-
cuses on demonstrating the effect of demon coalitions to the demons’ payoffs (i.e., 
total network expected cost) and network travel cost reliability. The tolerance used 
in reliability is equal to 1.2 times the user equilibrium’s total network cost as in 
Cassir et al. (2003). The minimum payoff of each demon under each case is shown 
in Table 2. This table clearly shows that the minimum payoff increases with a de-
creasing number of coalitions, as the extent of cooperation increases with a de-
creasing number of coalitions in our example. The payoff is increased marginally 
(2%) when any two demons form one coalition and select links non-cooperatively 
against the third one. In the extreme case, where there is only one coalition, the 
payoff is increased by 20% when compared with the non-cooperative case. In 
terms of network travel cost reliability, the reliability decreases from 0.11 to 0 
when the number of coalitions increases from 1 to 3. 

 
Table 2 
The effect of the extent of cooperation to the demons’ payoff and network travel 
cost reliability 

Number of coalitions Minimum payoff of each demon Reliability 
3 $35797 0.11 

2 $36675 0 

1 $43280 0 
 
The three cases result in different link selection strategies. When all demons are 

non-cooperative, each demon selects a link for damage with a probability of 1/3. 
However, when all demons cooperate together, all demons will cooperatively se-
lect different links for damage with a probability of 1 so as to maximize the pay-
off. It is because the capacity of a link will not be reduced further if one additional 
demon selects the same link for damage. Therefore, the best strategy is not to let 
more than one demon to select a link for damage. When there are two demons co-
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operating against the third one, the third one selects each link for damage with a 
probability of 1/3 and the demon coordinator selects each combination of two dif-
ferent links for damage with a probability of 1/3. This means there are at least two 
links selected for damage but all links may not be selected for damage simultane-
ously. Hence, the payoff of each demon is lower than that of the single coalition 
case because of the possibility of two demons selecting the same link for damage. 
One interesting observation is that even if two demons form one coalition against 
the third demon, the payoffs of all three demons are higher than their payoff when 
no demon works together. That is, the third demon also receives some benefit re-
sulting from the cooperation between the other two demons.  

If the free-flow travel cost of one link were increased, the minimum payoff also 
increased with a decreasing number of coalitions. This shows that more coopera-
tion will increase the minimum payoff of each demon and the total expected net-
work cost regardless of the geometry of the network.  

This example implies that the multi-demon approach (that assumes no coopera-
tion between demons) can underestimate the worst case’s total expected network 
cost and overestimate the worst case’s the network reliability when the Stackel-
berg-Nash solution is not obtained. One should employ the proposed Stackelberg-
Nash formulation to determine the worst case’s total expected network cost and 
reliability.  

6.3 Stochastic Braess’ Paradox and Travel Cost Reliability Paradox 

This example demonstrates the existence of stochastic Braess’ paradox and a 
travel cost reliability paradox in the proposed Stackelberg-Nash problem, the pro-
posed partial-cooperative Nash problem and the classical pure-Nash game prob-
lem. The example network together with its link cost functions are shown in Fig-
ure 1. This network is similar to the classical Braess network but all free-flow 
travel costs are positive and the performance functions are nonlinear. For illustra-
tive purposes, the number of users and demons are respectively set to equal 1000 
and 1, although other numbers can be used to illustrate the existence of the para-
doxes. Like previous example, the capacity of each link is assumed to be reduced 
by half if the demon selects the link for damage, and the tolerance used is equal to 
1.2 times the user equilibrium’s total network cost. 

Under the above setting, the two proposed problems give the same solution as 
the classical pure Nash game problem. Before link addition, both routes carry 
equal flows, and the demon selects links 3 and 4 for damage with the correspond-
ing link selection (or scenario) probabilities 3 0q ≥  and 4 31 0q q= − ≥ . The resul-

tant total expected network cost (TENC) is $66500 and the network (or OD) travel 
cost reliability is 1. 

After link addition, all the users use the new route, 1-3-4-2 although the demon 
selects the same two links for damage with the same probabilities as before. Con-
sequently, the resultant TENC decreases to $76000 (or by 14%) and the stochastic 
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Braess paradox occurs. In terms of network (or OD) travel cost reliability, it drops 
to 0 and the reliability paradox occurs. 

The main reason of the occurrence of the two paradoxes is that the users are 
non-cooperative between themselves. Therefore, the overall system performance 
in terms of either reliability or expected cost is not necessarily improved when the 
capacity of the network is improved, or vice versa.  

In fact, the existence of these paradoxes depends on many factors. Like the 
classical Braess paradox, their occurrence depends on the geometry, the functional 
form of link cost function, and the number of users (i.e., demand level). Unlike the 
classical Braess paradox, their occurrence also depends on the number of demons 
and the extent of cooperation. In particular, the occurrence of the reliability para-
dox also depends on the tolerance used in defining the reliability. Due to space li-
mitation, the examples are not shown here. 

The implication of this example is that the TENC and network travel cost reli-
ability should be considered in network design to avoid the occurrence of the sto-
chastic Braess and reliability paradoxes. Otherwise, after network expansion, the 
network performance may be worse off in terms of TENC, and the network can be 
less reliable in terms of network travel cost reliability.  
  

 
Fig. 1. Braess’  network. 
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7. Conclusions 

This paper develops two game-theoretic formulations based on cooperative game 
theory. The properties of the formulations are examined. This paper also discusses 
under what conditions, the multi-demon formulation can produce the same solu-
tion as the two proposed formulations. The relationships between the three formu-
lations are examined. Numerical examples are provided to study the effects of the 
level of cooperation on total network expected cost and travel cost reliability and 
illustrate two  paradoxical phenomena in terms of expected network travel cost 
and network travel cost reliability. Further insights into the implications for reli-
able network design are provided if these paradoxes are ignored and/or classical 
game-theoretic methods are adopted. As a remark, this paper suggests to adopt the 
Stackelberg-Nash approach to measuring the worst-case network reliability as it 
takes the user behavior into account when determining the worst-case network 
performance. 

This paper opens up many future research directions. First, the very important 
question of how many demons are appropriate to assume remains unanswered. Ex-
tensive studies on real networks involving data on previous incidents are required 
to rectify this. Second, it is not clear whether the occurrence of stochastic Braess’ 
paradox implies the occurrence of reliability paradox and vice versa. This is left to 
future studies. Finally, efficient global optimization methods for the proposed 
formulations have not been developed yet. Developing them is one of the impor-
tant and challenging future research directions. 
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