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ABSTRACT
We introduce in this paper a shadow detection method for
vehicles in traffic video sequences. Our method approxi-
mates the boundary between vehicles and their associated
shadows by one or more straight lines. These lines are
located in the image by exploiting both local information
(e.g. statistics in intensity differences) and global informa-
tion (e.g. principal edge directions). The proposed method
does not assume a particular lighting condition, and re-
quires no human interaction nor parameter training. Ex-
periments on practical real-world traffic video sequences
demonstrate that our method is simple, robust and efficient
under traffic scenes with different lighting conditions. Ac-
curate positioning of target vehicles is thus achieved even
in the presence of cast shadows.
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1 Introduction

In traffic surveillance applications [1, 2], object detection
and segmentation are two fundamental steps in video anal-
ysis tasks such as vehicle tracking and classification. Back-
ground subtraction and its variants are a common approach
for these steps [3, 4]. However, shadows which cause illu-
mination distortions on the background, are often extracted
with their associated moving objects in background sub-
traction. This may lead to problems such as detected object
shape distortion and object merging, which introduce inac-
curacies in object location and recognition. Over the past
few decades, different approaches have been proposed in
the literature for shadow detection. Comparisons of vari-
ous approaches are reported in [5, 6].

Most of the existing shadow detection methods ex-
ploit information derived from pixel appearance changes in
the presence of cast shadows. They can be classified into
model-based and non-model-based methods [5]. By as-
suming a Lambertian planar surface locally, model-based
methods rely on the notion that the luminance ratio (i.e.
the ratio of the intensity value of a pixel when it is under
shadow to that when it is under illumination) is a constant.
These methods [7, 8, 9, 10] use a linear transformation
to describe the reduction of pixel intensity in shadow re-

gions. Current frame pixels with illumination reductions
that follow the linear model are then identified as probable
shadow pixels. In [7, 8], the coefficients of the linear trans-
formation are statistically estimated over a spatial region
in a video sequence. A supervised classification algorithm
is then applied to perform shadow detection on a pixel by
pixel basis. This approach is efficient in the shadow detec-
tion step. However, it requires time-consuming and tedious
manual segmentation and labeling procedures in the train-
ing phase, which make it impractical for real applications.
In addition, the explicit computation of the transformation
coefficients essentially maps a specific image intensity to
the shadowed state of a pixel, which makes this approach
dependent on particular illumination conditions. Besides,
even for the same scene, image intensity over a shadow
region may change under various circumstances. For ex-
ample, the shadow cast by a big vehicle like a bus can be
slightly darker than that of a small vehicle in real-world
traffic scenes. The scene illumination also changes tem-
porally when a cloud blocks the sun. The approaches in
[9, 10] tackle the above problems by adaptively updating
the linear transformation coefficients over time. However,
the correct initialization of these coefficient values still re-
quires human attention. Further, shadow intensities that fall
outside the modeled value cannot be detected, and darker
object regions with intensity values similar to the modeled
shadow intensity may often be misclassified. Non-model-
based methods, on the other hand, detect shadows by locat-
ing pixels with small chromatic but significant illumination
distortions [3, 11]. Efficient thresholding techniques are
commonly applied on these distortion values for shadow
detection, but it is difficult to determine appropriate thresh-
olds which work well under different situations. As a re-
sult, the literature diverges in the equations for describing
such distortions, and the color space in which these distor-
tions are measured.

We observe that the underlying problem in the exist-
ing methods is to determine a shadow point from the values
of intensity reduction caused by shadowing in a limited lo-
cal neighborhood. This problem is inherently as difficult
as deciding if an isolated patch belongs to a shadow region
by judging only from its color or intensity. On the other
hand, humans perform shadow classification with recogni-
tion of the object casting the shadow and the whole shadow
region. This indicates that object and global information



provide crucial cues for shadow detection. Therefore, we
are motivated to propose a global shadow detection method
by considering the spatial relationship between the object
and its shadow. In essence, we perform shadow detection
by locating the object-shadow boundary, which can be well
approximated by one or more straight lines when the object
is a vehicle or a polyhedra in general. In other words, we
exploit not only information on pixel-wise intensity reduc-
tions, but also their spatial relationships caused by shadow-
ing as demonstrated by empirical experiments [8, 9].

In summary, our approach has the following merits:

1. It is non-model-based, and does not require any hu-
man interaction or parameter training as in other ap-
proaches [8, 10].

2. It does not make any assumptions about the position
of the light source [9], and thus allows variation of
lighting conditions, scenes, and objects.

3. It is not purely pixel-based and considers global infor-
mation, which is less error-prone.

4. It is simple and efficient as it requires no additional
pre- and post-processing steps.

Section 2 summarizes the observations on which our
approach is based, and our method is described in Section
3. Experimental results are given in Section 4, followed by
conclusion and discussion on future work in Section 5.

2 Observations

Typical images of vehicles in a traffic video sequence
along with their cast shadows are shown in fig. 1. The
following observations are made:

Shadow properties

1. Shadow regions are darker. In RGB space, intensities
in all three channels are reduced [7, 8, 12].

2. Shadow regions represent the same background sur-
face under a reduced illumination, and share similar
textures to the background.

Target object properties

1. The object-shadow boundary can be well approxi-
mated by one or more straight lines. These lines usu-
ally follow one of the segments of the vehicle bound-
ary. This is illustrated in fig. 1.

2. The directions of the edges in an edge map are domi-
nated by the directions of vehicle boundary segments,
which provide good estimates for the directions of the
object-shadow boundary segments.

The next section describes in detail our shadow de-
tection method, which exploits these properties in locating
the object-shadow boundary using a sliding window. In our
discussion, we assume there is only one shadow cast by a
vehicle in a traffic scene under a single light-source.

(a) (b)

(c) (d)

Figure 1. Example images of vehicles with their cast
shadows, and their corresponding edge maps. The object-
shadow boundary can in general be approximated by one or
more straight lines, which are indicated by the thick black
lines in the images. The directions of these lines can often
be determined from the edge map.

3 Shadow detection method

3.1 Moving object extraction

We use a Gaussian mixture background model [4] in RGB
space for modeling the background scene. Background
subtraction is applied on current frames to identify fore-
ground pixels. After noise removal with morphological fil-
tering, each region of connected foreground pixels of con-
siderable size gives a binary object maskM .

3.2 Object-shadow boundary location

In the followings, we attempt to detect the shadow re-
gion by locating the object-shadow boundary onM . This
boundary is approximated by a lineL : r=x cos θ+y sin θ,
wherer is the distance of the line L along its normal di-
rection from the centroidc of M to this line, andθ is the
angle that the normal of the line L makes with the positive
x-axis. This is illustrated in fig. 2(b). Referring to the fig-
ure, pixels on one side ofL shaded in deep gray are labeled
asobject, and those on the other side shaded in light gray
are labeled asshadow. The assignment of these labels is
discussed at the end of this section. We assume temporar-
ily that a shadow region is present inM , which is verified
later (to be described in Section 3.3).

Assuming object property 2 in Section 2 holds, we de-
duceθ by first performing Canny edge detection for every
pixel p ∈ M . Hough transform is then applied on the re-
sultant edge map, and the cells of the accumulator array in
radius-angle space are incremented, by taking into account
the local intensity gradientsdy anddx of individual edge
pixels. Cell counts with the same angle at different radius
are summed. The three most dominated angle directions
θ = arctan dy

dx ranging from0◦ to 360◦ (wrapped around



(a) (b) (c) (d) (e)

Figure 2. Locating the object-shadow boundary: (a) shadow detection region in the original frame; (b) an object mask obtained
by background subtraction. The object-shadow boundary is approximated by a lineL with parametersr andθ, 2w is the width
of the sliding window used in locatingL; (c), (d) and (e) the plots for the variance in image-background intensity differences
within the sliding windowσ2

w againstr for three different values ofθ.

at180◦) are determined by selecting angles with the highest
sum of cell counts.

Next, we search forr along each of the three direc-
tions θ with a small sliding window of width2w, where
w is a fixed perpendicular distance fromL as shown in
fig. 2(b). The variance of image-background intensity dif-
ferenceσ2

w for pixelsp ∈ M within the sliding window is
computed. Fig. 2(c), 2(d), and 2(e) plot the values ofσ2

w

againstr for different values ofθ.
We expect to observe characteristic patterns in the

plots whenθ is chosen forL at the desired direction in
separating the object and the shadow region. Consider:

Case 1: The object region is rich in texture
From shadow property 2 in Section 2, a shadow region
shares similar texture with the background, while a tex-
tured object usually has a much larger texture difference
from the background.σ2

w in the shadow region tends to be
small, and that in the object region tends to be high and
fluctuates to reflect the object textures. This typical curve is
shown in fig. 2(c), in which the object-shadow boundary is
located at a particular value ofr with a large gradient ofσ2

w.

Case 2: The object region is plain in texture
In both the shadow and the object region,σ2

w is expected to
be comparably small. Yet, the image-background intensity
differences in the shadow region should be different from
those in the object region in general. Thus, as the sliding
window is moved to cover the object-shadow boundary,
σ2

w is expected to attain its maximum value.

Note that if the texture difference and intensity dif-
ference are similar in both the object region and shadow
region, our method would fail, but it would be equally dif-
ficult for humans to identify the object-shadow boundary.

Whenθ is chosen at a value such thatL does not align
with the actual object-shadow boundary in the image, we
expect the plot ofσ2

w againstr to have large random varia-
tions. Fig. 2(d) and 2(e) illustrate this situation.

After computing the values ofσ2
w againstr for dif-

ferent values ofθ as shown in fig. 2(c), 2(d), and 2(e), the
first local maxima pointli from each end pointei of the
curves are located. We then obtain two segmentseili at
each angleθ, which represent the search range of parame-
ter r of L. Assuming there is only one cast shadow asso-
ciated with the vehicle object, the object-shadow boundary
may occur only in one of these two segments at each an-
gle. To further limit the search range ofr, we select one of
these two segments at each angleθ by computing a score
which is proportional to (1) the magnitude of the difference
in σ2

w betweenei andli, and (2) the number of pixels that
fall in the aforementioned sliding window with intensity
reduction in all RGB channels (shadow property 1, Section
2). The segment with a higher score at each angleθ is se-
lected. The gradient ofσ2

w along these selected segments
at different values ofθ are computed, and the pair of value
of r=rs andθ=θs with the maximum gradient is chosen.
This pair ofθs andrs gives a candidate solution ofL as the
object-shadow boundary.

By considering the segmenteili that contains the can-
didate solution, if the value ofr at ei of this segment is
smaller thanrs, all pixelsp ∈ M on the left side ofL are
labeled asshadow. Otherwise, those on the right side are.
Unlabeled pixelsp ∈ M are labeled asobject.

3.3 Verifying the presence of shadow

Recall that we have assumed in the search forL that a
shadow region is present inM . To verify the validity of
our assumption, two global criteria are evaluated:

1. All pixels on theshadow side ofL should have re-
duced RGB values. (Section 2, shadow property 1)

2. The value of the variance of image-background inten-
sity differences of pixels on theshadow side ofL is
small. This value is smaller than a thresholdT . (Sec-
tion 2, shadow property 2)

A candidate solution which does not satisfy these two
criteria is rejected. If no solution forL is produced under



these criteria, our method decides no shadow exists in the
foreground maskM under consideration.

3.4 Locating multiple lines

In typical traffic scenes, the cast shadow of a vehicle of-
ten appears in an “L-shape”, for example the shadow in
fig. 4(b) of the bus shown in fig. 4(a). In this case, the
object-shadow boundary can be better approximated by
two linesL1 andL2 instead of a single line. After locating
the first lineL1 with the method as described in Section
3.2, the second lineL2 can be located at a different angle
similarly. The lineL2 which corresponds to the greatest
gradient ofσ2

w, and at the same time satisfying the follow-
ing criteria is taken as a solution:

1. All criteria as described in Section 3.3

2. L1 and L2 intersect, and their intersection point is
within the object maskM
If no solution forL2 is produced under these criteria,

our method may determine a single lineL1 is satisfactory
in approximating the object-shadow boundary, or there is
no shadow exists in the foreground maskM under consid-
eration.

4 Experimental results

Fig. 3 and 4 show the shadow detection results of our pro-
posed method for two outdoor traffic video sequencesTraf-
fic1 andTraffic2. These sequences represent different il-
lumination conditions, with visibly darker cast shadows in
theTraffic1 sequence. Without requiring parameter tuning,
our method is able to detect shadow regions shaded in gray
as shown in fig. 3(d),4(d), and 4(h).

The size of parameterw is set to be 5% of the dimen-
sion ofM in our experiment. This window size works well
according to our experimental results, in the sense that it
can capture the large changes in varianceσ2

w when the win-
dow is moving across the object-shadow boundary, with-
out over-smoothing or under-smoothing effects. Also, the
smallest possiblew is desirable because the computation
cost of our method is proportional to the size ofw. The
typical value ofw is 4 pixels for our experimental video
sequences with frame size352 × 288 pixels. In our exper-
iment, the value of the thresholdT that is applied on the
variance of image-background intensity differences of pix-
els on theshadow side is 100. This value is determined
experimentally using 3 different video sequences recorded
from different traffic scenes.

In the sequenceTraffic1 with 18 vehicles in total,
shadows are correctly detected for77.8% of vehicles,
22.2% are incorrectly detected, and0% is not detected. The
statistics for theTraffic2 sequence with 81 vehicles in to-
tal are81.5%, 8.6%, and9.9% respectively. On a 1 GHz
computer with 256 MB memory, this method can process
10–12 frames per second with the processing time propor-
tional to the number of foreground objects present.

(a) (b)

(c) (d)

Figure 3. Shadow detection results inTraffic1 sequence:
(a) original video frame532; (b) foreground regions de-
tected by background subtraction, with probable shadow
pixels having intensity reductions in all RGB channels col-
ored in dark gray; (c) the edge maps. The linesLi located
by our method to approximate the object-shadow boundary
are shown; (d) the refined object masks, with theshadow
region in gray and theobject region in white; Note that the
lorry and the car parking along the road side on the right
are modeled as background, which are not detected.

5 Conclusion and future work

In this paper, we have proposed a robust, simple, and effi-
cient shadow detection method for vehicles in outdoor traf-
fic scenes. Our method considers a global spatial relation-
ship between an object and its shadow, requires no train-
ing nor parameter tuning, and makes no assumption about
the light source. This method is therefore less sensitive to
different scene illumination conditions as demonstrated by
our experimental results.

However, one of the limitations of our method is
that shadow regions of dimensions smaller than the slid-
ing window size2w cannot be detected. Besides, the dif-
ficulty in determining the accurate location of the object-
shadow boundary increases with strong variations in back-
ground texture, together with a very large intensity reduc-
tion caused by shadowing. In this case, the value ofσ2

w may
not be small in the shadow region as expected, making the
characteristic pattern ofσ2

w againstr as discussed in Sec-
tion 3.2 can be unidentifiable. Moreover, we have assumed
in our method that a foreground region containing only a
vehicle and its shadow can be obtained by background sub-
traction, but this assumption may not hold in heavy traffic
conditions where occlusions between vehicles are frequent.

Despite these limitations, our proposed method could
be applied efficiently to practical traffic surveillance sys-



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Shadow detection results inTraffic2 sequence: (a)–(d) images showing a bus in frame181 with an “L-shaped”
shadow. Two lines are computed to approximate the object-shadow boundary; (e)–(h) images showing two vans in frame703.
A single line is sufficient for the approximation; This video sequence shows a scene under a different illumination condition
from that in theTraffic1 sequence as shown in fig. 3. Satisfactory results are obtained without any parameter tuning.

tems monitoring scenes with moderate traffic density and
under a single light source.

Our work can be further improved in the future by
including a local refinement stage for shadow detection af-
ter locating the object-shadow boundary. Intensity statis-
tics and edge information on shadow points as labeled by
L can be collected. A similarity measurement for spatial
connectivity of shadow points can then be defined, and this
allows a shadow region to be detected up to pixel accu-
racy. Furthermore, temporal information can be exploited
during the location ofL, such thatrs andθs can be mod-
eled as a Kalman filter’s states of a tracked vehicle, and
be searched in the neighborhood of their predicted values.
Finally, more work is anticipated for detecting shadows in
foreground masks with multiple vehicles, and for extending
our current method to detect non-vehicle objects.
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