PHYSICAL REVIEW B 75, 195113 (2007)

Spin-orbital entanglement and quantum phase transitions in a spin-orbital chain
with SU(2) X SU(2) symmetry
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Spin-orbital entanglement in quantum spin-orbital systems is quantified by a specifically reduced von Neu-
mann entropy and is calculated for the ground state of a coupled spin-orbital chain with SU(2) X SU(2)
symmetry. By analyzing the discontinuity and local extreme of the reduced entropy, we deduce a rich phase
diagram describing quantum phase transitions in this system with complex correlations between multiple

degrees of freedom.
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Exotic states associated with the orbital degrees of free-
dom in transition-metal oxides have attracted considerable
interest recently. Examples of such systems with spin-orbital
couplings include spin-gap materials Na,Ti,Sb,O and
NaV,0s, manganites La,_,Sr,MnO5, and V,05.!"> There are
many intriguing physical properties in these systems such as
the emergence of orbital ordering and the appearance of
complex coupled excitations involving both spin and orbital
degrees of freedom. Starting from a multiband Hubbard
model at strong coupling limit and at the integer electron
fillings per unit cell, the charge degree of freedom may be
integrated out so that one may derive an effective spin-
orbital model.>” One of the simplest such systems is the
SU(2) X SU(2) model with SU(2) symmetries for spin-1/2
operator S; as well as for pseudospin-1/2 operator T; repre-
senting two degenerate orbitals. In particular, this coupled
spin-orbital model can be derived from a two-band orbitally
degenerate Hubbard model at quarter filling. There have re-
cently been a lot of activities on the one-dimensional quan-
tum spin-orbital coupled systems,®° especially on its phase
diagram.'%'* Rich quantum phases include both conven-
tional ferromagnetic and/or antiferromagnetic (FM/AFM)
gapless phases and symmetry broken gapped states. In the
strong-coupling regime, where the interplay between spin
and orbital quantum fluctuations is crucial, the detailed phase
diagram still remains controversial and a more comprehen-
sive understanding is awaited.

Very  recently, theoretical study of quantum
entanglement!® from the perspective of quantum information
has provided much insight to better understand quantum
phase transitions (QPTs) in quantum many-particle systems,
including one-dimensional spin-1/2 systems'®2! and inter-
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acting fermion and boson systems.?>?* Various entanglement
measures®* have been quantified in terms of the spin-spin
concurrence,'® the contiguous block entanglement,'® and the
sublattice entanglement.”!>* Some evidences for a close con-
nection between a QPT point and a local extreme or singu-
larity of an appropriately measured quantum entanglement
have been reported.?! In the coupled spin-orbital systems, the
spin-orbital entanglement (SOE), a kind of entanglement
measure between the different degrees of freedom, is ex-
pected to manifest itself particularly near QPT points. Recent
theoretical study has also demonstrated that the SOE could
lead to the violation of the Goodenough-Kanamori rules.?

It is well known that the conventional methods meet a
great difficulty to crack the mystery of complicated phase
diagrams of the strongly correlated system with multiple de-
grees of freedom. Here, we are motivated to introduce a
quantitative measure of the SOE and to reveal and/or estab-
lish an interdisciplinary connection between the SOE and the
rich quantum phases in complicated spin-orbital coupled sys-
tems. In the present paper, a specifically reduced von Neu-
mann entropy is proposed to quantify the SOE, which mea-
sures the interplay between spin and orbital degrees of
freedom in the quantum states. We use finite system exact
numerical diagonalization method to calculate the reduced
entropy of the ground state of the spin-orbital chain given by
Hamiltonian [Eq. (1)] and study its relation with the QPTs of
the system. Our results show that this measure of the en-
tanglement entropy can reveal faithfully and systematically
the phase boundaries of the complex phase diagram of the
system from the perspective of quantum information theory,
which is quite promising for the future exploration of com-
plex strongly correlated systems with the multiple degrees of
freedom.
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We consider a one-dimensional spin-orbital Hamiltonian
with SU(2) X SU(2) symmetry

H:E(Si'Si+1+x)(Ti'Ti+l+y), (1)

where S; are spin-1/2 operators while T, denote the orbital
pseudo-spin 1/2 operators. x and y are two tuning param-
eters. At x=y, the model has an interchange symmetry be-
tween spin and orbital. The model at x=y=1/4 is a special
case, which possesses a higher SU(4) symmetry and has
three gapless modes (spin, orbital, and spin-orbital) in the
low-lying excitations.?®?” It is also known that the model at
x=y=3/4 has an exact ground state, in which the spin and
orbital form dimerized singlets in a staggered pattern, and
the doubly degenerate ground states can be expressed as a
gapped matrix product state.”

There exists conceptual connection between quantum en-
tanglement and QPTs. Both of them manifest themselves as
intrinsic properties of quantum many particle system. In par-
ticular, quantum entanglement represents the nature of many-
body wave function unable to be decomposed as direct prod-
ucts of single-particle wave functions. A general strategy or
principle using the von Neumann entropy for a wide class of
strongly correlated systems has been proposed in our earlier
papers, Refs. 21 and 23. We introduced a measure of en-
tanglement entropy between a selected sublattice and the rest
of the lattice in spin, electron, and boson systems. In particu-
lar, direct connections between the occurrence of QPTs and
the local extreme of this sublattice entanglement entropy
were revealed. Exact numerical studies merely for small lat-
tices reproduce many well-known results, demonstrating that
this scenario is quite promising for exploring quantum phase
transitions. In fact, we have examined more than 20 different
strongly correlated models with consistent results.

In the spin-orbital model, the importance of the SOE has
previously been recognized.?>?¢?° However, an appropriate
quantitative measure for the entanglement is still awaited.
We propose here to measure the SOE by a specifically re-
duced von Neumann entropy defined as

SS() = — trs(ps 10g2 ps), (2)

where p,=tr,|U)(W| is the reduced density matrix of the
spin part in the state |¥') by integrating out all the orbital
degrees of freedom. Obviously, Eq. (2) gives $*°=0 if spin S
and orbital T are decoupled. The motivation for such a mea-
sure is to better reveal the correlation between two distinc-
tive degrees of freedom. This measure is related to a recent
proposal of the reduced entropy S; of a sublattice in the
study of the relations between entanglement and QPTs,
where the sublattice entanglement S; is defined by

Sy = —tr(py logy pyr), (3)

where p; =tr; |W)(¥| is the reduced density matrix for a sub-
lattice B;. The analogy of the SOE with the sublattice en-
tanglement becomes more transparent if we map the model
of Eq. (1) onto a two-leg “spin” ladder system with one
chain described by spin S and the other chain by orbital T
and the two sites on each leg are coupled by a four-operator
interactions.
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Let us first examine the SOE defined in Eq. (2) for some
simplest states. For a single-site system, the SOE has a one-
to-one correspondence to a system of two spin-1/2 with one
spin for S and the other for T. We denote a state of single site
by |S.,T.). It is obvious that the spin and orbital are highl
entangled in the states é( %,—%>i|—%,%>) or é( %,5
i|—%,—%>). From Eq. (2), we have $*°=1 for these states,
consistent with our intuition. For a two-site system, the spin
(orbital) states can be either a singlet |W§) (|W9,)) or triplet
| (|WH)). Tt is straightforward to find that $*=0 in all the
spin-orbital decoupled states, and S$*°=1 in the states
1/ v’§(|‘lf§>|\1’to(s))i|\I’tS>|‘I’gl))). Next, we proceed to consider
a four-site (labeled as 1,2,3,4) cluster, which is the smallest
system size to form an SU(4) singlet state [SGL); to evaluate
the above SOE, this state can be most conveniently written
as

ISGL) = \2/3[(12)5(34)5(14)(23) 0 — (14)5(23)5(12)0(34) ],

where (12)g(0) denotes the spin (orbital) singlet state of the
sites 1 and 2. This |[SGL) state contains 24 terms in terms of
the single-site spin-orbital state and is rotationally invariant
under the 15 SU(4) generators.”®3! After tracing over the
orbital degrees of freedom, we find $*°=1 in this high-
symmetry state. The ground state of Hamiltonian [Eq. (1)]
for (x=y=3/4) is a dimerized state and can be written as a
matrix product state in both spin and orbital parts.?® For the
four-site system, we find that $*°=0.40.

In what follows, we will calculate the SOE of the ground
state of Hamiltonian [Eq. (1)] in a larger but finite system.
We will demonstrate a close connection between the SOE
and QPTs in the model. Since the Hamiltonian is invariant
under the rotations around the z axes in both S and T spaces,
the exact diagonalization calculation for the ground state
|Ws) is carried out in the Hilbert subspace of S.=0 and T,
=0. We then construct the density matrix of the system and
obtain the reduced density matrix p, of the spin part by trac-
ing out the orbital degree of freedom, and compute the re-
duced entropy given by Eq. (2). In our calculation, the length
of the chain ranges from 8 to 12 sites.

The spatial profiles of the SOE as a function of x and y
are displayed in Fig. 1. A salient feature shows the existence
of a region with zero entanglement, where the spin and or-
bital degrees of freedom are decoupled. The boundary lines
to separate this region from the region with finite entangle-
ment are sharp, and S changes discontinuously across the
boundaries. This suggests a first-order phase transition at the
boundaries for the jump in S$*°. In the zero entanglement
region, the spins and/or orbitals are completely ferromag-
netic, so that the orbitals and/or spins are ferromagnetic or
antiferromagnetic depending on effective coupling. On the
other hand, if both S and T are coupled antiferromagneti-
cally, the four-operator term may frustrate the system and
possibly lead to the emergence of various nontrivial ground
states with finite values of $°°. Note that the ground states of
the boundary lines are highly degenerate; thus, S* on the
boundary depends on the explicit form of the state. The val-
ues of $*’ on the boundary lines we show in the figure are the
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FIG. 1. (Color online) The spin-orbital entanglement per site
$%°/L for the ground state of Hamiltonian [Eq. (1)] in L=8 site
system as a function of x and y. The phase boundaries (solid and
dashed lines) are drawn to guide the eyes.

values continuously evolved from the region with finite en-
tropy.

In the region with finite $*°, there are two special points,
as shown in the figure. One is the antiferromagnetic SU(4)
symmetric point (x=1/4, y=1/4). This corresponds to a lo-
cal maximum in S$%, consistent with the intuition that this
high-symmetry point possesses a strong spin-orbital correla-
tion. The other is a dimerized state point (3/4,3/4), corre-
sponding to a local minimum in $*’ for the entanglement of
the spin S and orbital T is suppressed in that state. Let us
examine $*’ along the symmetric line x=y. The line connect-
ing the point (—1/4,-1/4) and the SU(4) point is a ridge line
(thin red solid line), where S*° are local maxima, while the
line connecting the SU(4) point and (0.66, 0.66) is a valley
line (thin red dashed line), where $*° are local minima. Be-
sides, two more ridge lines connecting at the SU(4) point
locate roughly along the x(y) axes. Around the dimerized
state point, one may observe the existence of a curved
boundary line dividing the regions where the discontinuity of
first derivative of entanglement as a function of parameters
occurs.

For the large x and y regions, mean-field studies always
suggest an antiferromagnetic ground state with respect to
both S and T. In that case, we would expect that its corre-
sponding SOE may approach zero. However, the SOE in this
parameter region shows a plateau-like behavior with finite
value, which contradicts the conclusion of mean-field results.
Since the well-known dimerized state point is located within
the large x and y regions, we conclude that this phase regime
belongs to the gapped dimerized state rather than the gapless
antiferromagnetic phase. It is worth noting that the strength
of SOE may be regarded as an indicator to discern how good
the mean-field approximation will be. In the strongly coupled
regime, the interplay between spin and orbital quantum fluc-
tuations becomes important and leads to some highly non-
trivial quantum phases. Therefore, it is necessary to consider
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FIG. 2. (Color online) The rescaled sublattice entanglement
Sin/L (L=8) as a function of the x and y. The phase boundaries
(solid and dashed lines) are essentially the same as that of Fig. 1.

the effects of quantum entanglement more seriously beyond
the mean-field theory. Certainly, we also find the vanishing
of SOE in the large limits of x and y.

To study the additional entanglement between the interca-
lated sublattices of composite degrees of freedom and to best
reveal all possible quantum phase boundaries, we also look
into the standard sublattice entanglement,”>* which is ob-
tained by tracing out both spin and orbital degrees of free-
dom at even (or odd) sites in the present chain. In Fig. 2, we
plot the sublattice entanglement versus the coupling param-
eters. It is interesting to note that there is roughly one-to-one
correspondence of local extreme and discontinuity between
these two measures of entanglement. In contrast to that of
SOE, the SU(4) point reaches a local minimum of sublattice
entanglement while the dimerized state point corresponds to
a local maximum. Since the SOE mainly captures the corre-
lation between the spin and orbital degrees of freedom while
the sublattice entanglement focuses on the correlation be-
tween the intercalated sublattices of composite degrees of
freedom, these two measures may provide certain comple-
mentary information. In the case of conventional ferromag-
netic and/or antiferromagnetic phases, the SOE vanishes
while the sublattice entanglement remains nonzero. Thus, the
measure of SOE is unlikely to distinguish these conventional
phases. Instead, in Fig. 2, the corresponding phase bound-
aries could be identified. In addition, the enhancement of
sublattice entanglement for the gapped dimerized state is
clearly observed.

Quantum phase diagram could be distilled from the analy-
sis of the spatial profiles of entanglement as a function of
parameters following the existing wisdom: both the ridges
and valleys in the three-dimensional plot may correspond to
possible phase boundaries.?’">3 Derived from the numerical
results presented in Figs. 1 and 2, we plot the phase bound-
aries of a coupled spin-orbital chain for L=8 in Fig. 3. The
results for L=12 are essentially the same. There are totally
seven distinct quantum phases. Phases I, II, and III are con-
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FIG. 3. (Color online) Ground-state phase diagram of a coupled
spin-orbital chain. The dotted point is at (1/4,1/4) while the dia-
mond point is located at (3/4,3/4). Quantum phases are identified
according to the analysis of entanglements. Phase boundaries can be
abstracted from previous theoretical studies. The symbols D; (Ref.
10) and D, (Ref. 13) represent the density-matrix renormalization-
group (DMRG) calculations. Labels E (Ref. 12) and H (Ref. 14)
correspond to the exact diagonalization method and high-
temperature series expansion, respectively.

ventional spin and orbital ferromagnetic and/or antiferro-
magnetic states. Phases V, and V, belong to gapless states
which are consistent with that of the exact diagonalization
analysis by Yamashita et al.'”> According to the previous
DMRG study,'? dimerized gapped phase exists in the param-
eter region for both positive x and y. The high-temperature
series-expansion approach suggests the existence of two dis-
tinct gapped phases in such parameter region.'* One phase
corresponds to deconfined S=1/2 excitations while the other
one belongs to confined S=1 triplet excitations. Our calcula-
tion supports the existence of two distinct gapped phases. In
view of the fact that the exact ground state at the point
(3/4,3/4) belongs to staggered dimerized singlet and this
dimerized state point is located within phase IV, we conclude
that phase IV is a staggered dimerized singlet state. It is also
expected that the gapped phase VI may be separated into two
different phases (spin and orbital valence bond states) by the
critical symmetric line (green dashed line), which is likely
supported by a recent Schwinger boson mean-field
analysis.*? For comparison, each of the phase boundary line
abstracted from previous studies is labeled by their theoreti-
cal methods in Fig. 3. Most of our phase boundaries are in
good agreement with previous studies. It is remarkable that
the most comprehensive phase diagram is now efficiently
and straightforwardly obtained by using our entanglement
approach.

As depicted in Figs. 1 and 2, the phase boundaries be-
tween the conventional AFM/FM states and the many-body
states are rather clear while the phase boundaries among
many-body states become less remarkable. There appear
three types of singularities of entanglement in our calcula-
tions. (i) The discontinuity of entanglement occurs at the
boundary lines between I (II, III) and IV. (ii) The disconti-
nuity of the first derivative of entanglement shows up at the
boundary between IV and VI. (iii) The local extreme of the
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FIG. 4. (Color online) The spin pairwise concurrence for the
ground state L=38 site system as a function of x and y.

entanglement appears at the boundary, which separates
phases V and VI. According to the renormalization-group
(RG) analysis, the phase transition between phases V and VI
belongs to a generalized Kosterlitz-Thouless universality
class.!®33 It is well known that a typical thermodynamic
quantity may exhibit certain singularity at the phase bound-
ary but it may become too weak to be observed in Kosterlitz-
Thouless-type transition. Our entanglement approach shows
the presence of local entanglement extreme at the boundary
instead of the occurrence of entanglement divergence and/or
discontinuity. This result is consistent with RG analysis. Fur-
thermore, our present results indicate the existence of a
gapped phase IV in the large x and y regions of the phase
diagram, missed in previous exact diagonalization studies.'?
This phase agrees qualitatively with the perturbative series-
expansion study.

Since the coupled spin-orbital chain can be regarded
equivalently to a two-leg spin ladder with four-spin interac-
tions, we may also employ a measure of concurrence to
quantify the bipartite entanglement in terms of spin-spin,
orbital-orbital as well as spin-orbital concurrences. A three-
dimensional plot of spin pairwise concurrence is illustrated
in Fig. 4. Our results show that the concurrence can merely
reveal a few features of the phase diagram such as the ordi-
nary phases I, II, and III, but, unfortunately, it fails to iden-
tify the detailed phase diagram in the strong-coupling re-
gime. Another scenario is to analyze a so-called single-site
entanglement. In this case, we obtain the reduced density
matrix by tracing out all degrees of freedom except for a
single site and then get its reduced entropy. However, one is
still unable to identify many phase boundaries. In our opin-
ion, the failure of these two measures highlights the impor-
tance of the nonlocal many-body correlation effect in char-
acterizing some nontrivial quantum phases.

Exotic physical phenomena such as high-temperature su-
perconductivity and colossal magnetoresistance effect in
transition-metal oxides associated with the interplay of mul-
tiple degrees of freedom have attracted great interest. For a
strongly correlated system with multiple degrees of freedom,
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it is natural and crucial to examine the entanglement between
distinct degrees of freedom. In the present coupled spin-
orbital model, we propose the measure of SOE to character-
ize straightforwardly the complicated quantum correlation
between the spin and orbital degrees of freedom. As shown
in the present study, this measure can be used to characterize
the quantum phase transitions more explicitly. Moreover, one
can easily generalize this scenario to study other more com-
plicated systems. As an example, for a system with holon
and spinon degrees of freedom, e.g., -/ model, we may
firstly get the ground-state wave function of the finite-size
system by exact diagonalization. Then, we compute the re-
duced density matrix of the holon part by integrating out all
the spinon degrees of freedom. Finally, we obtain its corre-
sponding von Neumann entropy as the quantification of
holon-spinon entanglement. The study along this direction is
in progress.

In conclusion, we present an approach to study the phase
diagram of the coupled spin-orbital chain by coherently ex-
amining the entanglement related to two distinctive degrees
of freedom. The analysis of the SOE supplemented by the
sublattice entanglement scenario enables us to establish a
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one-to-one link between its local extreme and/or discontinu-
ity and QPT points. A most comprehensive phase diagram
has been systematically deduced for the first time from the
perspective of quantum information theory based on exact
numerical results for a finite lattice system. In contrast to the
conventional methods employed in previous studies, our in-
vestigation presents not only an alternative approach but also
a superior and efficient way to identify quantum phase
boundaries in a coupled spin-orbital system. Our study dem-
onstrates a distinct merit of evaluating entanglement measure
to extract valuable information of quantum phase transitions
for strongly correlated systems with multiple degrees of free-
dom. The present scenario may shed a light on the under-
standing of the complicated interplay among different de-
grees of freedom in terms of this entanglement measure.
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