Improve Query Performance by Clustering XML Documents

Wang Lian David W. Cheung

Nikos Mamoulis Siu-Ming Yiu

Department of Computer Science and Information Systems

University of Hong Kong, Pokfulam Road, Hong Kong

ABSTRACT

Using RDBMS to store XML documents is an established
trend. However, it fragments the documents into tables
and usually requires many joins to answer a query. This
may seriously degrade query performance. It was observed
that clustering XML documents intelligently based on
their structures will alleviate the problem. This is because
it only needs to access the cluster(s) of documents that
satisfy the query rather than access the whole database.
To achieve a good clustering, we propose a computation-
ally inexpensive distance metric. It can be integrated with
many available clustering algorithms. Our experiment
with real data such as the DBLP database shows that
our approach can improve query performance significantly.

Keywords: XML, Clustering, Query.

1. INTRODUCTION

With XML becoming a standard for information exchange,
there is an increasing amount of information in XML for-
mat that needs to be queried and analyzed efficiently. Be-
sides flat file storage, object-oriented databases and na-
tive XML databases, developers have been engaged to use
the more mature relational database technology to manage
XML data. As a result, a number of specialized techniques
have been developed, for processing queries that conform
to XML languages, such as XPath and XQuery.

A common strategy of using RDBMS to store XML doc-
uments [2][3] [13] is to decompose the structural part of the
documents into relational tables that capture the relative
position of the various elements. Queries are processed by
joining these tables, in order to bring back structural (e.g.,
parent/child) relationships. As this approach decomposes
documents and inserts the data into a set of tables, it nev-
ertheless introduces excessive fragmentation. This creates
a serious negative impact in query evaluation: the number
of joins required to process a path expression is generally
unacceptably large.

One observation follows this issue : if the collection con-
sists of XML documents with different structures, then
the fragmentation problem can be alleviated by clustering
the documents according to their structural characteristics
and storing each cluster in a different set of tables. As a
consequence, a query only needs to access the cluster(s)
of documents that may satisfy it rather than the whole
database.

XML documents have diverse types of structural in-

formation (apart from edges) in different refinement lev-
els, e.g., attribute/element labels, edges, paths, twigs,
etc. When defining the distance between two documents,
choosing a simple structural component (e.g., label, edge)
as a basis would make clustering fast. On the other hand,
a metric based on highly refined components could make
it less efficient and hence impractical. We have observed
that using directed edges to define a distance between two
XML documents is a good choice. More importantly, this
metric can be applied not only on documents but also be-
tween sets of documents. Our contributions verified by
experiments on real data can be summarized as follows:
1. We show that, if a collection of XML documents con-
sists of documents of different structures, a proper cluster-
ing would alleviate the fragmentation problem.
2. We propose a computationally inexpensive distance
metric to be defined between documents and between sets
of documents, which can be easily embedded in many avail-
able clustering algorithms.

The rest of the paper is organized as follows. Section
1.1 discusses related work. Section 2 motivates the study
and Section 3 describes the proposed distance metric
and a case in which the metric is integrated with a
representative clustering algorithms. Section 4 shows
how to use MDL to measure the quality of clusters. In
Section 5, the applicability of the proposed methodology
is evaulated on real XML document collections. Finally,
Section 6 concludes the paper.

1.1 Related Work

XML data can be stored in a file system [1], an object-
oriented database [7], a relational database [2], or a na-
tive XML database system [10]. Using a file system is a
straightforward option, which however does not support ef-
ficient query processing. Object-oriented database systems
allow a flexible storage system of XML files and support
complicated query processing. Native XML databases try
to exploit features of semi-structured data model in storing
XML files. Nevertheless, both object-oriented and native
XML database systems are neither mature nor efficient
enough for industry adoption. On the other hand, even
though relational database technology is not well-tuned
for semi-structured data, it is regarded as a practical ap-
proach because of its wide deployment in the commercial
world.

Many XML database applications decompose the data

and store them in relational tables that capture the struc-
tural relationships. A widely used solution is to encode
the relative positions of the nodes in the documents using
a preorder traverse and store the order in tables arranged
under the node labels [2] [3]. Thus, a parent/child queries
a/b (or ancestor/descendant queries a//b) can be evalu-
ated by first selecting the nodes labelled a and b into two
lists and then traverse the two lists in a sort-merge join
fashion verifying the structural relationships between the
elements. A complex query containing path or twig ex-
pressions can be evaluated by decomposing it into a set of
binary joins and then merging the partial results. Obvi-
ously, fragmentation is a common problem which greatly
affect the query performance in these approaches. Our
method is to use clustering to alleviate the fragmentation
problem so as to answer queries more efficiently.

Clustering is a well studied subject. Recently, Nierman
and Jagadish [11] proposed a method to cluster XML
documents using the “edit distance” between tree struc-
tures. However, computing the edit distance between two
documents has a complexity of O(|A|-|B|), where |A| and
| B| are their respective sizes [11]. The high computation
cost makes this approach unpractical for large data set.
In our approach, we cluster graph summaries on directed
edges which are much smaller than the original documents
and we define a distance metric which is inexpensive
to compute. Furthermore, an XML document can be
an arbitrary graph rather than a tree because of the
explicit element references. For example, both id/idref
attribute and XLink construct can create a cross-elements
reference). Our methodology can be applied to arbitrary
XML graphs, not only trees.

2. MOTIVATION

In order to store XML documents with relational
databases, XML documents need to be flattened and frag-
mented before they are stored in tables. There are sev-
eral methods for mapping XML documents to relational
tables. Each one has a different technique for rewriting
semi-structural queries to SQL. To simplify our discussion,
we use the mapping and rewriting method in [2], where two
tables ELEMENTS and TEXTS are designed to store
XML documents.'. ELEMENTS table is used to record
all the information of elements, including their document
numbers, begin and end positions, and levels in the docu-
ment tree. TEXTS table is used to record all text values,
including their document numbers, positions, and levels in
the document tree.

In Figure 1, there are four XML documents conform to
the following DTD:

<IELEMENT A (B,C)* >
<\ELEMENT D (B,C,E)* >

Suppose the documents in Figure 1 are partitioned into

two clusters such that Cluster: includes docl and doc2,

1Since the problem is on clustering XML documents, the
choice of mapping and rewriting method does not affect the
generality of our result.

docl: <A>bv1<C>cv1</C>

doc2: <A>hv2<C>cv2</C><C>cv3</C>

doc3: <D>hbv3<C>cv4</C><E>evi</E></D>

doc4: <D>hv4<C>cv5</C><C>cv6</C><E>ev2</E></D>

Figure 1: Documents

while Clusters includes doc3 and doc4. The Clustered
Schema contains four tables: ELEMENTS:, TEXT S,
ELEMENTS, and TEXTS>, where ELEMENTS,
and TEXTS: are used for documents in Clusters;
and ELEMENTS; and TEXTS, are used for docu-
ments in Clusters. Obviously, the Original Schema on
these four documents contains two tables ELEMENTS
and TEXTS, where ELEMENTS is the union of
ELEMENTS: and ELEMENTS>; TEXTS is the union
of TEXTS, and TEXTS.

Suppose a queries /A/C[contains(., “cvl”)] is submit-
ted to both the Original Schema and Clustered Schema.
The query is to find out all the elements C, which are the
children of A and their values contain the string “cv1”.

In the Original Schema, we need a self join on
ELEMENTS and a join between ELEMENTS and
TEXTS. In the Clustered Schema, we need a self join
on ELEMENTS: and a join between ELEMENTS:
and TEXTS:. It is clear that the joins between (1)
ELEMENTS, and ELEMENTS,; (2) ELEMENTS;
and TEXTS>; (3) ELEMENTS, and TEXTS: are
no longer needed. Hence, the cost of processing the
query on the Clustered Schema is much smaller than on
the Original Schema. This illustrates the advantage of
partitioning the documents according to their structure
in query processing.

3. CLUSTERING OF XML DOCUMENTS

In this section, we first define a simple and efficient dis-
tance metric based on directed edges of XML documents
and then show how it can be integrated with an available
algorithm to perform clustering on XML documents.

3.1 Distance between XML Documents

As conventional clustering techniques do not have spe-
cial emphasis on semi-structured data, what would be a
proper approach for clustering semi-structured data? It
is straightforward to treat the elements of a document as
attributes and convert the document into a transaction of
binary attributes. Jaccard Coeflicient or Cosine function,
among various other distance measures, can be used to
measure the distance between documents. However, many
structurally different documents have almost the same set
of elements, for example A/B is entirely different from
B/A although they have the same elements.

Since XML documents can often be modelled as node-
labelled trees, another option would be to use tree distance
[15] to measure their distances. In [11], besides node rela-
belling, insertion and deletion, the tree distance method is
refined to allow insertion and deletion of sub-trees, which

makes it feasible to calculate the distance of document
trees. However, the cost of computing the tree distance
between two documents is expensive (quadratic to their
sizes), rendering it unsuitable for large collection of doc-
uments. In the following, we introduce the concept of e-
graph which provides a simple encoding of the edge infor-
mation in an XML document for the purpose of introduc-
ing an efficient distance metric.

Definition 1 Given a set of XML documents C, the edge
graph (or e-graph) of C, eg(C) = (N, E), is a directed
graph such that N is the set of all the elements and at-
tributes in the documents in C and (a,b) € E if and only
if a is a parent element of element b or b is an attribute of
element a in some document in C.

Note that, in the same manner, a path expression ¢ can
also be viewed as a graph (NN, E), where N is the set of
elements or attributes in ¢ and F is the set of element-
subelement or element-attribute relationships in ¢q. Given
a path expression ¢ which has answer in an XML document
X, the directed graph representing g is always a subgraph
in the e-graph of X. For simplicity, we will denote the
graph of a path expression g also by g.

Theorem 1 Given a set of XML documents C, if a path
expression q has answer in some document in C, then ¢
s a subgraph of eg(C). Also, eg(C) is the minimal graph
that has this property.

The minimality property of eg(C) can be derived from the
observation that any proper subgraph of eg(C) will not
contain all path expressions that can be answered by any
document in C. Thus the e-graph of C is a “compact”
representation of the documents in C with respect to the
path expressions. Note that the construction of eg(C) can
be done efficiently by a single scan of the documents in C.

Corollary 1 Given two sets of XML documents Ci and
Cs, if a path ezxpression q has answer in a document of C1
and a document of Ca, then q is a subgraph of both eg(Ch)
and eg(C2).

It follows from Corollary 1 that if the edge graphs of two
sets of documents have few overlapping edges, then there
are very few path expressions that can be answered by
both of them. Hence, it is reasonable to store them in
separate sets of tables. The following distance metric is
derived from this observation.

Definition 2 For two XML documents Ci1 and
Ca, the distance between them is defined by
; c c ;
dist(C1,C2) =1 — maalﬁég(lo)?)iﬂ(egfgjlz)\} , where |eg(Cy)| s
the number of edges in eg(C;),i = 1,2, and eg(C1)Neg(C>)

18 the set of common edges of eg(C1) and eg(C-).

It is straightforward to show that dist(Cq,C2) is a
metric [4]. If the number of common element-subelement
relationships between C; and C: is large, the distance
between their e-graphs will be small, and vice versa. It
is important to point out here that using e-graphs allows
the application of the same metric on documents as
well as sets of documents, a property that simplifies the

clustering process.

3.2 A Framework for Clustering XML Documents
Employing the distance metric in Definition 2, we perform
XML clustering in two steps:

Step 1. Extract and encode edge information in e-graphs:
this step scans the documents, computes their e-graphs
and encodes them in a data structure.

Step 2. Perform clustering on the encoded e-graphs: this
step applies a suitable clustering algorithm on the data
structue to generate the clusters.

Initially, the e-graphs of all the documents are computed
and stored in a structure called EG. An e-graph can be
represented by a bit string which encodes the edges in the
graph. Each entry in EG has two information fields: (a)
a bit string representing the edges of an e-graph and (b) a
set containing the ids of all the documents whose e-graphs
are represented by the bit string.

In general many documents may share the same e-graph,
therefore the size of EG may be much smaller than the
total number of documents. In the extreme case where the
size of EG is very large, general approach such as sampling
can be used.

Once EG is computed, clustering is performed on the bit
strings. Therefore, we transform the problem of clustering
XML documents into clustering a smaller set of bit strings,
which is efficient and scalable.

In our framework, we have separated the encoding
and extraction of the structural information from the
clustering part. So that any appropriate algorithm could
be used in the clustering of the e-graphs. In the following,
we will explain how we apply a representative clustering
algorithm DBSCAN [6], on the e-graphs.

3.3 Integration with DBSCAN

DBSCAN [6] is a density based clustering algorithm.
There are two global parameters: Eps, which is the ra-
dius of a neighborhood; MinPts, which is the minimum
number of points that a neighborhood should have in or-
der that the point under consideration, i.e., the center of
the neighborhood is considered as a Core Object.

NEps(p) stands for the set of neighbors (objects) of p
inside its neighborhood defined by Eps. A point p is di-
rectly density-reachable from a point g if (1) p belongs
to NEps(q) and (2) |NEps(q)| >= MinPts.

A point p is density-reachable from a point g if there
is a chain of points p1, ..., Pn, P1 = q, pn = p such that
pi + 1 is directly density-reachable from p; for all i.

In DBSCAN, there are three possible labels for a point:
unclassified, classified and noise. If a point is labelled as
unclassified, it will be used to generate possible cluster. If
a point is labelled as classified, then it already belongs to
a cluster and need not be processed further. If a point is
labelled as noise, itself can not be used to generate possible
cluster; however it can be swallowed by a cluster generated
from an unclassified point later in the processing.

The pseudocode of the integration with DBSCAN is
shown in Figure 2.

The first two lines extract edge graphs from document

/*Input X: a set of XML documents*/

/*Input Eps: radius of a neighborhood */

/*Input MinPts: minimum number of points in a dense neighborhood */
/*Output C': a set of clusters;*/

1) EG=computing_EG(X);

2) DIST=compute_distance(EG);

3) neighbors=compute_neighbors(DIST, EG, Eps);

4) fori=1to |Eg| {

5) if (cluster-status(EG;)==unclassifed)

6) c.=get-all-density-reachable-points(EG; Eps, MinPts,neighbors);
7) if (corepoint(EG;)) //return true if EG; is a core point

8) C=CUc,

9) change-cluster-status(c., classified)
10) else

11) change-cluster-status(EG;, noise)
12) }

Figure 2: Integration with DBSCAN

set and compute the distance between each pair of edge
graphs. Then compute_neighbors (line 3) is called to main-
tain a list of neighbors for each e-graph. The loop (lines
4-12) performs the clustering. It works as follows: 1) ar-
bitrarily select a point (e-graph) EG; which is unclassified
(line 5); 2) retrieve all points that are density-reachable
from EG; (line 6); 3) if EG; is a core point, then all the
retrieved points forming a cluster (line 8) and are labelled
as classified (line 9); 4) otherwise, no points are density-
reachable from EG; and it is labelled as noise, then go to
line 4 to process the next point.

Complexity: Suppose m is the number of distinct
e-graphs in EG. In Figure 2, we need to find out all
the neighbors for each XML documents and this can be
done in O(m?). During the clustering, the time used is to
traverse all points and check their neighbors. Therefore
the total time cost is bounded by O(m?). Since we need
to store the distances of all pairs of e-graphs in line 2,
and maintain the neighbors for each point, the total space
cost is about O(m?).

3.4 Query Rewriting

Most methods for managing XML data in relational
tables provide some query rewriting mechanisms to
transform a semi-structured query like XQuery to SQL.
In our approach, data is partitioned into clusters. There-
fore we need to identify which cluster(s) would likely
have answers for a given query before using available
rewriting mechanism. This is straightforward, given a
query, if the e-graph of the documents in the cluster
contains the query, the associated cluster may have an-
swers for the query and hence should be evaluated against.

4. EVALUATIING THE QUALITY OF
CLUSTERS WITH MDL

Different clustering algorithms, or even the same clustering

algorithm(with different parameters) can produce clusters
of different types. We need some measurements to evalu-
ate the quality of clusters. Here we apply the Minimum
Description Length (MDL) Principle [12] to quanti-
tatively measure the different clustering results. MDL was
originally designed to determine good data models. The
basic idea is: for each model, the total number of bits re-
quired to encode both the data, and the model itself is
calculated; the model requiring the least number of bits is
considered to be the best.

Given a set of clusters found by an algorithm, a DTD is
derived [8] for each cluster such that all documents in the
cluster satisfy it. Then we sum the total number of bits
required to encode both this DTD, and all the documents
in the corresponding cluster. Finally, the total number of
bits required for each cluster is aggregated to get the total
cost of the given set of clusters. The lower the total cost,
the higher the quality of the clusters.

The encoding method we use is provided by [8].
Here we show the method with a simple example,
(please refer to [8] for more detail). Given a DTD as
<IELEMENT a(b|c|d|e)*) >, the string “(b|c|d|e)*",
which contains 8 different characters, has a length of
10 in terms of characters. The number of bits needed
to encode this string is 10*log8. Given an expression
such as “bbdce”, we can encode it in the following way:
first, set “*” to be 5, which means that the expression is
repeated 5 times. Then each time, we need to indicate
which character is chosen, because log4 bits are necessary
to encoding “b,c,d,e”, the encoded string is “5 00 00 10
01 117, the first two “00” stands for “b”, the last “11”
stands for “e”. Of course, a DTD can be composed by
a set of definitions of elements, in this case, we can just
sum them to get the total cost.

5. QUERY ENHANCEMENT ON REAL
DATA

In this section, we investigate whether a Clustered Schema
brings in better query performance than the Original
Schema. The data set we use is the XML DBLP records
database [5], which contains about 300,000 XML docu-
ments composed by 36 elements. All documents contain
elements such as author, title and year. Overlap among
documents’ elements is a common scenario. Experiments
are carried out in a computer with 4 Intel Pentium 3 Xeon
T00MHZ processors and 4G memory running Solaris 8 In-
tel Edition. We limit the memory usage to 100M and use
only one processor.

We defined five types of queries based on the structure
of existing documents. The five query classes are (the first
three are written in XPath format):

Q1 : JA1/As/--- /Ag; all possible absolute XPaths
in the documents.

Q2: /A1/As/--- [|A[text()="“value’]; same as Q1
except that an additional condition is added to make
the text value of the last element equals to “value”,
which is a string randomly selected from the data.

Q3: /A1/As/ - -- Ak [contains(.,“substring”)]; same
as Q1 except that the additional condition is to make
a randomly picked “substring” contained in the text
value of the last element.

Q4 : find the titles of articles published in the VLDB
Journal in 1999.

Q5 : find the names of authors which have at least
one journal article and one conference paper.

Because path expressions are the basic units in com-
posing XML queries, we use the first three queries to test
the performance of processing path expressions. Q4 and
Q5 are defined to test the joins among path expressions.
The RDBMS we used is the Oracle 8i Enterprise Edition
release 8.1.5. All the above five queries are translated
to SQL and executed on the RDBMS. We also use the
mapping technique in [13] and the schema is denoted
by SM1. We use the mapping technique in [2] and the
schema derived is denoted by SM2. DBSCAN are used to
generate the clusters and the Clustered Schema are built
based on the found clusters.

5.1 Query Improvement on the Clustered Schema
by Using DBSCAN

To find a proper value of input parameters, we have done
experiments with different setting of Eps and MinPts,
where Eps=0.2,0.25, 0.3, 0.35, 0.4 and MinPts=100, 200,
500. In all the results, we find that when Eps=0.2 and
MinPts=200, the six resulting clusters lead to a minimal
encoding cost using MDL. Therefore they are used to gen-
erate the Clustered Schema. Figures 3 shows the query
performance speed-up when the Original Schema is com-
pared with the Clustered Schema.

Speed Up With Clustering @msMm1
mSM2

Q1 Q2 Q3 Q4 Qs
Query Type

Figure 3: Speed up Ratios for Queries

Each distinct path expression conforming to Q1, Q2,
and Q3 in the documents is submitted as a query to the
Original Schema and the Clustered Schema. The speed-up
ratios for each query type are averaged, the improvement
on path expressions is quite substantial. We should men-
tion here that the speed-up ratios of the distinct path ex-
pressions in Q1 in fact ranges from 1.4 to 44, because some
paths may need to join more tables than the others. The
improvement for Q4 and Q5 in Figure 3 is smaller. Com-
paring the queries in Q4 and Q5 with Q1, it can be seen
that the path expressions in Q4 and Q5 involve less joins
than those of Q1. This explains why the improvements for
Q4 and Q5 are less impressive.

It is clear the query processing cost drops dramatically
in Clustered Schemas, since many unnecessary joins
between irrelevant parts of the original tables are avoided.

5.2 More Experiments on Real Data

We have also carried out the same experiments of Q1 to
Qb on StackTree [2] and PathStack [3], Figure 4 show the
results. It is clear the improvements is similar to what
we have seen in Figure 3, which again demonstrates that
clustering is a good choice to improve query performance.

Speed Up With Clustering O StackTree
B PathStack

Q1 Q2 Q3 Q4 Q5
Query Type

Figure 4: Speed up Ratios for Queries

5.3 Comparison with Algorithm Based on Tree-
distance
As well as studying the performance of DBSCAN, we also
compared it with the clustering algorithm ESSX, proposed
in [11]. ESSX hierarchically merges clusters of documents
using the tree-edit distance. At each step of the algorithm,
the pair of clusters with the smallest average distance be-
tween their documents is merged. The edit distance be-
tween two trees is defined as the minimum cost required to
transform one tree into the other. This cost is computed
by summing the cost of the primitive operations involved
in the transformation (i.e., node insertion, node deletion,
node renaming, subtree insertion, and subtree deletion).
Since the cost of computing tree distance on XML docu-
ments is very high, we only ran ESSX on a sample of 40
documents randomly selected from the DBLP database. 2
In the 40 documents, there is a natural partitioning:
10 documents belong to proceedings; 10 to phdthesis;
10 to journals; 6 to books; and 4 to incollections. By
setting the number of clusters k£ to 5, DBSCAN discov-
ered five clusters that match exactly the original parti-
tioning. When running ESSX, the cluster number was
set to 5, nd the cost of node relabelling, insertion and
deletion were all set to 1, and the cost of subtree inser-
tion and deletion, ranged from 0 to 10. Interestingly, the
clustering results were the same for all the values in this
range. However, the clusters generated were very different
from the original partitioning. One of the five clusters con-
tained 30 documents from proceedings, phdthesis, books
and ¢ncollections. The remaining 10 journal documents
were distributed into 4 clusters, A, B, C' and D, with

240 documents is already larger than the dataset used in [11],
which contains only 20.

|A| = |B| = |C| =1, and |D| = 7. We found that none
of the documents in D contained the tag cite, while docu-
ments in A, B, C contained many instances of cite as tree
leaf. Therefore, it is impossible to use a subtree editing
operation to convert a document in D to a document in
A, B, or C. Ounly node insertion or deletion can be used to
convert the source tree to the target tree in this case. This
explains why the different cost parameters of subtree edit-
ing operation has no effect in the clustering. Since node
insertion has a positive cost associated with it, the differ-
ence in the number of cite tags between two documents
would affect the edit distance between them. Because of
this, the journal documents form 4 clusters, because some
of them have many more cites than the others.

The time required for ESSX to cluster the 40 documents
is 530 seconds, whereas DBSCAN runs in less than 2 sec-
onds, including the I/O cost. This demonstrates that DB-
SACN is not only more effective, but also more efficient
than ESSX at performing clustering.

After producing the DTDs on the clusters discovered by
DBSACN and ESSX, we use MDL to measure the encod-
ing costs and notice that: the cost of encoding DBSACN’s
DTD is 302 bits less than that of ESSX. Similarly, to en-
code the documents, ESSX requires an additional 60 bits.
MDL shows that the quality of clusters given by DBSACN
is good.

6. CONCLUSION

Excessive fragmentation of XML documents into relational
tables may greatly degrade the query performance. Our
observation is: if the collection consists of XML documents
with different structures, then the fragmentation problem
can be alleviated by clustering the documents according
to their structural characteristics and storing each cluster
in a different set of tables. Based on this observation, we
proposed a simple and effective distance metric which can
be easily integrated into many available clustering algo-
rithms.

Our goal is not to design new clustering algorithm or ad-
vocated any new schema design method for storing XML
documents. However, an inexpensive and effective distance
metric is a necessary factor if a clustering is to be per-
formed on collections of XML documents to produce useful
partitions. Also, we have demonstrated that it is beneficial
to identify clusters by structure and they can improve the
performance of the query processing.

References

[1] S. Abiteboul, S. Cluet, T. Milo, “Querying and Up-
dating the File,” Proc. 19th Int’l Conf. Very
Large Data Bases, pp. 73-84, Morgan Kaufmann,
1993.

[2] S. Al-Khalifa, HV Jagadish, N. Koudas, JM Pa-
tel, D. Srivastava, and Y. Wu. “Structural Joins: A
Primitive for Efficient XML Query Pattern Match-
ing,” Proceedings of International Conference
on Data Engineering. 2002.

(3]

[4]

[6]

[7
(8]

[10]

[11]

[12]

[13]

[14]

[15]

N. Bruno, N. Koudas, and D. Srivastava. Holistic
Twig Joins: Optimal XML Pattern Matching. Proc.
of ACM SIGMOD Conf. 2002.

H. Bunke and K. Shearer, “A graph distance metric
based on the maximal common subgraph,” Pattern
Recognition Letters, vol. 19, no. 3, pp. 255-259,
1998.

DBLP XML records,
http://www.acm.org/sigmod/dblp/db/index.html,
February 2001.

M. Ester, H. Kriegel, J. Sander and X. Xu, “A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise,” Proc. Sec-
ond Int’l Conf. Knowledge Discovery and Data
Mining, pp. 226-231, 1996.

Excelon, http://www.odi.com/excelon.

M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri,
and K. Shim XTRACT: A System for Extracting
Document Type Descriptors from XML Documents.
Proc. of ACM SIGMOD Conf. Pages 165-176.
USA. 2000.

R. Kaushik P. Shenoy P. Bohannon and E. Gudes,
“Exploiting Local Similarity for Indexing Paths in
Graph-Structured Data,” Proc. 18th Int’l Conf.
Data Engineering, 2002.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass and
J. Widom, “Lore: A Database Management System
for Semistructured Data,” SIGMOD Record, vol.
26(3), pp. 54-66, September 1997.

A. Nierman and H.V. Jagadish, “Evaluating Struc-
tural Similarity in XML Documents,” Proc. Fifth
Int’l Workshop on the Web and Databases,
June 2002.

J.Rissanen. Modeling by Shortest Data Description.
Automatica. Vol 14, Pages 465-471. 1978.

T. Shimura, M. Yoshikawa, S. Uemura, “Storage and
Retrieval of XML Documents using Object-Relational
Databases,” Proc. 10th Int’l Conf. Database
and Expert Systems Applications, pp. 206-217,
Springer-Verlag, 1999.

O. Zamir, O. Etzioni, O. Madani and R. M. Karp,
“Fast and Intuitive Clustering of Web Documents,”
Proc. Second Int’l Conf. Knowledge Discovery
and Data Mining, pp. 287-290, 1997.

K. Zhang and D. Shasha, “Simple Fast Algorithms
for the Editing Distance between Trees and Related
Problems,” SIAM Journal of Computing, vol.
18(6) pp. 1245-1262, 1989.

