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Abstract— In [1], it has been proposed that channel estimates
in quadratic form can be obtained at the base station by sending
training sequences to the mobiles where the received signals are
forwarded back to the base for channel estimation. In this paper,
we first examine the optimal training sequence design for such
quadratic channel estimation and then analyze the error bound
and statistics of the channel estimates in quadratic form. With
the analytical results, two problems for a multiple-input single-
output (MISO) antenna system in the downlink are constructed
and optimally solved: Power minimization with individual users’
1) worst-case signal-to-interference plus noise ratio (SINR) and 2)
average mean-square-error (MSE) constraints, through optimal
multiuser MISO beamforming and power allocation.

I. INTRODUCTION

Since the works in [2], [3], multiple-input multiple-output
(MIMO) antenna has been well understood as an energy-and-
spectral efficient solution to wireless communications. Recent
studies on the use of MIMO for multiuser channels, e.g., [4]–
[6], further reveals its extraordinary performance by allowing
users to be shared in the spatial domain with the possible use
of channel state information (CSI) at the transmitter.

To realize the benefit, in practice, CSI needs to be acquired
from estimation but is never perfectly known, due to reasons
such as noisy estimation, Doppler spread, and etc. In a time-
division-duplex (TDD) system, the reciprocity of the up and
downlink channels permits the CSI estimates in one link to be
used for another link. However, this is not true for a frequency-
division-duplex (FDD) system in which the two links occupy
different frequency bands. For CSI to be available at the base
station for downlink optimization, common techniques require
the CSI to be estimated at the mobiles in the uplink and fed
back to the base station.

Recently in [1], Dong and Ding showed that for the opti-
mization of most metrics of interest, full CSI is not necessary
and quadratic CSI will be sufficient. They further presented a
downlink quadratic CSI estimation approach, which requires
little processing at the mobiles to simply forward the received
noisy training signals back to the base station for estimation.

In this paper, we approach the quadratic CSI estimation in
[1] by deriving the mean-square-error (MSE) in the estimates
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and then designing the optimal training sequences minimizing
the MSE. Using the optimal quadratic estimation, we analyze
the error bound and statistics of the CSI estimates that allow
us to formulate the robust beamforming design problems with
consideration of the CSI errors. Power minimization problems
subject to individual users’ 1) signal-to-interference plus noise
ratio (SINR) or 2) MSE constraints, in a multiple-input single-
output (MISO) antenna system in the downlink with the aid
of quadratic CSI estimates, are studied and optimally solved.

In the sequel, we shall use the following notations. Vectors
are column vectors and denoted in lower case bold x while
matrices are upper case bold A. The superscripts † and � stand
for, respectively, the conjugate transposition and the Penrose-
Moore pseudo-inversion. tr(A) is the trace of A and I is an
identity matrix. vec(A) produces a column vector by stacking
the entries of A. The notation ⊗ denotes the tensor product.
The complex number field is denoted by C. E[·] represents
the expected value operator while | · | takes the modulus of
a complex number and ‖ · ‖ returns the Frobenius norm of a
vector or matrix. x ∼ CN (m,V) means that x is a vector of
complex Gaussian random variables and has a mean vector of
m with a covariance matrix of V.

II. SYSTEM MODEL

A. MISO Antenna System in Downlink

Consider the mth user of an M -user MISO channel in the
downlink with slow-fading

ŝm = µmh†
m

(
M∑

n=1

tnsn

)
+nm, for m = 1, 2, . . . ,M, (1)

where

h†
m the channel seen at user m (C1×nT );

sm the symbol transmitted with unit power to user m;

tm the precoding vector for user m (CnT ×1);
ŝm the estimated signal for user m;

nm the noise with zero mean and variance of N0;

nT the number of transmit antennas at the base;

µm the real-valued scaling for the received signal.

Clearly, the total transmit power is
∑M

n=1 ‖tn‖2. For detection
purpose, it is required that mobile receiver m has access to
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the knowledge of hm. However, this is not necessary when
the precoding vectors {tn} are designed at the base station
transmitter. In fact, for most metrics of interest, the CSI in
quadratic form, i.e., {h†

nhn} will be sufficient. This is evident
by observing, for instance, the SINR

SINR at user m =
t†m

(
hmh†

m

)
tm∑M

n=1
n �=m

t†n
(
hmh†

m

)
tn + N0

=
t†mQmtm∑M

n=1
n �=m

t†nQmtn + N0

,

(2)

where {Qm � hmh†
m∀m} are the so-called quadratic CSI.

Since many other performance metrics depend on the SINR,
such as bit-error-rate (BER), throughput and etc, the estima-
tion of quadratic CSI covers a wide range of applications.

B. Downlink Quadratic Channel Estimation

In [1], it was proposed to acquire the quadratic CSI by the
following procedure. First of all, the base station transmits a
known training matrix X spanning in nd symbol durations
to a particular mobile user. Upon receiving at the mobile user
(with user index omitted for convenience), the received signals

r† = h†X + n, (3)

will be untouched and directly fed back to the base station in
the uplink channel to give

Y = gr† + W = gh†X + gn† + W (4)

at the base station, where

X the training data sent in the downlink (CnT ×nd);

Y the signals received in the uplink (CnT ×nd );

r† the signals received in the downlink (C1×nd );

h† the downlink channel (C1×nT );

g the corresponding uplink channel (CnT ×1);

n† the downlink noise vector (C1×nd);
W the uplink noise matrix (CnT ×nd).

At the base station, the channel covariance matrix E = gg†

can be easily estimated from the second-order statistics of the
noisy receptions of the known sequences transmitted from the
mobile station, which we assume to have performed perfectly.
A slow-fading scenario is considered such that the channels, h
and g, are static during the channel estimation process. Note
that E is a rank-1 matrix, so g can be found from

g = ejθ
√

tr(E)e (5)

where e is the eigenvector of E and θ ∈ (0, 2π) takes into
account the possible phase ambiguity between g and e.

Define the matrix F � gh ∈ C
nT ×nT , which is crucial in

estimating the quadratic CSI. In the absence of noise, F can
be obtained by

F = YX� = gh†, (6)

in which XX� = I. Furthermore, the downlink quadratic CSI
can be computed by

F†E�F = hg†(gg†)�gh† = hh†. (7)

Since hh† is of rank one, the downlink channel vector can be
further found as

h =
ejφ

tr(E)
F†e, (8)

where φ denotes the possible phase ambiguity. Consequently,
estimation of hh†, or h, reduces to knowing F.

This CSI estimation algorithm, originally proposed in [1],
is attractive because most of the processing and calculations
are performed at the base station, where the CSI estimates are
used to optimize the transmission in the downlink. Nonethe-
less, little is known about the MSE in the CSI estimates, which
will have an implication on the downlink design.

In practice, noise is inevitable, which means that the esti-
mates contain noise. For instance,

F̂ = YX�

= gh† + (gn + W)X�

≡ F + ∆F.

(9)

The noise component, ∆F, will further affect the estimation
of the quadratic CSI to give

F̂†E�F̂ = h†h+ F̂†E�∆F + ∆F†E�F̂ + ∆F†E�∆F︸ ︷︷ ︸,
noise

(10)

and
ejφ

tr(E)
F̂†e = h+

ejφ

tr(E)
∆F†e︸ ︷︷ ︸ .

noise

(11)

The rest of the paper will be devoted to analyze the MSE of
the quadratic CSI estimation method, i.e.,

MSE = E[‖hh† − F̂†E�F̂‖2], (12)

which permits us to develop the optimal training sequences
X for minimal MSE (see Section III), and later allows robust
schemes to be devised based on the quadratic CSI estimates
(see Sections IV & V).

III. OPTIMAL TRAINING DATA DESIGN

A. Derivation of MSE

Here, we derive the MSE (12) of the quadratic CSI esti-
mates, which can be first done by

MSE =E[‖∆F†E�∆F + ∆F†E�F + F†E�∆F‖2]

=E[‖∆F†E�∆F‖2] + 2E[‖∆F†E�F‖2]

=E
[
tr
(
∆F†E�∆F∆F†E�∆F

)]
+ 2E

[
tr
(
∆F†E�FF†E�∆F

)]
.

(13)
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Letting X̃ = X�X�†, then the first term can be evaluated as

E
[
tr
(
∆F†E�∆F∆F†E�∆F

)]
=

E
[
tr
(
(ng† + W†)E�(gn† + W)X̃

(ng† + W†)E�(gn† + W)X̃
)]

, (14)

which can further be expanded as

tr




E
[(

ng†E�gn†X̃ng†E�gn†X̃
)]

+E
[(

ng†E�gn†X̃W†E�WX̃
)]

+E
[(

W†E�WX̃ng†E�gn†X̃
)]

+E
[(

W†E�WX̃W†E�WX̃
)]

+E
[(

ng†E�WX̃W†Egn†X̃
)]

+E
[(

W†Egn†X̃ng†E�WX̃
)]




= tr

(
σ4

n

[
X̃ + tr(X̃)I

]
X̃ +

σ4
w

tr(E)2
[
X̃ + tr(X̃)I

]
X̃

+
2σ2

nσ2
w

tr(E)

[
X̃ + tr(X̃)I

]
X̃
)

. (15)

Finally, we can have the first term equal

E
[
tr
(
∆F†E�∆F∆F†E�∆F

)]
= α

(
tr(X̃)2 + tr(X̃2)

)
, (16)

where α = σ4
n+ σ4

w

tr(E)2 + 2σ2
nσ2

w

tr(E) . On the other hand, the second
term of (13) can be expressed as

E
[
tr
(
∆F†E�FF†E�∆F

)]
= tr

[(
σ2

ng†E�FF†E�g + σ2
wtr(E�FF†E�)

)
X̃
]

= βtr(X̃),
(17)

where β = σ2
ntr(E)e†E�FF†E�e + σ2

wtr(E�FF†E�). As a
result,

MSE = α
(
tr(X̃)2 + tr(X̃2)

)
+ 2βtr(X̃). (18)

Let λ = (λ1, λ2, . . . , λnT
) denote the eigenvalues of XX†.

Then, the eigenvalues of X̃ would be ( 1
λ1

, 1
λ2

, . . . , 1
λnT

) and
(18) becomes

MSE(λ) = α


 nT∑

n=1

1
λ2

n

+

(
nT∑
n=1

1
λn

)2

 + 2β

nT∑
n=1

1
λn

. (19)

B. Minimization of MSE

As to the training signal design, the problem is to minimize
the MSE with a given total training power, i.e.,

min
λ>0

MSE(λ) s.t.
nT∑
n=1

λn ≤ nT nd. (20)

Note that since MSE(λ) is a Schur-Convex function (a sum
of convex function), and λ∗ = ( 1

nT
, 1

nT
, · · · , 1

nT
) � λ for

any λ > 0 and
∑nT

i=1 λi = nT nd, we have

MSE(λ∗) ≤ MSE(λ) ∀λ (21)

and λ∗ is therefore the optimal solution to (20). For details,
we refer the readers to the majorization theory in [7]. This has
also led to the condition for the optimal training sequence X

XX† = ndI. (22)

IV. ERROR BOUND ANALYSIS AND A ROBUST DESIGN

BASED ON WORST-CASE CONSTRAINTS

A. Bounding ‖∆F‖
Based on the quadratic CSI estimates in Section III, we here

proceed to develop a robust-optimal multiuser MISO system
where the users’ worst-case SINRs are ensured. To do so, we
assume that the noise vector and matrix are bounded by

‖n‖ ≤ ρn and ‖W‖ ≤ ρw (23)

and they are uniformly distributed in the regions. The bound
for ‖∆F‖ is important in the CSI quality and we derive this
by first noting that ‖∆F‖ is maximum when

W =
ρwgn√

tr(gn†ng†)
. (24)

On the other hand, we can obtain a bound for

‖gnX�‖2 = tr(gn†X̃ng†)

= tr(n†X̃ng†g)

= tr(E)n†X̃n ≤ tr(E)ρ2
nλX̃,

(25)

where λX̃ is the maximal eigenvalue of X̃ and this bound is
achievable by having n = ρnv in which v is the associated
eigenvector. As a result, w can be written as

W =
ρwev†√

tr(ev†ve†)
. (26)

An upper bound for ∆F can then be derived as

‖∆F‖2 ≤(
1 +

ρw

ρn

√
tr(E)tr (ev†ve†)

)2

tr(E)ρ2
nλX̃ � ρ2

∆F. (27)

B. Robust Design with Worst-Case SINR Constraints

Given the error bound in ∆F, it becomes possible to design
a robust multiuser MISO system. Mathematically, this can be
achieved by including the worse-case SINR constraints of the
users, i.e.,

min
{tm}M

m=1

M∑
m=1

‖tm‖2

s.t. min
∆Fm

tr(Qmtmt†m)∑
n=1
n �=m

tr(Qmtnt†n) + N0

≥ γm,

‖∆Fm‖ ≤ ρ∆Fm
∀m,

(28)

where ∆Fm and ρ∆Fm
follow the same definitions as defined

before, but with the user index m. This problem is challenging
because it requires to evaluate min SINR(∆Fm) which is a
complicated function of ∆Fm. We show it is possible to solve
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(28) optimally by convex optimization with relaxation. This
is done by first rewriting the constraint as

vec(∆F†
m)†vec(T̃mF†

mE�
m)+vec(T̃mF†

mE�
m)†vec(∆F†

m)+

vec(∆F†
m)†vec(E�

m ⊗ T̃m)vec(∆F†
m)+

tr
(
F†

mE�
mFmT̃m

)
− γmN0 ≥ 0, (29)

where T̃m � tmt†m − γm

∑M
n=1
n �=m

tnt†n. Note also

that the error bound on ‖∆Fm‖ can be rewritten as
vec(∆F†

m)†vec(∆F†
m) ≤ ρ2

∆Fm
. This problem can therefore

be optimally solved with rank-relaxation. Due to space limi-
tation, we refer the interested readers to [8] for the details of
the derivation and optimization.

V. STOCHASTIC ANALYSIS AND A ROBUST DESIGN

BASED ON STATISTICAL CONSTRAINTS

A. Derivation of MSE in Data Reception

In this section, based on the CSI estimation in Section III,
we look at the statistics of ∆Fm and use it to derive the
MSE driven by the CSI error. To proceed, it is assumed that
we have the ith column of W, wi ∼ CN (0, σ2

wI) and n ∼
CN (0, σ2

nI). In what follows, ∆Fm = (gmn+W)X�
m is also

a zero-mean matrix. The MSE between the estimated and the
transmitted signals, averaged over data and noise, is given as

MSEm =E[|ŝm − sm|2]

=µ2
mh†

m

(
M∑

n=1

tnt†n

)
hm

− µmh†
mtm − µmt†mhm + 1 + µ2

mσ2
n.

(30)

Then, we can evaluate the MSE by averaging over the channel
estimation error ∆Fm to yield

E∆F[MSEm] = 1 + µ2
mσ2

n + µ2
mE

[
tr

(
M∑

n=1

tnt†nhmh†
m

)

− µmejφm√
tr(Em)

e†m(F̂m − ∆Fm)tm

− µme−jφm√
tr(Em)

t†m(F̂†
m − ∆F†

m)em

]
(31)

which can be further simplified to

E∆F[MSEm] = µ2
mE

[
tr

(
M∑

n=1

tnt†nhmh†
m

)]

− µmejφm√
tr(Em)

e†mF̂mtm − µme−jφm√
tr(Em)

t†mF̂†
mem +1+µ2

mσ2
n,

(32)

where

E[hmh†
m] = E∆F

[
(F̂m − ∆Fm)†E�

m(F̂m − ∆Fm)
]

= F̂†
mE�

mF̂m

+ X�†
mE

[
(gmn†

m + W)†E�
m(gmn†

m + W)
]
X�

m,

(33)

where the second term can be evaluated by noting that

E
[
(gmn†

m + W)†E�
m(gmn†

m + W)
]

=
(

σ2
n +

σ2
w

tr(Em)

)
I. (34)

As a result, the MSE in data reception (32) is given by

E∆F[MSEm] = 1 + µ2
mσ2

n

− µmejφm√
tr(Em)

e†mF̂mtm − µme−jφm√
tr(Em)

t†mF̂†
mem

+µ2
m

M∑
n=1

t†n

[
F̂†

mE�
mF̂m +

(
σ2

n +
σ2

w

tr(Em)

)
X�†

mX�
m

]
tn.

(35)

B. Robust Design with MSE Constraints

An interesting problem is to design the precoder matrix that
ensures the users’ MSE requirements. This can be done by

min
{tn}M

n=1

M∑
n=1

‖tn‖2 s.t. E∆F[MSEm] ≤ εm ∀m, (36)

where {εm} are the required users’ MSEs. Note in (35) and
(36) that {φm} are unimportant in the optimization and they
can be absorbed into {tm}. Therefore, we can, without loss
of generality, set φm = 0 ∀m. An immediate difficulty is that
(36) is non-convex and that the precoder vectors {tm} and
the scaling variables {µm} need to be jointly optimized.

To overcome this, we first note that {µm} are not coupled
among the users and the MSE in (35) is a quadratic function
in µm only. Therefore, the optimal µm in minimizing the
individual MSE for any given {tm} can be readily found as

µm|opt =
1√

tr(Em)
e†mF̂mtm

σ2
n+∑M

n=1 t†n
(
F̂†

mE�
mF̂m +

(
σ2

n + σ2
w

tr(Em)

)
X�†

mX�
m

)
tn

(37)

which gives the optimized average MSE as

E∆F[MSEm]|min = 1−
1

tr(Em) |e†mF̂mtm|2
σ2

n+∑M
n=1 t†n

(
F̂†

mE�
mF̂m +

(
σ2

n + σ2
w

tr(Em)

)
X�†

mX�
m

)
tn

.

(38)
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Further manipulation rewrites the MSE constraint in (36) as

√
1 − εm

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




σn√
1

tr(Gm)e
†
mF̂mt1

...√
1

tr(Gm)e
†
mF̂mtM√(

σ2
n + σ2

w

tr(Gm)

)
X�

mt1

...√
σ2

n + σ2
w

tr(Gm)X
�
mtM




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

≤
√

1
tr(Gm)

e†mF̂mtm.

(39)
The above constraint is a Second-Order Cone Programming
(SOCP) constraint. In addition, the cost function

∑M
n=1 ‖tn‖2

is a convex function, so the problem (36) can be reformulated
to a convex one and the optimal solution can be easily
obtained.

VI. SIMULATION RESULTS

Simulations are conducted to assess the performance of the
proposed robust optimization in Rayleigh flat-fading channels.
For convenience, the notation (M,nT ) is used to denote a
system with M users and nT base station antennas, and we
assume that nd = nT , σw = σn and users have identical data
reception MSE constraints, i.e., εm = ε. The average transmit
signal-to-noise ratio (SNR), defined as 1

σ2
n

∑M
m=1 E[‖tm‖2],

is used as the performance metric while the training SNR,
defined as trace(XX†)

ndσ2
n

, is considered as the channel estimation
cost. In the simulations, the beamforming design based on the
estimated CSI is used as a benchmark and this method will
be considered as the “non-robust design” as the channel error
statistics are not exploited.

Fig. 1 illustrates the normalized MSE in the quadratic
CSI estimates, i.e., ‖hh†−F̂G�F̂‖2

‖h†h‖2 for both systems using
the optimal training sequences and randomly chosen training
sequences. Results indicate that there is at least an order of
magnitude reduction in the channel estimate MSE by using the
optimal sequences and this reduction is more significant when
the number of transmit antennas increases. In Fig. 2, results
are provided for the user 1’s output data reception MSE for
various training SNR given that the target MSE is 10−3. As
can be seen, regardless of the training SNR, the target MSE is
not met for the non-robust design, as opposed to the proposed
robust method that the output MSE is exactly the target. In
addition, the output MSE is violated more if the training SNR
decreases.

VII. CONCLUSION

This paper has investigated the quadratic CSI estimation
and the robust precoder design of a multiuser MISO antenna
system in the downlink. The optimal training sequence design
has been found. After analyzing the CSI error bound and
its statistical property, the robust-optimal designs have been
devised. Simulation results have shown the effect of the
optimal training sequence and illustrated the robustness of the
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Fig. 1. Normalized MSE in the quadratic CSI estimates against the training
SNR for systems using the optimal training sequences and random sequences.
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target MSE is ε = 10−3.

proposed design. The extension to multiuser MIMO case is
not straightforward and needs more work.
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