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Abstract

We consider the Traveling Salesman Problem with
Neighborhoods (TSPN) in doubling metrics. The goal
is to find a shortest tour that visits each of a collection
of n subsets (regions or neighborhoods) in the underly-
ing metric space. We give a QPTAS when the regions
are what we call α-fat weakly disjoint. This notion com-
bines the existing notions of diameter variation, fatness
and disjointness for geometric objects and generalizes
these notions to any arbitrary metric space. Intuitively,
the regions can be grouped into a bounded number of
types, where in each type, the regions have similar up-
per bounds for their diameters, and each such region can
designate a point such that these points are far away
from one another.

Our result generalizes the PTAS for TSPN on the
Euclidean plane by Mitchell [27] and the QPTAS for
TSP on doubling metrics by Talwar [30]. We also
observe that our techniques directly extend to a QPTAS
for the Group Steiner Tree Problem on doubling metrics,
with the same assumption on the groups.

1 Introduction

We consider the Traveling Salesman Problem with
Neighborhoods (TSPN) in a metric space (V, d). An
instance of the problem is given by a collection W of
n subsets {P1, P2, . . . , Pn} in V . Each subset Pj ⊂ V
is known as a neighborhood or region. The objective is
to find a minimum length tour that visits at least one
point from each region.

This problem generalizes the well-known Traveling
Salesman Problem (TSP), for which there are PTAS’s
for low-dimensional Euclidean metrics [26, 3, 28], and
a QPTAS for doubling metrics [30]. The neighbor-
hood version of the problem was first introduced by
Arkin and Hassin [1], who gave constant approxima-
tion for the case when the regions are in the plane
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and “well-behaved” (e.g., disks, parallel and similar
length segments, bounded ratio between the largest and
smallest diameters). The general version of the prob-
lem was shown to have an inapproximability thresh-
old of Ω(log2−ǫ n) for any ǫ > 0 by Halperin and
Krauthgamer [20]. There is an almost matching upper
bound of O(log N log k log n)-approximation, using the
results of Garg et al. [17] and Fakcharoenphol et al. [15],
where N is the total number of points in V and k is the
maximum number of points in each region.

Special cases are considered where (V, d) is taken
to be the Euclidean plane. However, if the regions are
allowed to be intersecting connected subsets, the prob-
lem remains APX-hard [9, 29]. Further restrictions are
placed on the regions. For connected polygonal regions,
Mata and Mitchell [24] gave an O(log n)-approximation,
and Gudmundsson and Levcopoulos [18] reduced the
running time to O(N2 log N), where N is the total num-
ber of vertices of the polygons.

Regions are often assumed to be “fat”1 and disjoint.
In fact, no constant factor approximation algorithm is
known for the case of intersecting non-fat regions. Du-
mitrescu and Mitchell [12] considered connected regions
that are all about the same size, fat and disjoint, and
gave a PTAS in this case, using the “guillotine” method.

Berg et al. [9] gave constant approximation for
slightly more general regions of varying size, but are
still disjoint, fat and convex. Elbassioni et al. [14] gen-
eralized this to the discrete case where each neighbor-
hood consists of a discrete set of points in a fat though
not necessarily convex region, and gave a constant ap-
proximation. This constant approximation was further
generalized in [13], where the neighborhoods are inter-
secting, connected and have comparable diameters.

The best previously known result for getting a
(1 + ε)-approximation is by Mitchell [27], who obtained
a PTAS for the Euclidean plane, where the regions are
fat and almost disjoint. This result is obtained by the
“guillotine subdivision” technique, which unfortunately

1Intuitively, the fatness of a region measures the ratio between
the smallest circumscribing radius and the largest inscribing
radius. A disk is fat, while a line segment is not.



only works for 2 dimensions. On the other hand,
the hierarchical decomposition technique by Arora [3]
and Talwar [30] is applicable to more general metrics.
However, as pointed out by Mitchell [27], previous
attempts in applying this technique have led to only
limited success.

Feremans and Grigoriev [16] suggested a PTAS by
using Arora’s framework [3] in the case where regions
are of similar size and bounded perimeter. They
proposed that the regions are never divided in the
decomposition. However, some technical issues would
arise,2 but unfortunately they were not addressed in
the short paper. We instead allow regions to be
divided, but have to overcome a major technical hurdle
and successfully use Arora’s framework to design an
approximation scheme for TSPN.

Our Contribution. We give a (1 + ε)-approximation
for instances on metrics with bounded doubling dimen-
sion [4, 7, 19].3 This includes low-dimensional Euclidean
metrics, and hence is a generalization of Mitchell’s re-
sult [27] for 3 or more dimensions. Moreover, since the
doubling dimension is well defined for any metric, our
framework covers metrics that do not have any geomet-
ric structure, and the regions need not be convex or
even connected, where such notions might not even be
applicable in the first place. For more applications of
doubling metrics, the reader is referred to [6, 22, 23, 21].

Nevertheless, we still need to place some restric-
tions on the regions, because the problem is APX-hard
in general on the plane [11], which has bounded dou-
bling dimension. We combine the notions of diameter
variation, fatness and disjointness for geometric spaces,
and define for regions in general metrics the notion of α-
fat weak disjointness. We assume that the regions have
∆ types of radii. For the regions within the same type,
there is some ρ > 0 such that there is a ρ-packing4 con-
sisting of one point from each region, and all the regions
have diameters at most O(αρ).

Our definition allows very general regions. Intu-
itively, all we require is that regions of similar diam-
eters should each designate a point within, such that
these points are far away from one another; the regions
can otherwise intersect arbitrarily. The assumption that
there are only a bounded number ∆ of types of region
diameters is also necessary, as we show in Appendix B

2In particular, keeping regions intact would destroy the so-
called “padding property” of the decomposition, which is essen-
tial in Arora’s argument [3] for the existence of a good portal

respecting tour.
3Intuitively, a set has bounded doubling dimension if any set

can be covered by a bounded number of sets with half its diameter.
4A ρ-packing is a set of points with inter-point distance larger

than ρ.

that otherwise the problem remains APX-hard5. Of
course, the catch with working on such weak assump-
tions is that the running time of our algorithm is only
quasi-polynomial, which is not surprising, because there
is only a QPTAS known even for TSP on doubling met-
rics by Talwar [30].

Main Result. We augment the hierarchical decom-
position method [3, 30] for TSP to give a randomized
algorithm that approximates TSPN.

Theorem 1.1. Suppose that we are given an instance
of TSPN, where the underlying metric space has dou-
bling dimension at most k, and the regions are α-fat
weakly disjoint with at most ∆ types of radii. Then,
there is a QPTAS that, with constant probability, gives
a TSP tour of length at most (1 + ε)OPT in time

exp{O(∆
ε )kO(α)k2

logk n}.

For the case of Euclidean metrics, we can remove
the dependence on ∆ if we use a stronger notion of
fatness as in [9, 31].

Theorem 1.2. Suppose that we are given an instance
of TSPN, where the underlying metric is the k-
dimensional Euclidean space, and the regions are dis-
joint and α-fat in the sense defined in [9]. Then,
there is a QPTAS that, with constant probability, gives
a TSPN tour of length at most (1 + ε)OPT in time

exp{O(1
ε )O(k)O(α)O(k2) logO(k) n}.

Our Techniques. Our approximation scheme is built
on top of the hierarchical decomposition method used
for TSP by Arora [3] and Talwar [30]. The main techni-
cal hurdle is that a cluster can partially intersect many
regions, causing an exponential number of dynamic pro-
gram entries for that cluster. We resolve this issue via
the following approaches.

1. When a region is separated by clusters, we charge
the extra cost incurred to the radius of the cluster.
The sum of the radii of the clusters can be charged
to the length of the optimal tour. This is done by
extending a lemma appearing in [14, 27] to doubling
metrics, which gives a lower bound on the length of
any tour that hits all weakly disjoint regions with
similar diameters.

2. By considering the probability that a region is
separated by the clusters, we carefully prune the
search in lower levels of the dynamic program.
The number of partially intersecting regions that
a cluster needs to explicitly consider is greatly

5However, as we shall see, this assumption is not necessary in
the case of Euclidean metric



reduced to poly-logarithmic, and hence this allows
the running time of the approximation scheme to
be quasi-polynomial.

Extension to Group Steiner Tree Problem
(GSTP). Observing that the optimal length for GSTP
is at least half of that for TSPN, we have the correspond-
ing version of Corollary 3.1 for GSTP, which leads to a
QPTAS using the same techniques.

2 Notation and Preliminaries

We denote a metric space by M = (V, d).6 (For basic
properties of metric spaces, please refer to standard
texts [10, 25].) A ball B(x, ρ) is the set {y ∈ V |
d(x, y) ≤ ρ}. The diameter Diam(Z) of a set Z is the
maximum distance between points in Z. A set Z of
points is a ρ-packing, if any two distinct points in Z are
at a distance more than ρ away from each other.
Problem Definition. An instance of the metric TSP
with neighborhoods (TSPN) is given by a metric space
M = (V, d) and a collection of n neighborhoods or
regions W := {Pj | j ∈ [n]}, where each Pj is a subset
of V . The objective is to find a minimum TSP tour that
visits at least one point from each region. We require
that the regions satisfy a weak disjointness condition.

Definition 2.1. (α-Fat Weakly Disjoint Re-
gions) The regions {Pj}j are α-fat weakly disjoint with
∆ types of radii if the regions can be partitioned into ∆
sets {Wl}l∈[∆] such that for each set Wl, the following
conditions hold.

1. There exists ρl > 0 such that for each region Pj

in Wl, there exists some point zj ∈ Pj such that the
set {zj}j is a ρl-packing. We say that the region Pj

has center zj and core radius rj := ρl.
2. Every region Pj is contained in the ball
B(zj , αrj), and we denote Pj = Pj(zj , αrj).

Observe that regions from different Wl’s can intersect
arbitrarily.

The assumption that there are only a bounded
number ∆ of types of region radii is necessary, as we
show in Appendix B that otherwise the problem remains
APX-hard, even if the regions are disjoint balls.

Examples.
(1) Suppose the problem is defined in the Euclidean
space, and the regions are continuous disjoint balls, i.e,
for each Pj , there exist zj ∈ V and ρj ≥ 0 such that
Pj = B(zj , ρj). Suppose further that the regions are
partitioned into ∆ sets {Wl}l∈[∆] such that any two
regions in the same Wl have their radii differ by a
multiplicative factor of at most 2. Note that in this case,

6Observe that V could be an infinite set.

∆ ≤ 1 + log2 max{ ρi

ρj
| ρj > 0}. Suppose that in some

Wl, all the regions Pj = B(zj , ρj) satisfy ρ ≤ ρj ≤ 2ρ.
Then, it follows by the disjointness of the balls that the
corresponding {zj}j forms a 2ρ-packing, and obviously,
Pj is contained in B(zj , 2ρ). Hence, these regions are
1-fat weakly disjoint with ∆ types of radii. One may
consider, more generally, fat regions in the sense defined
by Mitchell [27], and note that his definition is included
in ours. Hence, our results apply to the class of fat
regions considered in [27].
(2) Suppose the problem is defined on a finite metric,
and for each region Pj , there is some ρj > 0 and zj ∈ V
such that B(zj , ρj) ⊆ Pj ⊆ B(zj , αρj). Suppose further
that two regions are disjoint if their corresponding ρj ’s
are within a factor of 2 from each other. We can
partition the regions into ∆ sets {Wl}l∈[∆] such that
any two regions in the same Wl have their ρj ’s differ
by a multiplicative factor of at most 2. One can check
that we also have ∆ ≤ 1 + log2 max{ ρi

ρj
| ρj > 0}, and

with respect to such {Wl}l the regions are 2α-fat weakly
disjoint.

Remark 2.1. The parameter α in Definition 2.1 de-
pends on how the regions are grouped into the sets
{Wl}l, and also on how the centers of regions are picked
within each set. By decreasing the number ∆ of sets Wl,
one might possibly increase α. However, we are not con-
cerned about the optimal way to form the sets {Wl}l to
obtain the best α and ∆. We just assume that we are
given a partition {Wl}l of regions (together with the cor-
responding core radius and the centers of regions in each
such Wl) such that the regions are α-fat weakly disjoint
with respect to this {Wl}l, for some α ≥ 1. The only re-
quirement that we need in order to avoid too many Wl’s
is that, the ratio of the core radii from two different Wl’s
should be at least some constant at least 2.

Remark 2.2. Observe that the α-fat weak disjointness
condition implies that if all the regions in some Wl have
diameters at least δ, then the corresponding centers form
a δ

2α -packing. Moreover, the diameters of the regions in
Wl are within a factor of 2α from one another.

Restricting the Tour inside B0. Without loss of
generality, we can assume that there is a region P0 which
contains only one point p0. For finite metrics, we can try
each p0 in P0, and consider those TSPN tours that pass
through p0; for the special case of Euclidean metrics, see
Appendix 5. We let R to be the minimum radius of a
ball centering at p0 that intersects all regions. Suppose
OPTis the length of the optimal tour. Then, it follows
that 2R ≤ OPT ≤ 2nR. Hence, the optimal tour must
be contained in the ball B0 := B(p0, nR). Therefore,



without loss of generality, we only need to consider the
points in B0.

Remark 2.3. Suppose the optimal tour visits pj in
each Pj. If we replace each pj by p′j ∈ Pj such that

d(pj , p
′
j) ≤

εR
2n , then we change the length of the tour by

at most εOPT. Hence, we can assume that each region
has radius of either 0 or at least εR

2n . However, we can
have two regions of large radii that almost touch each
other.

We measure the complexity of the given metric by
its doubling dimension.

Definition 2.2. (Doubling Dimension [4, 19]) The
doubling dimension of a metric space (V, d) is at most
k if for all x ∈ V , for all ρ > 0, every ball B(x, 2ρ) can
be covered by the union of at most 2k balls of the form
B(z, ρ), where z ∈ V .

Observe that a set of points in k-dimensional Eu-
clidean space induces a metric space with doubling di-
mension at most O(k). Unless otherwise stated, we use
only the doubling property of Euclidean metrics, and we
give explicit emphasis when the geometric properties of
Euclidean metrics are used.

Given ρ > 0, recall that a ρ-net for a set U of points
is a subset S such that every point in U is within a
distance of ρ from some point in S and any two points in
S are at a distance of more than ρ away from each other.
The following fact states that for a doubling metric, one
cannot pack too many points in some fixed ball such
that the points are far away from one another.

Fact 2.1. (Packing in Doubling Metrics [19])
Suppose Z is a set of points in a metric space with
doubling dimension at most k. If Z is contained in some
ball of radius 2sρ and for all y, z ∈ Z such that y 6= z,
d(y, z) > ρ, then |Z| ≤ 2(s+1)k.

On a high level, we use a divide and conquer
paradigm. Hence, we would need a desirable scheme for
dividing up the metric space. The following decompo-
sition schemes are widely used in the metric embedding
literature [5, 15].

Definition 2.3. (Padded Decomposition) Given a
finite metric space (V, d), a positive parameter D > 0
and β > 1, a D-bounded β-padded decomposition is
a distribution Π over partitions of V such that the
following conditions hold.

(a) For each partition P in the support of Π, the
diameter of every cluster in P is at most D.

(b) Suppose S ⊆ V is a set with diameter δ. If P is
sampled from Π, then the set S is partitioned by P
with probability at most β · δ

D .

We consider distances of geometrically decreasing
scales. Recall the relevant distances are between εR

2n and

2nR. We consider powers of 2, and have L := ⌈log2
4n2

ε ⌉

distance scales. We let DL := 4nR and Di−1 := Di

2 , for
1 ≤ i ≤ L.

Definition 2.4. (Padded Hierarchical Decom-
position) Given a metric space (V, d), a β-padded hier-
archical decomposition is a family {Πi}i of distributions
of partitions of (V, d) such that:

(a) Each Πi is a Di-bounded β-padded decomposi-
tion of (V, d), and

(b) Suppose a hierarchical partition {Pi}i is in the
support of {Πi}i. Then, for 0 ≤ i < L, each cluster
in Pi is completely contained in some parent cluster
in Pi+1.

Fact 2.2. (Padded Hierarchical Decomposition
for k-Dimensional Euclidean Metrics [3]) Sup-
pose a metric space resides in k-dimensional Euclidean
space. Then, the randomly shifted quadtree construc-
tion in [3] gives a k-padded hierarchical decomposition.
Moreover, for any hierarchical partition sampled from
it, any height-(i + 1) cluster contains at most K := 2k

height-i children clusters.

Fact 2.3. (Padded Hierarchical Decomposition
for Doubling Metrics [30]) Suppose a metric has
doubling dimension at most k. Then, it admits an O(k)-
padded hierarchical decomposition. Moreover, for any
hierarchical partition sampled from it, any height-(i+1)
cluster contains at most K := 2O(k) height-i children
clusters.

2.1 Arora’s and Talwar’s Approximation
Schemes for TSP We give a very brief review of the
hierarchical decomposition method used by Arora [3]
(for low-dimensional Euclidean metrics) and Tal-
war [30] (for doubling metrics) to design approximation
schemes for TSP. A more complete description is given
in Appendix A.

1. A hierarchical partition {Pi}i is sampled as in
Definition 2.4. Each cluster C in each level contains
a set U(C) of points called portals, which can, for
instance, be a fine enough net of C. The search
space is restricted to portal respecting tours, i.e.,
those that enter or leave a cluster only through its
portals. Given positive integers m and r, a TSP
tour is (m, r)-light with respect to some hierarchical
partitioning and portaling scheme if every cluster
in every height of the partition contains at most m
portals and the tour enters and leaves each cluster
only through its portals for at most r times. It



is shown in [3, 30] that for appropriate values of
m and r, with constant probability, there is some
(m, r)-light tour that has length at most (1 + ε)
times the optimal length.

2. A dynamic program is used to find the shortest
(m, r)-light tour with respect to some hierarchical
partition and portaling scheme. Each cluster C has
entries, each of which is indexed by a configura-
tion consisting of a collection I of entry/exit portal
pairs. Since only tours that enter and exit each
cluster at most r times are considered, each such
I contains at most r entry/exit pairs of portals.
Moreover, an entry stores the minimum length of
the internal segments consistent with its configu-
ration. The running time of the dynamic program
depends on the values m and r, as well as the max-
imum number K of children clusters that a parent
cluster can have.

3 Augmenting the Hierarchical Decomposition
Method for TSPN

The main difficulty in applying the hierarchical decom-
position method (or other similar divide and conquer
method) is that when a sub-problem contains partial
regions, the corresponding dynamic program would pos-
sibly need to try all combinations of whether the sub-
problem is responsible for those intersecting partial re-
gions. This can potentially increase the number of dy-
namic program entries by a factor of 2Ω(n). We prove
a structure theorem that can reduce the number of in-
tersecting regions that a cluster needs to explicitly con-
sider. In particular, if a region P is first divided up at
a certain height in the hierarchical partition, then it is
only necessary for descendant clusters down to certain
height to explicitly consider the region P . These de-
scendant clusters each has a potential site, which when
activated, can be the point responsible for the divided
region. Descendant clusters further down need not be
concerned about that the divided region P any more.
We first look at what exactly happens when a region is
divided up in the hierarchical decomposition method.

Extra Cost due to Divided Regions. Suppose
a region P with diameter δ is first divided in the
hierarchical partition at diameter scale Di. By the
property of β-padded decomposition, this happens with
probability at most β · δ

Di
. (Recall that for metrics with

doubling dimension at most k, β = O(k).) We do not
know exactly the point p ∈ P that the optimal tour
visits. However, suppose we can somehow ensure that
the tour visits a point u (not necessarily in P ) instead
of p that satisfies d(p, u) ≤ γDi (for some small γ < 1);
and then the tour makes a further detour at u and visits

a point q in P such that d(u, q) ≤ γDi. Observing that
there are at most L values of i, the expected extra cost
incurred is at most

∑
i β · δ

Di
·4γDi = 4Lβγδ. (It would

be soon apparent why we perform such a convoluted
detour.) This intuition suggests that it is useful to
obtain a lower bound on OPTin terms of the diameters
of the regions.

The following lemma is an extension of the packing
lemmas in [14, 27] to doubling metrics.

Lemma 3.1. (Existence of a Packing among Fat
Weakly Disjoint Regions) Suppose Wl is a set of
α-fat weakly disjoint regions of the same type, all with
core radius ρ. Let Q be a set of points that intersect
every region in Wl. Suppose that the underlying metric
has doubling dimension at most k and |Wl| > (8α)k.

Then, there exists T := ⌈ |Wl|
(8α)k ⌉ points in Q that form

an αρ-packing.

Proof. Let Q be the set of points that intersects every
region in Wl, i.e., for each P ∈ Wl, the intersection

Q ∩ P is non-empty. Let T := ⌈ |Wl|
(8α)k ⌉ ≥ 2. If suffices

to show, by induction on t, that for 1 ≤ t ≤ T , there
exists a set of points Qt := {pj | 1 ≤ j ≤ t} in Q such
that any two points in Qt are at distance more than αρ
from each other.

For t = 1, pick any p1 ∈ Q and set Q1 := {p1}.
Then, the result is trivially true. Suppose for some
1 ≤ t < T , there exists Qt := {pλ}

t
λ=1 in Q such that

any two points in Qt are at least αρ apart.
Let Z := {zj | Pj(zj , αρj) ∈ Wl} be the set of

centers of regions in Wl, which all have core radii ρ.
From Definition 2.1, the set Z is a ρ-packing.

For each 1 ≤ λ ≤ t, let Zλ := {z ∈ Z | d(z, pλ) ≤
2αρ}. Observe that since the doubling dimension of the
underlying metric is at most k, by Fact 2.1, we have
|Zλ| ≤ (8α)k. It follows that | ∪t

λ=1 Zλ| ≤ t · (8α)k <
|Z| = |Wl|. Hence, there exists some center z ∈ Z that is
not in any of the existing Zλ’s. Suppose pt+1 is a point
in the region centering at z that the tour visits, and
hence pt+1 ∈ B(z, αρ). Now, for each 1 ≤ λ ≤ t, by the
triangle inequality, d(pλ, pt+1) ≥ d(pλ, z)− d(z, pt+1) >
αρ, since d(pλ, z) > 2αρ and d(z, pt+1) ≤ αρ. Setting
Qt+1 := Qt ∪ {pt+1} completes the inductive step. 2

By taking Q to be the set of points in the set Wl

of regions that a TSP tour visits, we have the following
corollary.

Corollary 3.1. (Lower Bound on OPTvia Diam-
eters of Regions) The length of any TSP tour visit-
ing all regions of the same type in Wl as in Lemma 3.1 is

at least |Wl|
(8α)k ·αρ; moreover, we have

∑
P∈Wl

Diam(P ) ≤

2(8α)kOPT.



Distinguishing between Common and Rare
Types of Core Radii. Recall that the set W of re-
gions are grouped into sets {Wl}l∈[∆], where the regions
in each group have their diameters within a factor of 2
from one another. Let Wc := ∪l:|Wl|>(8α)kWl be the re-
gions with common types of radii, and Wr := W \ Wc

be those with rare types of radii. By Corollary 3.1,∑
P∈Wc

Diam(P ) ≤ 2∆ · (8α)kOPT, and observe that

|Wr| ≤ ∆ · (8α)k.

Lemma 3.2. (Approximate Point Location for
Divided Regions) Suppose a hierarchical partition is
sampled as in Fact 2.3, and a region P has diameter δ.
Consider the following operation of modifying a given
TSP tour.

1. Suppose that p is the point in P for which the TSP
tour visits. Consider the height-i partition (with
diameter scale Di) for which the region P is first
divided.

2. Let 0 < γ < 1 and suppose that u is an arbitrary
point (not necessarily in the region P ) such that
d(u, p) ≤ γDi.

3. In the given tour, replace p with u.
4. Suppose q ∈ P is a point such that d(q, u) ≤ γDi.
(The points p and q could be the same.) Then,
make a detour at point u: visit point q and then
back again at u.

Then, the expected increase in the length of the tour is
at most 4Lβγδ.

Proof. First, observe that the probability that a region
P with diameter δ is first divided at the height-i
partition is at most β · δ

Di
, by the property of β-padded

decomposition. Note that the increase in length after
the modification procedure is at most 4γDi. Finally,
observing that there can be L possible values of i for
which this can happen, the expected increase in the tour
length is as required. 2

Combining Corollary 3.1 and Lemma 3.2, we have
the following structure theorem for TSPN.

Theorem 3.1. (Structure Lemma for TSPN)
Consider a TSPN instance on an underlying metric with
doubling dimension at most k, and suppose that a hier-
archical partition is sampled as in Fact 2.3. Moreover,
for each region P in Wc, the approximate point location
modification is performed as in Lemma 3.2 on any given
tour. Then, the expected increase in length is at most
8(8α)kLβγ∆OPT, which is at most ε

2 · OPT, if we set
γ = O( ε

(8α)kLβ∆
). In particular, if the given tour is an

(m, r)-light TSPN tour, whose length has an expected
difference from the optimal length of at most ε

2 · OPT,
then the resulting TSPN tour has an expected increase
from the optimal length of at most ε · OPT.

We next give the details of the approximate point
location procedure in Lemma 3.2.

Assigning Anchor Points for a Divided Region
in Wc. We describe how the point u is picked for a
region P (that is first divided at height-i), as in Step 2
of Lemma 3.2. Observe that P is totally contained in
some height-(i − 1) cluster Ci−1. For the special case
when the diameter of P is at most γDi, then we pick an
arbitrary point p ∈ P and replace the region P with the
singleton {p}; we emphasize that in this case p is NOT
an anchor point for the region P . Otherwise, consider
the descendant clusters of Ci−1 that intersect with P ,
in decreasing height. As soon as the diameter of an
intersecting cluster C drops below γDi, or if we have
reached the lowest height where C is a height-0 cluster
(which has diameter at most εR

n , see Remark 2.3), we
pick u to be any arbitrary point inside C, and we say u is
an anchor point at height-i for the region P ; in this case,
it is not necessary to consider further the descendant
clusters of C for assigning anchor points. Note that we
do not know which point in the region the optimal tour
would visit, but we can ensure that the correct point
would have an anchor point within a distance of γDi.

Potential Site in a Cluster. Observe that in the
above description, an anchor point u for some region is
an arbitrary point in some cluster C. Hence, we pick
an arbitrary point u(C) in each cluster as a potential
site, which when activated, can be an anchor point for
regions partially intersecting C. We require that if u is
a potential site for a cluster C, then it must also be one
for one of its children clusters.

Ambiguous Regions for a Cluster. Recall ulti-
mately, we want to limit the number of regions that
intersect a cluster for which the dynamic program has
to explicitly consider. Given a cluster C at height-i, its
ambiguous regions are those regions P partially inter-
secting C that satisfy one of the following properties.

1. The region P is in Wr, i.e., its type of core radius
is rare.

2. The cluster C or any of its descendant clusters
contain potential sites that can be anchor points
(at the corresponding heights) for the region P .

Technical Issues Involving Padded Hierarchical
Decomposition. Before we can bound the number of
ambiguous regions for a cluster, there are some issues
concerning the padded hierarchical decomposition that
need to be clarified.

1. We know that the optimal solution is contained
in the ball B(p0, nR). However, if we simply take
this ball as the height-L cluster, then some regions



would be divided at height-L with probability 1,
thereby violating the padded-property. It suffices
to pick η ∈ [ 12 , 1] uniformly at random, and take
the height-L cluster to be B(p0,

1
2ηDL) (assuming

β is sufficiently large, say β ≥ 2).
2. In the argument that follows, for i ∈ [L], we would

need the existence of β-padded decomposition at
height-(i + Γ), where Γ := ⌈log2

1
γ ⌉. In particular,

we need the property that at height-(i + Γ), the
cluster containing p0 has diameter at most Di+Γ,
and the probability that a region with diameter δ
is divided at this height is at most β · δ

Di+Γ
. For

1 ≤ s ≤ Γ, we can simply set the “imaginary
cluster” at height-(L + s) to be B(p0,

1
2ηDL+s),

where η ∈ [ 12 , 1] is the same as in 1. The imaginary
clusters are only for the sake of the proof and do
not play any role in the actual algorithm.

Lemma 3.3. (Bounding the Number of Ambigu-
ous Regions) The number of ambiguous regions for a
cluster is at most H := ∆ · (8α)k + O(α

γ )k, where k is
the doubling dimension.

Proof. Suppose cluster C is at height-i, where i ≤ L.
The number of its ambiguous regions in Wr is at most
|Wr| ≤ ∆ · (8α)k. We next count the number of its
ambiguous regions in Wc.

We first bound the number of ambiguous regions
in Wc having diameter at least Di. If a region P has
diameter larger than Di

γ , then it cannot have its anchor
point in cluster C. The reason is that such a region
P would be first divided at a height of at least i + Γ,
recall Γ := ⌈log2

1
γ ⌉. Hence, it follows that region P ’s

anchor points must be at a height larger than i. So we
may assume that Di ≤ Diam(P ) ≤ Di

γ . Observe that
such a region can be of at most Γ types of core radii.
The centers of the α-fat weakly disjoint regions from
each such type form some packing, and by Remark 2.2
and Fact 2.1, there are at most O(α)k regions from
each such type. Hence, there can be totally at most
Γ · O(α)k = O(α

γ )k such ambiguous regions.
It remains to bound the number of ambiguous

regions in Wc having diameter less than Di. Note that if
a region P has diameter less than γDi, then there would
be no anchor points for the region P (at any height),
and so P cannot be ambiguous. The reason is that the
region must be first divided at a height i′ ≥ i, and hence
the diameter of region P is at most γDi′ . In this case,
an arbitrary point p in P (which is NOT an anchor
point) is picked and the region P is reduced to {p}.
Again, note that if the diameter of a region P is at least
δ, then its core radius is at least δ

2α . By Remark 2.2

and Fact 2.1, there can be at most O(Di+δ
δ/α )k regions

with diameter around δ that intersect cluster C. Hence,

the total number of ambiguous regions having diameter
less than Di is dominated by the term corresponding to
δ = γDi, which is O(α

γ )k.
Summing up the number of ambiguous regions in

all the cases gives the required bound. 2

4 Dynamic Program for TSPN

We describe details of the augmented dynamic program
for finding the shortest TSPN tour after the approxi-
mate point location modification as in Theorem 3.1, in
addition to ensuring the (m, r)-lightness property in the
original dynamic program. In Lemma 3.3, we bound the
number H of ambiguous regions for each cluster. Hence,
in the dynamic program, the number of configurations
for a cluster increases by a factor of at most 2H . Observ-
ing that there are at most K = O(1)k children clusters
for any parent cluster, we show that the running time
of the dynamic program increases by a factor of at most
2O(HK).

Theorem 4.1. Suppose that we are given an instance
of TSPN, where the underlying metric space has dou-
bling dimension at most k, and the regions are α-fat
weakly disjoint with at most ∆ types of radii. Then,
with constant probability, the augmented hierarchical de-
composition method gives a TSPN tour of length at
most (1 + ε)OPT in time TIME(TSP ) · 2O(HK) =

exp{O(∆
ε )kO(α)k2

logk n}, where TIME(TSP ) is the
time for approximating TSP with the hierarchical de-
composition method used by Arora [3] or Talwar [30].

Proof. In view of Theorem 3.1, we prove the theorem
by giving the construction of the augmented dynamic
program for approximating TSPN.

Outline of the TSPN Algorithm. A hierarchical
partition is first sampled. Then, the portals for each
cluster are assigned as in [3] or [30]. As described in
Section 3, the potential sites are chosen, the anchor
points for the regions are assigned, and the ambiguous
regions for each cluster are determined. Then, the
following dynamic program finds a desirable TSPN tour.

Configuration of a Cluster. The configuration of a
cluster C includes the following.

1. A collection I of portal entry/exit points as
before. (Recall that (m, r)-lightness implies that
|I| ≤ r.)

2. A bit vector of length equal to the number of
ambiguous regions that cluster C has. Each such
bit indicates whether the cluster is responsible for
the corresponding ambiguous region.

3. A bit indicating whether the potential site u(C)
is activated.



Since a cluster has at most H ambiguous regions,
the number of configurations for the cluster increases
by a multiplicative factor of at most 2H+1. Each
entry also stores the minimum length of the segments
consistent with the configuration, and also the segments
themselves if a tour needs to be constructed eventually.
We focus mainly on the new features of the dynamic
program.

Base Case: Filling Entries of Height-0 Clusters.
Suppose C is a height-0 cluster. We describe the possi-
ble configurations for such a cluster and the correspond-
ing partial lengths stored under its entries.

1. If the cluster C contains singleton regions P ,
then u(C) must be activated in the configuration
to be responsible for all those P . Otherwise, the
cluster C has both configurations in which u(C)
is activated and also those in which u(C) is not.
For those configurations in which u(C) is activated,
the collection I of entry/exit points contains only
a singleton {x}, where x is the closest portal to
u(C) in C;7 moreover, twice the distance from x
to u(C) needs to be included to the length of the
partial tour within C. If u(C) is not activated in
a configuration, then the set I is empty; and such
a configuration needs not take part any further in
the dynamic program.

2. If u(C) is activated in a configuration, there is a
choice for each ambiguous region P of C of whether
C is responsible for P .

3. For each region P for which the cluster C is
responsible (either by necessity as in 1 or by choice
as in 2), add twice the distance between u(C) and
its closest point in P to the length of partial tour for
the entry under the corresponding configuration.

Inductive Step: Determining the Configuration
and Combining the Solutions from the Children
Clusters. The entries of a height-i cluster are com-
puted from those of its children clusters. We consider
each combination of configurations of the children clus-
ters. A configuration for C is formed by interleaving
different portal entry/exit pairs as indicated by the chil-
dren clusters’ configurations. (Recall that an interleav-
ing is valid, only if it results in a collection I of en-
try/exit points that has size at most r, since we look for
(m, r)-light tours.) We now concentrate on how the new
parameters involved in the configuration operate. Here
are the steps to be performed to determine the configu-
ration of the cluster C, and compute the corresponding
entries.

7Note that we can always choose a potential site u(C) that is
also a portal, in which case x would also be u(C).

1. For each region P that is totally contained in
C, but is divided by the children clusters, the
configurations of the children clusters should reflect
that at least one of them is responsible for the
region P . Otherwise, such a combination of the
children clusters’ configurations is invalid, and we
move on to the next combination.

2. The potential site u = u(C) is activated in the
configuration of C, if and only if the site u is also
activated in the corresponding child cluster that
contains u.

3. Suppose the region P is ambiguous for cluster C.
If possible, determine whether C is responsible for
P from the configurations of the children clusters.

4. If the configurations of the children clusters give
no information of whether C is responsible for an
ambiguous region P , then it must be the case that
the cluster C has a potential site u(C) that can be
an anchor point at height-i for the region P . If the
potential site u(C) is not activated, then the cluster
C is not responsible for the ambiguous region P in
the configuration of C. If the potential site u(C)
is activated, then there is a choice of whether C
is responsible for region P . In the case where C
is responsible for the region P , twice the distance
of u(C) to the closest point in P ∩ C is added to
the length stored in the corresponding entry of C.
Note that considering choices for each ambiguous
region can increase the running time by a factor of
at most 2H .

5. For each configuration of C formed in the man-
ner described above, we update the corresponding
entry for C if the new partial length is less than
that of the existing one.

Increase in the Running Time. We analyze the
running time of the augmented dynamic program. Note
that the number of configurations for a cluster increases
by a factor of at most 2H+1, and the number of children
cluster is at most K. Hence the total number of
combinations of the children clusters’ configurations
increases by a factor of at most 2K(H+1). For each
such combination, the time to combine them increases
by a factor of at most 2H , as described in Step 4
above. Hence, it follows the total time of the augmented
dynamic program increases by a factor of at most
2O(HK). Observing that H = ∆ · (8α)k + O(α

γ )k,

K = O(1)k, γ = O( ε
(8α)kLβ∆

), L = O(log n
ε ) and

β = O(k) gives the required running time. 2

5 Special Case: Euclidean Metrics

We consider the special case when the underlying metric
is the k-dimensional Euclidean metric, with disjoint



regions. If we use a stronger notion of fatness, then
we can remove the running time’s dependence on the
number ∆ of types of region diameters.

Definition 5.1. (α-Fatness [9, 31]) A region P ⊆
R

k is said to be α-fat if for any k-dimensional ball B
which does not fully contain P and whose center lies in
P , the volume of the intersection of P and B is at least
1/αk times the volume of B.

Restricting the Tour in B0. Recall that for finite
metrics, we can try each point p0 in the region P0 to
form some bounding ball B(p0, nR). We need to use
a different approach if every region is continuous and
contains an infinite number of points. Using the method
outlined in [9], one can approximate a minimum box
intersecting all regions with center c and radius R. Note
that we can assume that there is some region P0 with
diameter at most nR. Otherwise, if all regions have
diameters at least nR, then by the definition of α-fatness
and disjointness, there can be at most O(α)k regions;
and hence there are only a constant number of regions
and the problem becomes trivial. Note that for any
point p0 in P0, the ball B(p0, (n + 1)R) intersects all
regions. Hence, instead of trying each p0 in P0, we can
just conclude that the optimal tour must be inside the
ball B(c, 2n2R). We still have only L = O(log n

ε ) length
scales to consider.

Bounding the Number ∆ of Types of Region
Diameters. Note that we have shown that the optimal
tour must be inside the ball B(c, 2n2R), and as before
we can assume that a region is either a singleton or
has diameter at least εR

2n . For regions having diameter

between εR
2n and 2n2R, we can group them between

powers of 2, so that there are at most O(log n
ε ) types.

Note that by α-fatness and disjointness, there can be at
most O(α)k regions having diameter larger than 2n2R.
Hence, it follows that the number of types ∆ of region
diameters is at most O(log n

ε ) + O(α)k.
Hence, Theorem 1.2 follows immediately from The-

orem 1.1.
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[25] J. Matoušek. Lectures on discrete geometry, volume
212 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 2002.

[26] J. S. B. Mitchell. Guillotine subdivisions approximate
polygonal subdivisions: a simple polynomial-time ap-
proximation scheme for geometric TSP, k-MST, and
related problems. SIAM J. Comput., 28(4):1298–1309,
1999.

[27] J. S. B. Mitchell. A PTAS for TSP with neighborhoods
among fat regions in the plane. In SODA, pages 11–18,
2007.

[28] S. B. Rao and W. D. Smith. Approximating geometri-
cal graphs via “spanners” and “banyans”. In STOC ’98
(Dallas, TX), pages 540–550. ACM, New York, 1999.

[29] S. Safra and O. Schwartz. On the complexity of
approximating TSP with Neighborhoods and related
problems. In Proc. 11th Annual European Symposium
on Algorithms, volume 2832 of Lecture Notes in Com-
puter Science, pages 446–458. Springer, 2003.

[30] K. Talwar. Bypassing the embedding: Algorithms for
low-dimensional metrics. In 36th STOC, pages 281–
290, 2004.

[31] A. F. van der Stappen. Motion planning amidst
fat obstacles. PhD Dissertation, 1994, Department
of Computer Science, Utrecht University, Utrecht,
Netherlands.

Appendix A: Review: Approximating TSP via
the Hierarchical Decomposition and Portaling
Method on Bounded Growth Metrics

Our techniques are based on the approximation
schemes by Arora [3] (for low-dimensional Euclidean
metrics) and Talwar [30] (for doubling metrics), to
which we refer as the Hierarchical Decomposition
Method. We give a brief review of the construction and
highlight the relevant properties that are crucial to our
augmented scheme. For the moment, consider the case
where each region Pj contains only one point.

On a high level, the method divides the metric
space hierarchically into smaller clusters. The partial

solutions for smaller clusters are solved and combined
together to form the global solution through dynamic
programming. We next give the main ingredients of the
method.

(1) Padded Hierarchical Decomposition & Por-
taling Scheme

Portal Assignment and (m, r)-Light Tours.
Suppose a hierarchical partition {Pi} is sampled as in
Definition 2.4. For each 0 ≤ i < L, each height-i cluster
C has a set U(C) of points called portals. We consider
portal respecting tours, i.e., those that enter or leave
a cluster only through its portals. This would limit
the size of the search space for TSP tours. However,
to ensure that a tour of good quality is still possible,
the set U(C) is chosen to be a fine enough θDi-net of
C, where θ = O( ε

βL) is suitably small. Given positive

integers m and r, a TSP tour is (m, r)-light with respect
to some hierarchical partitioning and portaling scheme
if every cluster in every height of the partition contains
at most m portals and the tour enters and leaves each
cluster only through its portals for at most r times.

Theorem A.1. (Structure Theorem for TSP)
Given an instance of TSP in some underlying metric M ,
there exists a padded hierarchical decomposition scheme
such that with probability at least 1

2 , the hierarchical
partition sampled from it admits an (m, r)-light TSP
tour of length at most (1 + ε)OPT, where

(a) if M has doubling dimension at most k, then
m = (kL

ε )O(k) and r = (kL
ε )k; [30]

(b) if M is in k-dimensional Euclidean space, then

m = 2k·(O(
√

kL
ε ))k−1 and r = 2k·(O(

√
k

ε ))k−1. [3]8

(2) Dynamic Programming for Finding (m, r)-
Light Tours

We outline a dynamic program to find the shortest
(m, r)-light tour with respect to some hierarchical par-
tition and portaling scheme. Similar constructions are
used by by Arnbourg and Proskurowski [2], Arora [3]
and Talwar [30], and our construction for TSPN is built
upon this construction.

Configuration of a Cluster. For each cluster C with
its portals U(C), there are entries, each of which is
indexed by a configuration that consists of a collection
I of pairwise disjoint subsets of U(C) of size 1 or 2.

An entry for cluster C indexed by I represents the
scenario in which a tour visits cluster C via portals

8The original definition of (m, r)-lightness in [3] counts cross-
ings on only one facet of the bounding box, and hence there is an
extra factor of 2k here.



described by subsets in I. A 2-subset {u, v} in I means
there is a portion of the tour that enters and exits via
portals u and v. the A 1-subset {x} in I means the tour
enters and leaves cluster C through the portal x. We
keep track of the length of the portion of the tour that
is within the cluster C. The entry indexed by I stores
the length of the shortest possible internal segments, for
tours consistent with the scenario imposed by I. Note
that if we have to construct the tour, under each entry
we have to store the internal segments of the tour as
well. Note that for a tour to be (m, r)-light, we must
have |U(C)| ≤ m and |I| ≤ r. Hence, each cluster has
at most m2r entries.

Time for Dynamic Program. As mentioned in [30],
if each parent cluster C has at most K children clusters,
then the time to fill up all the entries of C is at most
the product of the number of configurations for all the
children clusters and (Kr)!. This product is at most
(mKr)2Kr. Since there are at most n clusters from each
of the L levels, the total time is nL(mKr)2Kr.

Appendix B: APX-Hardness for Unbounded
Types of Region Diameters

We next motivate why we need to make the as-
sumption that the number of types of diameters for the
regions is bounded. It was shown in [13] that the TSPN
problem is APX-hard for the case where all objects are
line-segments in the plane of almost equal length. We
can modify this reduction to get the following result.

Theorem B.1. The TSPN problem for doubling met-
rics with regions being disjoint balls of arbitrary types
of radii is APX-hard.

Proof. We reduce the TSPN problem from VERTEX-
COVER for 3-partite graphs, which cannot be approx-
imated within a factor 34/33, unless P = NP [8].

For completeness, we first describe the construction
in [13] again. Given a 3-partite graph G on n vertices,
we define an instance of TSPN as shown in Figure 1.
The vertices of the graph correspond to points on the
plane, and the edges correspond to neighborhoods (of
size 2) of the TSPN instance in the obvious way: two
points form a neighborhood if and only if the corre-
sponding vertices in the graph are adjacent. Further-
more, we define a large number of singleton neighbor-
hoods which together form a polygon with perimeter L.
The small equilateral triangle in the closeup has side-
length d. If d is small enough, then an optimal tour
follows the polygon and jumps up and down to some
of the vertices. The extra cost of the detour for each

such vertex is 2d−d = d. Consider an optimal tour and
let S be the set of vertices of G that are visited, then
OPT = L + |S|d. Now we let d = 1/n and choose the
distance between any two vertices substantially larger,
say 4/n. We let the perimeter of the polygon be 10. If
there is a vertex cover of size n/2, then there exists a
tour of length L + nd/2 = 10.5. On the other hand,
if there exists a tour of length at most 10 + β, then
there must be a vertex cover of size at most βn. Taking
β = 34/66 shows that TSPN cannot be approximated
within a factor (10 + 34/66)/10.5 ≈ 1.0014.

We modify the above construction in the following
way.

1. Disjoint Neighborhoods. Observe that in the
above construction, the neighborhoods are not
disjoint. In particular, if a vertex v has degree d
in the given graph, then the corresponding point u
would be contained in d neighborhoods. For such
a vertex, we have d copies {u1, u2, . . . , ud} of the
point u. Each neighborhood can now take their
unique copy of the point u. These locations of
these d points are just tiny perturbations from the
original location of the point u. This perturbation
is so tiny that the following is true. Given any
tour, the tour can be modified such that if one
copy ui is visited, then every copy would be visited,
with the increase in tour length being an arbitrarily
small fraction of the optimal length. Note that we
now have disjoint neighborhoods in the Euclidean
plane and we still preserve the APX-hardness of
the reduction. We denote the points in the metric
space we have constructed so far by X .

2. Neighborhoods as Disjoint Balls. Suppose W
is the set of size-2 neighborhoods in the construc-
tion. We are going to augment the metric and the
neighborhoods so that each neighborhood in W is
contained in some ball in the new metric. Observe
that X are points in the Euclidean plane, and can
be represented by a weighted complete graph GX ,
where the length of each edge is the Euclidean dis-
tance between the corresponding points. Since the
Euclidean plane has constant doubling dimension,
it follows that the metric induced by GX also has
bounded doubling dimension.

We augment the metric and the neighborhoods in
the following way. Suppose there are w = |W |
neighborhoods of size 2. Let Λ > 4 be a large
enough parameter, for instance, Λ is at least 100
times the optimal length. For each 1 ≤ i ≤ w, for
the neighborhood Pi = {xi, yi} in W , we create a
new point zi in the graph GX and add edges {zi, xi}
and {zi, yi} to the graph with length Λi, and we also



Figure 1: The reduction for a 3-partite graph on 12
vertices.

define a new neighborhood P ′
i := {xi, yi, zi}. We

let the augmented graph be GZ with the augmented
set of points Z in the metric induced by GZ .
Observe that the new set of neighborhoods are in
the form BZ(zi, Λ

i). More importantly, they are
now disjoint balls.

Notice that we do not need to consider any tour
that visits any zi, because such a tour would have
length at least 100 times that of the optimal tour.
Hence, the APX-hardness reduction is preserved. It
remains to see if the augmented metric still has con-
stant doubling dimension. Now, observe that the
augmented points zi are at geometrically increas-
ing distances from the original graph GX (which
itself induces a metric with bounded doubling di-
mension), and hence the metric induced by the aug-
mented graph GZ also has constant doubling di-
mension.

It follows that we have constructed an instance of
the TSPN in a metric with constant doubling dimension,
whose regions are either singletons or disjoint balls of
the form BZ(zi, Λ

i) = {xi, yi, zi}, as required. 2
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