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ABSTRACT

We investigate the possibility that stellar mass black holes, with masses in

the range of 3.8M⊙ and 6M⊙, respectively, could be in fact quark stars in

the Color-Flavor-Locked (CFL) phase. Depending on the value of the gap pa-

rameter, rapidly rotating CFL quark stars can achieve much higher masses

than standard neutron stars, thus making them possible stellar mass black

hole candidates. Moreover, quark stars have a very low luminosity and a com-

pletely absorbing surface - the infalling matter on the surface of the quark

star is converted into quark matter. A possibility of distinguishing CFL quark

stars from stellar mass black holes could be through the study of thin ac-

cretion disks around rapidly rotating quark stars and Kerr type black holes,

respectively. Furthermore, we show that the radiation properties of accretion

disks around black holes and CFL quark stars are also very similar. However,

strange stars exhibit a low luminosity, but high temperature bremsstrahlung

spectrum, which, in combination with the emission properties of the accre-

tion disk, may be the key signature to differentiate massive strange stars from

black hole.
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1 INTRODUCTION

Current physics suggests that compact objects with mass functions larger than 3-4 solar

masses must be black holes (Rhoades & Ruffini 1974). From a theoretical point of view, black

holes have been considered, in the framework of general relativity, for almost one hundred

years. However, their first observational evidence was not found until quite recently, during

the past three decades. In the late 1960s X-ray detectors onboard satellites revolutionized

astronomy with the discovery of a large population of luminous X-ray sources in the Galaxy.

Optical counterparts associated with high mass X-ray binaries (HMXBs) have also been

identified, and one of the first to be identified was the supergiant star HD 226868, associated

with HMXB Cyg X-1. The determination of the mass function equation f (Mx), which relates

the mass of the compact object Mx with that of the companion star Mc and to the inclination

angle i indicated that Mx > 4M⊙ (Bolton 1975). In 1975 the satellite Ariel V detected the X-

ray source A-0620-00, which belongs to a class of X-ray transients (XRT). The mass function

of the compact star is 3.2 ± 0.2M⊙, which slightly exceeds the maximum mass allowed for

a stable neutron star (McClintock & Remillard 1986). In 1989, the X-ray satellite Ginga

discovered the XRT V404 Cyg. The mass function for this system implies the presence of a

compact object with mass greater than 6M⊙. Since then, many other stellar mass black hole

candidates have been found, with seven of them having mass functions in excess of 5M⊙.

Presently, there are around 20 known stellar mass black holes, like, for example, XTE J1650-

500, with a mass of 3.8 solar masses (Orosz et al. 2004), GRO J0422+32 with a mass between

3-5 solar masses (Gelino & Harrison 2003), GRO J1655-40 with a mass of around 6 solar

masses (Udalski et al. 2003) etc. However, it is estimated that in the Milky Way alone there

should be at least 1000 dormant black hole XRTs, while the total number of stellar mass

black holes (isolated and in binaries) could be as large as 100 million (Romani 1998). The

stellar mass black hole holes have been observed in close binary systems, in which transfer

of matter from a companion star to the black hole occurs. The energy released in the fall

heats up the matter to temperatures of several hundred million degrees, and it is radiated in

X-rays. The black hole therefore is observable in X-rays, whereas the companion star can be

observed with optical telescopes. The energy released for black holes and neutron stars is of

the same order of magnitude. Therefore, on the one hand, black holes and neutron stars are

often difficult to distinguish. On the other hand, since many types of compact objects formed

from so called exotic matter (boson stars, axion stars, condensed stars etc.) have properties
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similar to the standard black holes (Torres 2002; Yuan et al. 2004), distinguishing between

all these classes of compact object is a fundamental challenge for contemporary astronomy

and astrophysics. There are also important observational evidences for massive black holes,

like the intermediate-mass black holes (which can be found in the center of globular clusters)

and the supermassive black holes in the center of the Milky Way and of the active galaxies

(Horowitz & Teukolsky 1999).

The quark structure of the nucleons, suggested by quantum chromodynamics, indicates

the possibility of a hadron-quark phase transition at high densities and/or temperatures

(Itoh 1970; Bodmer 1971; Witten 1984). If the hypothesis of the quark matter is true,

then some of neutron stars could actually be quark stars, built entirely of quark matter

(Alcock et al. 1986; Haensel et al. 1986). For a general review of quark star properties see

Cheng et al. (1998).

There are several proposed mechanisms for the formation of quark stars. Quark stars

are expected to form during the collapse of the core of a massive star, after the supernova

explosion, as a result of a first or second order phase transition, resulting in deconfined

quark matter (Dai et al. 1995). The proto-neutron star core or the neutron star core is

a favorable environment for the conversion of ordinary matter to strange quark matter

(Cheng et al. 1998; Chan et al. 2009). Another possibility is that some neutron stars in low-

mass X-ray binaries can accrete sufficient mass to undergo a phase transition to become

strange stars (Cheng & Dai 1996). This mechanism has also been proposed as a source of

radiation emission for cosmological γ-ray bursts (Cheng & Dai 1998).

Most of the investigations of quark star properties have been done within the framework

of the so-called MIT bag model, with the energy density ρc2 and pressure p of a quark-

gluon plasma related by the equation of state (EOS) p = (ρ − 4B)c2/3, where B is the

difference between the energy density of the perturbative and non-perturbative QCD vac-

uum (the bag constant). For different values of the bag constant and for different equations

of state of the quark matter a complete description of the basic astrophysical properties

(mass, radius, eccentricity, Keplerian frequency etc.) of both static and rotating quark stars

has been obtained (Witten 1984; Haensel et al. 1986; Alcock et al. 1986; Dey et al. 1998;

Gondek-Rosinska et al. 2000; Harko & Cheng 2002). Quark stars can reach much shorter

periods than neutron stars, of the order of 0.5 ms. Quark stars could have a radius signif-

icantly less than that of neutron stars (Cheng et al. 1998). r-mode instabilities in rapidly

rotating quark stars lead to specific signatures in the evolution of pulsars with periods be-
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low 2.5 ms. If quark matter is absolutely stable, some pulsars, in which the conditions for

a hadron-quark phase transition are realized, could consist of quark matter. Some data on

pulsar properties are consistent with this assumption (Madsen 2000).

The existence of a large variety of color superconducting phases of quark matter at high

densities has been suggested and intensively investigated (Alford et al. 1999; Alford 2001,

2004; Alford et al. 2007). At ultra-high density, matter is expected to form a degenerate

Fermi gas of quarks in which the Cooper pairs of quarks with very high binding energy

condensate near the Fermi surface (color superconductor). Such a state is significantly more

bound than ordinary quark matter. It is now widely accepted that at extremely high density

the ground state of quark matter is the superconducting Color-Flavor-Locked (CFL) phase,

and that this phase of matter rather than nuclear matter may be the ground state of hadronic

matter (Alford et al. 2007). The existence of the CFL phase can enhance the possibility of the

existence of a pure stable quark star. The maximum mass of the static quark stars in the CFL

model is given by Mmax = 1.96M⊙ (1 + δ) /
√

B60, where B60 = B MeV fm−3)/60 MeV fm−3,

and δ = 0.15 (∆/100 MeV)2
(
60 MeV fm−3/B

)
, with ∆ the gap energy (Horvath & Lugones

2004). Hence large maximum masses (M > 4M⊙) can be found for standard values of B and

∆ > 250 MeV. Rotation can also significantly increase the mass of the CFL quark stars.

For a discussion of the maximum mass of both rotating and non-rotating general relativistic

objects see Stergioulas et al. (2003). For rotating stars the maximum mass can be of the

order of Mmax ≈ 6.1M⊙ (2 × 1014 g cm−3/ρm)
1/2

, where ρm is the matching density.

Recent observations suggest that around most of the active galactic nuclei (AGN’s) or

black hole candidates there exist gas clouds surrounding the central compact object, and an

associated accretion disc, on a variety of scales from a tenth of a parsec to a few hundred

parsecs (Urry & Padovani 1995). These clouds are assumed to form a geometrically and

optically thick torus (or warped disc), which absorbs most of the ultraviolet radiation and

the soft X-rays. The gas exists in either the molecular or the atomic phase. Hence, important

astrophysical information can be obtained from the observation of the motion of the gas

streams in the gravitational field of compact objects.

The determination of the accretion rate for an astrophysical object can give a strong

evidence for the existence of a surface of the object. A model in which Sgr A*, the 3.7×106M⊙

super massive black hole candidate at the Galactic center, may be a compact object with a

thermally emitting surface was considered in Broderick & Narayan (2006). Given the very

low quiescent luminosity of Sgr A* in the near-infrared, the existence of a hard surface, even
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in the limit in which the radius approaches the horizon, places a severe constraint on the

steady mass accretion rate onto the source, Ṁ 6 10−12M⊙ yr−1. This limit is well below the

minimum accretion rate needed to power the observed submillimeter luminosity of Sgr A*,

Ṁ > 10−10M⊙ yr. Thus, from the determination of the accretion rate it follows that Sgr A*

does not have a surface, that is, it must have an event horizon. Therefore the study of the

accretion processes by compact objects is a powerful indicator of their physical nature.

The first comprehensive theory of accretion disks around compact general relativistic

objects was constructed in Shakura & Sunyaev (1973). This theory was extended to the gen-

eral relativistic models of the mass accretion onto rotating black holes in Novikov & Thorne

(1973). These pioneering works developed thin steady-state accretion disks, where the ac-

creting matter moves in Keplerian orbits. The hydrodynamical equilibrium in the disk is

maintained by an efficient cooling mechanism via radiation transport. The photon flux emit-

ted by the disk surface was studied under the assumption that the disk emits a black body

radiation. The properties of radiant energy flux over the thin accretion disks were further

analyzed in Page & Thorne (1974) and in Thorne (1974), where the effects of the photon

capture by the hole on the spin evolution were presented as well. In these works the efficiency

with which black holes convert rest mass into outgoing radiation in the accretion process

was also computed.

The emissivity properties of the accretion disks have been recently investigated for dif-

ferent classes of compact objects, such as rotating and non-rotating boson or fermion stars

(Torres 2002; Yuan et al. 2004), as well as for the modified f(R) type theories of grav-

ity (Pun et al. 2008a), for brane world black holes (Pun et al. 2008b), and for wormholes

(Harko et al. 2008, 2009). The radiation power per unit area, the temperature of the disk

and the spectrum of the emitted radiation were given, and compared with the case of a

Schwarzschild or Kerr-Newman black holes of an equal mass.

Since quark stars in the CFL phase can have higher maximum masses than ordinary

neutron stars (Horvath & Lugones 2004), which, in the case of rapidly rotating stars, can

reach values as high as 6 − 7M⊙, the possibility that some stellar mass black holes are

actually quark stars cannot be excluded a priori. The CFL quark stars, being more massive

than the presumed neutron-star limit of 3 − 4M⊙, can describe compact objects that do

not fit into the framework of standard neutron star models. It is the purpose of the present

paper to propose an observational test of this hypothesis, by considering a comparative study

of the properties of the thin accretion disks around rapidly rotating CFL quark stars and
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black holes, respectively. In particular, we consider a comparative study of the basic physical

parameters describing the disks, like the emitted energy flux, the temperature distribution

on the surface of the disk, as well as the spectrum of the equilibrium radiation. Due to the

differences in the exterior geometry, the thermodynamic and electromagnetic properties of

the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are

different for these two classes of compact objects, thus giving clear observational signatures,

which may allow to distinguish CFL quark stars from black holes.

The present paper is organized as follows. The properties of the general relativistic thin

accretion disks onto compact objects are briefly described in Section II. In Section III we

present the metric properties for Kerr black holes as well as for the CFL quark stars. In

Section IV we consider the radiation flux, spectrum and efficiency of thin accretion disks

onto Kerr black holes and quark stars. We discuss and conclude our results in Section V.

2 THIN ACCRETION DISKS ONTO GENERAL RELATIVISTIC

COMPACT OBJECTS

Accretion discs are flattened astronomical objects made of rapidly rotating gas which slowly

spirals onto a central gravitating body, with its gravitational energy degraded to heat. A

fraction of the heat converts into radiation, which partially escapes, and cools down the

accretion disc. The only information that we have about accretion disk physics comes from

this radiation, when it reaches radio, optical and X-ray telescopes, allowing astronomers

to analyze its electromagnetic spectrum, and its time variability. The efficient cooling via

the radiation over the disk surface prevents the disk from cumulating the heat generated by

stresses and dynamical friction. In turn, this equilibrium causes the disk to stabilize its thin

vertical size. The thin disk has an inner edge at the marginally stable orbit of the compact

object potential, and the accreting plasma has a Keplerian motion in higher orbits.

For the general relativistic case the theory of mass accretion around rotating black holes

was developed by Novikov & Thorne (1973). They extended the steady-state thin disk mod-

els introduced by Shakura & Sunyaev (1973) to the case of the curved space-times, by adopt-

ing the equatorial approximation for the stationary and axisymmetric geometry. The time-

and space-like Killing vector fields (∂/∂t)µ and (∂/∂φ)µ describe the symmetry properties of

this type of space-time, where t and r are the Boyer-Lindquist time and radial coordinates,
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respectively. A thin accretion disk is an accretion disk such that in cylindrical coordinates

(r, φ, z) most of the matter lies close to the radial plane.

For the thin accretion disk its vertical size (defined along the z-axis) is negligible, as

compared to its horizontal extension (defined along the radial direction r), i.e, the disk

height H , equal to the maximum half thickness of the disk, is always much smaller than the

characteristic radius R of the disk, H ≪ R. The thin disk is in hydrodynamical equilibrium,

and the pressure gradient and a vertical entropy gradient in the accreting matter are negli-

gible. In the steady-state accretion disk models, the mass accretion rate Ṁ0 is supposed to

be constant in time, and the physical quantities of the accreting matter are averaged over a

characteristic time scale, e.g. ∆t, and over the azimuthal angle ∆φ = 2π, for a total period of

the orbits and for the height H . The plasma moves in Keplerian orbits around the compact

object, with a rotational velocity Ω, and the plasma particles have a specific energy Ẽ, and

specific angular momentum L̃, which depend only on the radii of the orbits. The particles

are orbiting with the four-velocity uµ in a disk having an averaged surface density Σ. The

accreting matter is modeled by an anisotropic fluid source, where the rest mass density ρ0

(the specific internal energy is neglected), the energy flow vector qµ and the stress tensor

tµν are measured in the averaged rest-frame. The energy-momentum tensor describing this

source takes the form

T µν = ρ0u
µuν + 2u(µqν) + tµν , (1)

where uµq
µ = 0, uµt

µν = 0. The four-vectors of the energy and of the angular momentum flux

are defined by −Eµ ≡ T µ
ν(∂/∂t)ν and Jµ ≡ T µ

ν(∂/∂φ)ν , respectively. The four dimensional

conservation laws of the rest mass, of the energy and of the angular momentum of the

plasma provide the structure equations of the thin disk. By integrating the equation of the

rest mass conservation, ∇µ(ρ0u
µ) = 0, it follows that the time averaged accretion rate Ṁ0

is independent of the disk radius: Ṁ0 ≡ −2πrΣur = const, where a dot represents the

derivative with respect to the time coordinate (Page & Thorne 1974). The averaged rest

mass density is defined by Σ(r) =
∫H
−H〈ρ0〉dz, where 〈ρ0〉 is the rest mass density averaged

over ∆t and 2π. The conservation law ∇µE
µ = 0 of the energy can be written in an integral

form as

[Ṁ0Ẽ − 2πrΩWφ
r],r = 4π

√
−gF Ẽ , (2)

where a comma denotes the derivative with respect to the radial coordinate r. Eq. (2) shows

the balance between the energy transported by the rest mass flow, the dynamical stresses
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in the disk, and the energy radiated away from the surface of the disk, respectively. The

torque Wφ
r in Eq. (2) is given by Wφ

r =
∫H
−H〈tφr〉dz, where 〈tφr〉 is the φ − r component of

the stress tensor, averaged over ∆t and over a 2π angle. The law of the angular momentum

conservation, ∇µJ
µ = 0, states in its integral form the balance of the three forms of the

angular momentum transport,

[Ṁ0L̃ − 2πrWφ
r],r = 4π

√
−gF L̃ . (3)

By eliminating Wφ
r from Eqs. (2) and (3), and by applying the universal energy-angular

momentum relation dE = ΩdJ for circular geodesic orbits in the form Ẽ,r = ΩL̃,r, the flux

of the radiant energy over the disk can be expressed in terms of the specific energy, angular

momentum and the angular velocity of the black hole. Then the flux integral leads to the

expression of the energy flux F (r), which is given by (Page & Thorne 1974; Thorne 1974)

F (r) = − Ṁ0

4π
√−g

Ω,r

(Ẽ − ΩL̃)2

∫ r

rms

(Ẽ − ΩL̃)L̃,rdr , (4)

where the no-torque inner boundary conditions were also prescribed (Page & Thorne 1974).

This means that the torque vanishes at the inner edge of the disk, since the matter at the

marginally stable orbit rms falls freely into the black hole, and cannot exert considerable

torque on the disk. The latter assumption is valid as long as strong magnetic fields do not

exist in the plunging region, where matter falls into the hole.

The presence of magnetic fields would give a non zero torque at the inner edge of the disk.

If the central object has a high magnetic field, the disk will be truncated at a radius larger

than that of the last stable orbit for an unmagnetized star. The presence of high magnetic

fields will also have a significant effect on the energy and angular momentum transport

between the rotating central object and the accretion disk. A central object surrounded by

a magnetosphere can also exert a torque on the accretion disk, via the closed magnetic flux

lines, connecting the disk and the rotating center. Then, the latter injects angular momentum

into the orbiting plasma, which in turn increases the flux radiated by the disk surface (Li

2002). In magnetized thin disks, the magnetic energy and magnetic stresses give also a

contribution to the radiated flux. The gravitational potential is determined by the nature

of the rotating central object, whereas the presence of the magnetosphere involves various

magnetohydrodynamic (MHD) effects, complicating the picture. Since the magnetic torque

is proportional to the difference in the angular velocities of the disk and of the magnetic field

(Li 2002), and the contribution of the magnetic energy and stresses to the disk radiation has
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the same proportionality factor for magnetized thin accretion disks (Kovács et al. 2009), this

simplification is valid as long as the plasma co-rotates with the magnetosphere. Numerical

models of MHD accretion flows indeed show that the rotating plasma can be coupled to the

magnetic field in turbulent magnetized disks where the plasma particles cannot slip along

the field lines (McKinney & Narayan 2007). Assuming this type of turbulent accretion we

remain in the framework of the hydrodynamical description. In the present study we neglect

all the effects related to magnetic fields, by assuming that the magnetic fields in the central

object as well as in the disk are very low, and we consider only the pure hydrodynamical

description of the disk accretion, that is, we focus only on the effects of gravity.

Once the geometry of the space-time is known, we can derive the time averaged radial

distribution of photon emission for accretion disks around black holes, and determine the

efficiency of conversion of the rest mass into outgoing radiation. After obtaining the radial

dependence of the angular velocity Ω, of the specific energy Ẽ and of the specific angular

momentum L̃ of the particles moving on circular orbits around the black holes, respectively,

we can compute the flux integral given by Eq. (4).

Let us consider an arbitrary stationary and axially symmetric geometry,

ds2 = gttdt2 + gtφdtdφ + grrdr2 + gθθdθ2 + gφφdφ2 , (5)

where in the equatorial approximation (|θ − π/2| ≪ 1) the metric functions gtt, gtφ, grr, gθθ

and gφφ depend only on the radial coordinate r. The geodesic equations take the form

dt

dτ
=

Ẽgφφ + L̃gtφ

g2
tφ − gttgφφ

,
dφ

dτ
= −Ẽgtφ + L̃gtt

g2
tφ − gttgφφ

, (6)

and

grr

(
dr

dτ

)2

= V (r), (7)

respectively, where τ is the affine parameter, and the potential term V (r) is defined by

V (r) ≡ −1 +
Ẽ2gφφ + 2ẼL̃gtφ + L̃2gtt

g2
tφ − gttgφφ

. (8)

For circular orbits in the equatorial plane the conditions V (r) = 0 and V,r(r) = 0,

respectively, must hold. These conditions give the specific energy Ẽ, the specific angular

momentum L̃ and the angular velocity Ω of particles moving on circular orbits around

spinning general relativistic stars as

Ẽ = − gtt + gtφΩ√
−gtt − 2gtφΩ − gφφΩ2

, (9)
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L̃ =
gtφ + gφφΩ√

−gtt − 2gtφΩ − gφφΩ2
, (10)

Ω =
dφ

dt
=

−gtφ,r +
√

(gtφ,r)2 − gtt,rgφφ,r

gφφ,r

. (11)

The marginally stable orbits rms around the central object are determined by the condition

V,rr(r)|r=rms
= 0, which gives

[
Ẽ2gφφ,rr + 2ẼL̃gtφ,rr + L̃2gtt,rr − (g2

tφ − gttgφφ),rr

]

r=rms

= 0 . (12)

By inserting Eqs. (9)-(10) into Eq. (12), and solving the resulting equation for rms, we

obtain the marginally stable orbits, once the metric coefficients gtt, gtφ and gφφ are explicitly

given.

The accreting matter in the steady-state thin disk model is supposed to be in thermody-

namical equilibrium. Therefore the radiation emitted by the disk surface can be considered

as a perfect black body radiation, where the energy flux is given by F (r) = σT 4(r) (σ is the

Stefan-Boltzmann constant), and the observed luminosity L (ν) has a redshifted black body

spectrum (Torres 2002):

L (ν) = 4πd2I (ν) =
8

πc2
cos γ

∫ rf

ri

∫ 2π

0

ν3
e rdφdr

exp (hνe/T ) − 1
. (13)

Here d is the distance to the source, I(ν) is the Planck distribution function, γ is the

disk inclination angle, and ri and rf indicate the position of the inner and outer edge of the

disk, respectively. We take ri = rms and rf → ∞, since we expect the flux over the disk

surface vanishes at r → ∞ for any kind of general relativistic compact object geometry. The

emitted frequency is given by νe = ν(1 + z), where the redshift factor can be written as

1 + z =
1 + Ωr sin φ sin γ

√
−gtt − 2Ωgtφ − Ω2gφφ

(14)

where we have neglected the light bending (Luminet 1979; Bhattacharyya et al. 2001).

The flux and the emission spectrum of the accretion disks around compact objects satisfy

some simple scaling relations, with respect to the linear scaling transformation of the radial

coordinate, given by r → r̃ = r/M , where M is the mass of the compact object. Generally,

the metric tensor coefficients are invariant with respect of this transformation, while the

specific energy, the angular momentum and the angular velocity transform as Ẽ → Ẽ,

L̃ → ML̃ and Ω → Ω̃/M , respectively. The flux scales as F (r) → F (r̃)/M4, giving the

simple transformation law of the temperature as T (r) → T (r̃) /M . By also rescaling the

frequency of the emitted radiation as ν → ν̃ = ν/M , the luminosity of the disk is given by
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L (ν) → L (ν̃) /M . On the other hand, the flux is proportional to the accretion rate Ṁ0, and

therefore an increase in the accretion rate leads to a linear increase in the radiation emission

flux from the disk.

The efficiency ǫ with which the central object converts rest mass into outgoing radiation

is the other important physical parameter characterizing the properties of the accretion

disks. The efficiency is defined by the ratio of two rates measured at infinity: the rate of the

radiation of the energy of the photons escaping from the disk surface to infinity, and the

rate at which mass-energy is transported to the compact object. If all the emitted photons

can escape to infinity, the efficiency depends only on the specific energy measured at the

marginally stable orbit rms,

ǫ = 1 − Ẽ
∣∣∣
r=rms

. (15)

There are some solutions for the geometry of the neutron and quark stars where rms is

at the surface of the star or even takes values less than the surface radius of the central

object. In this case the inner edge of the disk touches the surface of the star and plasma

under the effect of any perturbation due to hydro- or magnetohydrodynamic instabilities in

the disk will leave the disk and hit the surface. In this case the energy Ẽe transferred to the

star from the disk is measured at the radius Re of the star, and the efficiency takes the form

ǫ = 1− Ẽe, where Ẽe = Ẽ
∣∣∣
r=Re

. For Schwarzschild black holes the efficiency is about 6%, no

matter if we consider the photon capture by the black hole, or not. Ignoring the capture of

radiation by the black hole, ǫ is found to be 42% for rapidly rotating black holes, whereas

the efficiency is 40% with photon capture in the Kerr potential. For neutron and quark stars

the efficiency is varying in a broader range, especially if we take into account that Ẽms and

Ẽe can have very different values for different neutron and quark star models.

3 KERR BLACK HOLES AND CFL QUARK STARS

In the present Section we briefly review the basic properties of the Kerr black holes and of

the CFL quark stars.
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3.1 Kerr black holes

The Kerr metric, describing a rotating black hole, is given, in the Boyer-Lindquist coordinate

system, by

ds2 = −
(
1 − 2mr

Σ

)
dt2 + 2

2mr

Σ
a sin2 θdtdφ +

Σ

∆K

dr2 +

Σdθ2 +
(
r2 + a2 +

2mr

Σ
a2 sin2 θ

)
sin2 θdφ2, (16)

where Σ = r2 + a2 cos2 θ, ∆K = g2
tφ − gttgφφ = r2 + a2 − 2mr, and a is the Kerr parameter

taking values from 0 to m. In the equatorial plane, the metric components reduce to

gtt = −
(
1 − 2m

r

)
, gtφ = 2

ma

r
,

grr =
r2

∆K
, gφφ = r2 + a2

(
1 +

2m

r

)
,

respectively.

For a Kerr black hole the geodesic equation Eq. (7) for r becomes

r2

∆K

(
dr

dτ

)2

= Veff (r), (17)

with the effective potential given by

Veff(r) = −1 +

Ẽ2 [r2(r2 + a2) + 2ma2r] + 4ẼL̃mar − L̃2 (r2 − 2mr)

r2(g2
tφ − gttgφφ)

. (18)

These relations may be rewritten in the form

r4

(
dr

dτ

)2

= V (r), (19)

with V (r) given by V (r) = r2∆KVeff(r), respectively.

3.2 CFL quark stars

The chemical composition of neutron stars at densities beyond the nuclear saturation remains

uncertain, with alternatives ranging from purely nucleonic composition through hyperon

or meson condensates to deconfined quark matter (Page & Reddy 2006). Witten (1984)

proposed that strange quark matter (consisting of up u, down d, and strange s quarks) might

be the absolute ground state of hadronic matter at all pressures. If strange quark matter is the

energetically preferred state at very high pressures, but ceases to be energetically preferred

below some non-zero threshold minimum pressure, then one would expect the existence of so-

called hybrid stars, with strange quark cores, but with exterior regions composed of normal
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neutron-star matter at pressures below the threshold value. Therefore the presence of a quark

core in a neutron star cannot be ruled out, and the hypothesis of the existence of hybrid stars

may be consistent with the high masses and radii indicated by some recent observations.

Hybrid stars with quark cores have been intensively investigated in the physical literature

(Glendenning 1996). In hybrid stars strange quark matter must be in equilibrium with

normal nuclear matter. The mixed phase can occur, for a reasonable confinement parameter,

near the normal nuclear saturation density, and goes over into pure quark matter at about

5 times the saturation density. The onset of mixed and quark phases is compatible with

some observed classes of neutron stars, but it hinders the occurrence of kaon condensation

(Glendenning 1996). However, when quark seeds form in the core of a neutron star, they will

propagate to the entire star and convert it to the new quark phase. A phase transition occurs

between the hadronic and quark phase when the pressures and chemical potentials in the

two phases are equal, Ph = Pq and µh = µq, where Ph, µh, and Pq, µq are the pressures and

chemical potentials in the hadronic and quark phase, respectively (Glendenning 1996). The

change from the metastable neutron matter phase to the stable quark phase occurs as the

result of the thermodynamical fluctuations in a homogeneous medium, formed of neutrons, in

which small quantities of the quark phase (called bubbles or nuclei) are randomly generated.

Once the quark matter is formed inside the neutron star, it will propagate throughout the

entire star. The combustion of the nuclear matter into quark matter can occur either as a

slow combustion process, or as a detonation. In both cases, the presence of a quark seed in

a neutron star will convert the entire star to a quark star, and the conversion time may be

of the order of milliseconds (Chan et al. 2009).

In order to obtain a consistent and realistic physical description of the rotating general

relativistic quark stars, as a first step we have to adopt the equations of state for the quark

matter. It is generally agreed today that the color-flavor-locked (CFL) state is likely to be

the ground state of matter, at least for asymptotic densities, and even if the quark masses

are unequal (Alford et al. 1999; Rapp et al. 2000; Alford et al. 2007). Moreover, the equal

number of flavors is enforced by symmetry, and electrons are absent, since the mixture is

automatically neutral. By assuming that the mass ms of the s quark is not large as compared

to the chemical potential µ, the thermodynamical potential of the quark matter in CFL phase

can be approximated as (Lugones & Horvath 2002)

ΩCFL = −3µ4

4π2
+

3m2
s

4π2
− 1 − 12 ln (ms/2µ)

32π2
m4

s −
3

π2
∆2µ2 + B, (20)
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Figure 1. Pressure as a function of density (in a logarithmic scale) for EOS CFL for different values of ∆.

where ∆ is the gap energy. With the use of this expression the pressure P of the quark

matter in the CFL phase can be obtained as an explicit function of the energy density ε in

the form (Lugones & Horvath 2002)

P =
1

3
(ε − 4B) +

2∆2δ2

π2
− m2

sδ
2

2π2
, (21)

where

δ2 = −α +

√

α2 +
4

9
π2 (ε − B), (22)

and α = −m2
s/6 + 2∆2/3. In the following the value of the gap energy ∆ considered in each

case will be also mentioned for the CFL equation of state, so that, for example, CFL800

represents the CFL EOS with ∆ = 800. For the bag constant B we adopt the value 4B =

4.2× 1014 g/cm3, while for the mass of the strange quark we take the value ms = 150 MeV.

For the considered equation of state of quark matter the pressure-density relation is

presented in Fig. 1.

In order to obtain the emissivity properties of the disk, the metric outside the rotating

general relativistic stars must be determined. In the present study we calculate the equi-

librium configurations of the rotating quark stars by using the RNS code, as introduced

in Stergioulas & Friedman (1995), and discussed in detail in Stergioulas et al. (2003). This

code was used for the study of different models of rotating neutron stars in Nozawa et al.

(1998) and for the study of the rapidly rotating strange quark stars (Stergioulas et al. 1999).

The software provides the metric potentials for various types of compact rotating general

relativistic objects, which can be used to obtain the physical properties of the accretion

disks. As a first step in our study, by using the RNS code we obtain the mass function of
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rapidly rotating CFL stars, and determine the maximum mass they can achieve, as well as

the physical conditions under which this maximum mass can exist.

The mass distribution of the quark stars in the parameter space (ρc, rp/re) is represented

in Fig. 2. In our analysis we consider four values of the gap parameter ∆, namely, ∆ =

100, 300, 500 and 800 MeV, respectively. The central densities corresponding to these stellar

configurations are in the ranges of 0.52 − 9 × 1015 g/cm3 for ∆ = 100 MeV, 0.32 − 9 × 1015

g/cm3 for ∆ = 300 MeV, and 0.3 − 9 × 1015 g/cm3 for ∆ = 500 MeV and 800 MeV,

respectively. The lower limits of the central densities are determined by the criterion of the

positivity of the pressure in the star. For a given value of ∆ we analyze only the configurations

corresponding to the maximum mass.

The physical properties of the models with maximal total mass are presented for rotating

CFL stars in Table 1, and in Table 2 for static CFL stars, respectively. With the increase

of the gap parameter the masses of the rotating CFL quark stars increase as well, reaching

a value as high as 5.46M⊙ for ∆ = 800 MeV. The increase of the gap parameter ∆ also

produces a considerable increase in the equatorial radii (from 15 km for ∆ = 100 MeV to 23

km for ∆ = 800 MeV), and of the angular momentum of the rotating CFL quark stars. In

each case Re > RSch, where RSch is the Schwarzschild radius defined as RSch = 2GM/c2. For

∆ = 100 MeV, RSch = 7.89 km, smaller than Re = 15 km. For ∆ = 800 MeV, RSch = 16.18

km, while Re = 23 km. The angular velocity Ω decreases from 1041/s to 8× 1031/s with the

increasing values of ∆. There is also a moderate change in the position of h+, the height

from surface of the last stable co-rotating circular orbit in the equatorial plane. While for

∆ = 100 MeV, h+ is located on the surface, the last stable co-rotating circular orbits are

located at 2 and 3 km from the surface of the star in the equatorial plane for ∆ = 300 and

∆ = 500 MeV and ∆ = 800 MeV, respectively.

In the case of the static configurations, in Table 2 we present the physical characteristics

of the CFL stars with the maximum masses corresponding to the given values of ∆. The

maximum masses of the CFL quark stars vary from 1.84M⊙ for ∆ = 100 MeV to 3.92M⊙ for

∆ = 800 MeV, while the stellar radii change from 10 to 16 km. The corresponding central

densities ρc are in the range of 2.4× 10(15) g/cm3 for ∆ = 100 MeV and 9× 1014 g/cm3 for

∆ = 800 MeV. Both h+ and h− have negative values, being located below the surface of the

star. The localization of h+ strongly influences the energy flux from accretion disks around

compact objects.

For all values of the gap energy ∆ the shape of the curves M = M (re) exhibits the
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standard form specific to quark stars (Cheng et al. 1998). However, the dependence of the

mass-radius relation on the central density of the stars is different for the different classes

of models. For the low mass - low radius limit of these curves (the left bottom part of the

plots), the lowest possible central density (with its value of 5.2×1015 g/cm3), is considerably

higher for ∆ = 100 MeV, than the lower limits of ρc for ∆ = 300 − 800 MeV, located at

3− 3.2× 1015 g/cm3. The ρc-dependence of the branches running from the maximal masses

down to the lower mass limit for ∆ = 100, or for higher values of ∆, is also rather dissimilar.

Considering, e.g., the case rp/re = 0.5, for ∆ = 100 MeV and for ρc = 6 × 1015 g/cm3, we

obtain M = 0.70M⊙ and Re = 10.72 km, respectively, values that are close to the lower

limit. The corresponding values in the mass-radius plane for ∆ = 300 MeV are M = 4.70M⊙

and Re = 21.49 km, and even higher for higher values of ∆, which are located close to the

maximum of these curves on the mass scale. In order to reach the maximal mass for ∆ = 100

MeV the central density must be set to 2 × 1015 g/cm3. For high values of ∆, the low mass

branch of these curves can therefore be covered by a much more limited range of central

densities ρc, as compared with the case ∆ = 100 MeV. We conclude that the mass-radius

relation for ∆ > 300 MeV is much more sensitive for the change of the central density than

it is for ∆ = 100 MeV. Of course, in the latter case the mass-radius range spanned by the

low mass branch is a factor of two smaller in the mass scale than those belonging to ∆ > 300

MeV, but the maximal change in Re is roughly of the order of 10 − 12 km for any values

of ∆. Therefore for ∆ > 300 MeV the increase in the equatorial radius is relatively small.

As compared to nonrotating stars, the effect of rotation is to increase the equatorial radius

of the star and also to increase the mass that can be sustained at a given central energy

density.

One needs to consider stability of the models since models which are unstable with respect

to radial (or quasi-radial) pulsational modes are not generally of astrophysical interest. A

quark star with low mass is predominantly self-bound, and is stable to these modes. As

one moves along the mass-radius curves shown in Fig. 2, proceeding away from the lowest

mass models, the central density progressively increases. In the absence of rotation, the

models are stable up to the first maximum in the curve, and unstable thereafter. But with

rotation the situation becomes more complicated. If such a sequence of models is calculated

at constant angular momentum J , then a similar criterion applies (Friedman et al. 1988),

but our sequences are calculated for constant axis-ratio, and so the criterion does not directly
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∆ [MeV] 100 300 500 800

ρc [1015g/cm3] 1.70000 0.70000 0.61500 0.60000

M [M⊙] 2.67179 4.87321 5.32598 5.46782

M0 [M⊙] 3.20367 6.10475 6.79655 6.96692

Re[km] 14.8727 21.9955 22.4372 23.2988

Ω[103s−1] 10.7827 8.08650 8.06520 7.89727

Ωp[103s−1] 10.7541 8.02614 8.09665 7.70780

T/W [10−1] 2.08674 2.34702 2.22506 2.36814

cJ/GM2
⊙

6.24670 21.1302 24.8740 26.5042

I[1045gcm2] 5.09138 22.9645 27.1046 29.4951

Φ2[1045gcm2] 0.87825 3.95150 4.50791 5.10189

h+[km] − 2.83756 3.27146 3.02038

h−[km] - - - -

ωc/Ω[10−1] 7.58826 8.51031 8.89081 8.80415

re[km] 9.95880 12.4564 11.7922 12.4806

rp/re 0.47000 0.47000 0.50000 0.47000

Table 1. Physical parameters of rotating maximum mass CFL quark stars for different values of ∆. Here ρc is the central
density, M is the gravitational mass, M0 is the rest mass, Re is the circumferential radius at the equator, Ω is the angular
velocity, Ωp is the angular velocity of a particle in circular orbit at the equator, T/W is the rotational-gravitational energy
ratio, cJ/GM2

⊙
is the angular momentum I is the moment of inertia, Φ2 is the mass-quadrupole moment, h+ is the height

from surface of the last stable co-rotating circular orbit in the equatorial plane, h− is the height from surface of the last stable
counter-rotating circular orbit in the equatorial plane, ωc/Ω is the ratio of the central value of the potential ω to Ω, re is the
coordinate equatorial radius and rp/re is the axes ratio (polar to equatorial).

apply to them. Roughly speaking, it is likely that stability will continue to change roughly

at the maxima, but analysis of this is outside the scope of the present paper.

The differences with respect to the standard quark star models are determined by the

change of the sign of the quantity 2∆2 − m2
s/2 in the equation of state of the quark matter

in CFL phase, Eq. (21). If ms <
√

2∆, the positive correction term will increase the pressure

in the star, by reducing the numerical value of the bag constant, while for ms >
√

2∆, the

negative values of the correction term soften the equation of state, and increase the value of

the effective bag constant. Hence large ∆ values determine a smaller effective bag constant,

which in turn allows larger stellar masses (Witten 1984).

4 DISK ACCRETION ONTO KERR BLACK HOLES AND QUARK STARS

The metric outside the rotating compact general relativistic stars can be described, in quasi-

isotropic coordinates, as

ds2 = −eγ̄+ρ̄dt2 + e2ᾱ
(
dr̄2 + r̄2dθ2

)
+ eγ̄−ρ̄r̄2 sin2 θ (dφ − ω̄dt)2 , (23)
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∆ [MeV] 100 300 500 800

ρc [1015g/cm3] 2.4 1 0.9 0.9

M [M⊙] 1.84841 3.41121 3.84898 3.92723

M0 [M⊙] 2.24186 4.39966 5.08115 5.2071

Re [km] 9.88262 15.1998 16.173 16.2828

Ω [104s−1] 0 0 0 0

Ωp [104s−1] 1.5859 1.12729 1.09043 1.0899

T/W 0 0 0 0

cJ/GM2
⊙

0 0 0 0

I[gcm2] - - - -

Φ2[gcm2] 0 0 0 0

h+ [km] 0 0 -0.329715 -4.42561

h− [km] 0 0 -0.329715 -0.442561

ωc/Ω 0 0 0 0

re [km] 6.88092 9.51013 9.67292 9.63205

rp/re 1 1 1 1

Table 2. Physical parameters of maximum mass static CFL quark stars.
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Figure 2. Gravitational mass versus equatorial circumferential radius of the rapidly rotating and static CFL quark stars for
different values of the gap energy ∆: ∆ = 100 MeV (upper left figure), ∆ = 300 MeV (upper right figure), ∆ = 500 MeV (lower
left figure), and ∆ = 800 MeV (lower right figure).
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where the metric potentials γ̄, ρ̄, ᾱ and the angular velocity of the stellar fluid relative to the

local inertial frame ω̄ are all functions of the quasi-isotropic radial coordinate r̄ and of the

polar angle θ. The RNS code produces the metric functions in a quasi-spheroidal coordinate

system, as functions of the parameter s = r̄/ (r̄ + r̄e), where r̄e is the equatorial radius of

the star, which we have converted into Schwarzschild-type coordinates r according to the

equation r = r̄ exp [(γ̄ − ρ̄) /2]. To obtain the radius of the innermost stable circular orbits

rms we have used a truncated form of the analytical approximation given by Shibata & Sasaki

(1998),

rms ≈ 6M
(
1 − 0.54433q − 0.22619q2 + 0.17989Q2 − 0.23002q2+

0.26296qQ2 − 0.29693q4 + 0.44546q2Q2

)
, (24)

where q = J/M2 and Q2 = −M2/M
3, respectively, and where J is the spin angular momen-

tum, and M2 is the quadrupole moment.

Once the metric outside the rotating stars is known, from Eqs. (10)-(11) we obtain the

angular velocity, the specific energy and the specific angular momentum of the orbiting

plasma particles in the disk. Then we calculate the integral given by Eq. (4), measuring

the photon flux emitted by the disk surface in thermodynamical equilibrium. From the flux

we obtain the temperature distribution of the disk, as well as the spectra of the emitted

radiation. For all our calculations we use an accretion rate of Ṁ = 1 × 10−12M⊙/yr, unless

specified otherwise. In order to compare the thermal and emission properties of the thin

accretion disks onto black holes and quark stars, we consider several classes of models in

which both the Kerr black hole and the quark stars have the same mass and angular velocity.

The physical parameters of the rotating CFL quark stars used in the present study are

presented in Table 3. The static case, with lower maximal mass than in the rotating case, is

also plotted for comparison.

In Figs. 3 we present the radiated flux distribution over the accretion disk around rotating

black holes and quark stars, for different values of the total mass M and of the spin parameter

a∗ = J/M2 of the central compact objects. The four plots show that the inner edge of the

accretion disk is located at a lower radius, and the amplitude of the flux radiated from the

disk surface increases with increasing total mass and spin parameter for both type of objects.

However, the inner radius rin is greater, and, consequently, the values of F (r) are smaller

for quark stars than for black holes in each configuration of M and a∗. For comparison

we also plotted the flux profiles of the accretion disk for non-rotating CFL stars with the
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∆ [MeV] 100 300 500 800

ρc [1015g/cm3] 1.50000 1.75000 0.61500 0.60000

M [M⊙] 2.01099 3.80791 5.04850 5.46782

M0 [M⊙] 2.40633 4.76377 6.43507 6.96692

Re[km] 11.4128 16.1807 21.1469 23.2988

Ω[103s−1] 7.70653 7.71710 7.69576 7.89727

Ωp[104s−1] 1.33266 1.06480 8.61193 7.70780

T/W [10−2] 8.29980 11.5253 20.6856 23.6814

cJ/GM2
⊙

2.22209 9.45230 21.3040 26.5042

I[1045gcm2] 2.53405 10.7646 24.3289 29.4951

Φ2[1045gcm2] 2.13271 10.2406 37.3391 51.0189

h+[km] 0.00000 − − 3.02038

h−[km] − -0.155693 0.00859 4.78999

ωc/Ω[10−1] 6.44529 8.76271 8.61004 8.80415

re[km] 7.99607 9.19234 11.1606 12.4806

rp/re 0.78000 0.73500 0.57000 0.47000

Table 3. Physical parameters of the rotating CFL quark stars used for the calculation of the electromagnetic properties of the
thin accretion disks.

maximum equilibrium mass Mstatic. Since the geometry outside the static star is given by

the Schwarzschild metric, the properties of the flux profiles for the static star coincide with

those for static black holes. The inner edge of the disk is located at the radius r = 6M , and

the maximal flux is lower than the one of the rotating cases, in spite of the fact that Mstatic

is smaller than M . The latter indicates that rotation has a considerable effect in producing

a higher disk radiation flux, as compared to the disk luminosities for the static cases. All

these distinctive features for the rotating and static cases can be seen in the profiles of the

disk temperature as well, which are presented in Figs. 4.

The characteristics of the disk spectra around black holes and quark stars also exhibit

significant differences. For black holes, the maxima of the spectra are located at higher

frequencies, and reach higher values than those for quark stars. In case of the static CFL

quark stars with the maximal total mass, both the spectral amplitude, and the frequency

at which the maximum is located, have lower values than those for the rotating cases (with

higher maximal masses).
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Figure 3. The time-averaged flux radiated by a thin accretion disk around rotating black holes and quark stars with the same
total mass M and spin parameter a∗. The static case with lower maximal mass is also plotted for comparison.

M [M⊙] 2 3.8 5 5.5

a∗ 0.5494. 0.6519 0.8358 0.8865

EOS CFL rin [km] 14.64 21.97 24.84 26.31
ǫ 0.0762 0.0921 0.1130 0.1228

BH rin [km] 11.99 20.30 20.25 19.46
ǫ 0.0863 0.0971 0.1315 0.1495

Table 4. The radius of the inner disk edge rin and the efficiency ǫ for quark stars with EOS CFL and Kerr black holes with
the same total mass and spin parameter.

5 DISCUSSIONS AND FINAL REMARKS

Table 4 shows the conversion efficiency ǫ of the accreted mass into radiation for both rotating

black holes and quark stars. For a given configuration of total mass M and spin parameter

a∗, ǫ is somewhat higher in the accretion process driven by black holes, as compared to

the values obtained for rotating CFL quark stars. This means that rotating black holes can

always convert more efficiently mass into radiation than CFL type rotating quark stars can

do.

As shown by the flux integral in Eq. (4), and the explicit expressions of the specific
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Figure 4. The temperature profiles of the thin accretion disk around rotating black holes and quark stars with the same total
mass M and spin parameter a∗. The static configuration is also presented.

energy, specific angular momentum and angular velocity given by Eqs. (9) - (11), the rather

different characteristics of the radial flux distribution over the accretion disk, of the disk

spectra, and of the conversion efficiency, respectively, are due to the differences between the

metric potentials of the black holes and of the quark stars, respectively. Even if the total mass

and the angular velocity are the same for each type of the rotating central object, producing

similar radial profiles for Ω, Ẽ and L̃, the radiation properties of the accretion disks around

these objects exhibit large differences. The reason is that the proper volume, and in turn

the function
√−g, used in the calculation of the flux integral, is highly dependent on the

behavior of the metric component grr = (∂r/∂r)2grr. The latter contains the r-derivatives of

the metric functions ρ(r) and γ(r), respectively, via the coordinate transformation between

r and r, which are extremely sensitive to the slopes of ρ(r) and of γ(r), respectively. As a

result, though the inner edges of the disks are located at almost the same radii in the flux and

temperature plots presented in Section 4, the amplitudes of the energy fluxes emerging from

the disk surfaces around black holes and CFL quark stars are significantly different. Similar

differences also appear in the disk spectra of quark stars and black holes, respectively.
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Figure 5. The disk spectra for rotating black holes and quark stars with the same total mass M and spin parameter a∗. The
static case

The Coulomb barrier at the quark surface of a hot strange quark star may also be a

powerful source of e+e− pairs, which are created in the extremely strong electric field of the

barrier. At surface temperatures of around 1011 K, the luminosity of the outflowing plasma

may be of the order ∼ 1051 ergs−1 (Usov 1998a,b; Harko & Cheng 2006). Moreover, as shown

by Page & Usov (2002), for about one day for normal quark matter and for up to a hundred

years for superconducting quark matter, the thermal luminosity from the star surface, due

to both photon emission and e+e− pair production may be orders of magnitude higher than

the Eddington limit.

Photon emissivity is the basic parameter for determining macroscopic properties of stellar

type objects. Alcock et al. (1986) have shown that, because of very high plasma frequency ωp

near the strange quark matter edge, photon emissivity of strange quark matter is very low.

Propagation of electromagnetic waves of frequencies lower than ωp is exponentially damped.

Therefore, only photons produced just below the surface with momenta pointing outwards

can leave strange quark matter. For temperatures T << Ep/ω, where Ep ≈ 23 MeV is

the characteristic transverse plasmon cutoff energy, the equilibrium photon emissivity of
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strange quark matter is negligible small, compared to the black body one. The spectrum

of equilibrium photons is very hard, with h̄ω > 20 MeV. The problem of the soft photon

emissivity of quark matter at the surface of strange quark stars has been considered in

Cheng & Harko (2003) and Harko & Cheng (2005). By taking into account the Landau-

Pomeranchuk-Migdal effect and the absorption of the radiation in the external electron

layer, the emissivity of the quark matter can be six orders of magnitude lower than the

equilibrium black body radiation. However, despite these very specific signatures for quark

stars, a definite method for discriminating them with respect to the neutron stars is still

missing. Quark stars have a very low photon emissivity, which make them very difficult to

directly identify them observationally.

Unpaired strange quark matter in bulk contains u, d, s quarks as well as electrons to

maintain charge neutrality. The chemical balance is maintained by weak interactions and

neutrinos assumed to escape from system. If strange quark matter is in the CFL phase, in

which quarks of all flavors and colors near the Fermi surface form pairs, an equal number

of flavors is enforced by symmetry, and the mixture is neutral (Alford et al. 2007). There-

fore CFL quark stars do not have an electrosphere, and the main energy loss mechanism

is through quark-quark bremsstrahlung (Cheng & Harko 2003; Chan et al. 2009). The lu-

minosity LS of the accreting quark star is given by LS = ηṀc2, where for the energy

conversion rate η we can take the value η ≈ 0.1. For an accretion rate Ṁ = 10−12M⊙/year,

the luminosity of the star is LS ≈ 5.78 × 1033 erg/s, while the luminosity Ld of the disk

for the same accretion rate is, depending on the value of the gap energy ∆, in the range

Ld ≈ 2 × 1033 − 4 × 1033 erg/s. Therefore the luminosities of the disk and of the quark

star are very close, having approximately the same values. On the other hand, the surface

temperature of the central accreting quark star is given by TS =
(
ηṀc2/4πR2ǫσ

)1/4
, where

R is the radius of the star, and ǫ = 10−4 − 10−5 (Cheng & Harko 2003; Chan et al. 2009).

For ǫ = 10−5, the surface temperature TS of the star is of the order of TS ≈ 3 × 107 K,

while the corresponding temperature of the disk Td is around Td ≈ 6 × 105 − 9 × 105 K.

Therefore the temperature of the star is much larger than that of the disk, TS >> Td.

Furthermore, while the spectral distribution Ld (ν) of the radiation coming from the disk

is a standard black body distribution, the surface radiation of the quark star has a typical

bremsstrahlung spectrum (Harko & Cheng 2005). Therefore, the observational detection of

a bremsstrahlung type electromagnetic emission from the central object, in combination

with the emission properties of the accretion disk, could provide a distinct signature for the
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presence of a high mass and extremely low luminosity quark star in a black hole candidate

system.

In conclusion, the observational study of the thin accretion disks around rapidly rotating

compact objects can provide a powerful tool in distinguishing between standard black holes

and stars with exotic equations of state, that have underwent, for example, a phase transition

from the neutron phase to a quark phase, as well as for discriminating between the different

phases of the dense matter.
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