Uso00

United States Patent

3B2

70274538

(12) (10) Patent No.: US 7,027,453 B2
Lui et al. @s) Date of Patent: *Apr. 11,2006
(54) SPANNING TREE ALTERNATE ROUTING 6,202,114 B1* 3/2001 Duttetal. ...cocoeerenneee. 710/311
BRIDGE PROTOCOL 6,262,977 B1* 7/2001 Seaman et al. . 370/256
6,717,950 B1* 42004 Luietalcccouennene 370/408
9 r K S La Ut 1L 05
(US) ’ l ’ T. Rodeheffer, et al. “SmartBridge: A Scalable Bridge Archi-
tecture,” a 2000 publication from the ACM Special Interest
(73) Assignee: General Instrument Corporation, Group on Computer Communication.
Horsham, PA (US) R. Garcia, et al. “A New Transparent Bridge Protocol for
LAN Internetworking Using Topologies with Active Loops,
(*) Notice: Subject to any disclaimer, the term of this > a publication from the International Conference on Parallel
patent is extended or adjusted under 35 Processing of 1998,
U.S.C. 154(b) by 1029 days. An IEEE Publication entitled, “IEEE Standard for Informa-
) .))) tion Technology—Telecommunications and information
This patent is subject to a terminal dis- exchange between the systems—Local and metropolitan
claimer. area networks—Common specifications. Part 3: Media Ac-
cess Control (MAC) Bridges.” Adopted by the ISO/IEC
(22) Filed: Oct. 13, 2001 (Continued)
(65) Prior Publication Data Primary Examiner—Duc Ho
Assistant Examiner—Phuongchau Ba Nguyen
US 2002/0101875 A1~ Aug. 1, 2002 (74) Attorney, Agent, or Firm—Robert P. Marley
Related U.S. Application Data (57 ABSTRACT
(60) 11’50\281(;)51 al application No. 60/239.842, filed on Oct. Bridges (10, 12, 14) are used to interconnect local area
’) networks transparently. In the IEEE 802.1D standard for
(51) Int.Cl bridges, a spanning tree is built among the bridges for
i o opis fome ooaring (116 10) ongh
(52) U8 CL oo 3701408, 709252 PP P, oL supp P
; e paths. A novel bridge protocol is employed that attempts to
(58) Field of Classification Search - None g4 and forward frames over alternate paths that are shorter
See application file for complete search history. than their corresponding tree paths on the standard spanning
. tree, and makes use of the standard spanning tree for default
(56) References Cited forwarding. The proposed protocol, referred to as the Span-
U.S. PATENT DOCUMENTS ning Tree Alternate Routing (STAR) Bridge Protocol, is
4811337 A 11089 Hart backward compatible with the IEEE 802.1D standard and
5:) 50:3 60 A 9/1997 Perlman et al. ha(s1 atc}f)mplgxtl.ty that is colmparable to that of the standard
5,734,824 A % 3/1998 CHOL ovvverevvversorerrerrires 700/224 804 Other existing protoco’s.
6,032,194 A * 22000 Gaietal. 709/239
6,188,694 Bl* 2/2001 Fineetal.cceeveenen. 370/402 26 Claims, 19 Drawing Sheets

ENHANCED

TREE
LEARNING

TREE
CROSSLINK

TOPOLOGY

L GOES DOWN

RST
FOUND

TREE
LEARNED

o TREE
TOPOLOGY
gt oGy CHANGES ESTIATION
FINISHED TREE Ouiniore PHASE

CHANGES

DIRECT
NEIGHBORS
FOUND

CROSSLINK
GOES DOWN

je———

oy

EsTIATION___| (DiaTANT
PHASE 2

FINISHED FOUND

US 7,027,453 B2
Page 2

OTHER PUBLICATIONS

A 1991 IEEE Publication by Y.-D Lin, et al. entitled,
“Brouter: The Transparent Bridge with Shortest Path in
Interconnect LANs”.

A 1991 IEEE Publication by B. Rajagopalan, et al. entitled,
“Load Sharing and Shortest-Path Routing in Transparently
Inter-connected Local Area Networks”.

A 1991 [EEE Publication by T.-Y, Tai et al entitled, “LAN
Interconnection: A Transparent, Shortest-Path Approach”.
A 1990 IEEE Publication by G. Varghese, et al. entitled,
“Transparent Interconnection of Incompatible Local Area
Networks Using Bridges”.

A 1988 [EEE Publication by L. Zhang entitled, “Comparison
of Two Bridge Routing Approaches” .

A 1988 IEEE Publication by R. Perlman, et al, entitled,
“Choosing the Appropriate ISO Layer for LAN Intercon-
nection”.

A 1988 IEEE Publication by W.M. Seifert entitled, “Bridges
and Routers”.

A 1988 IEEE Publication by J. Hart entitled, “Extending the
IEEE 802.1 MAC Bridge Standard to Remote Bridges”.
A 1988 IEEE Publication by F. Backes entitled, “Transpar-
ent Bridges for Interconnection of IEEE 802 LANs™.

A 1988 IEEE Publication by Soha et al. entitled,
“Comparison of Two LAN Bridge Approaches”.

* cited by examiner

U.S. Patent Apr.11,2006 Sheet 1 of 19 US 7,027,453 B2
END END
STATION STATION
HIGHER 16 18 HIGHER
LAYERS J \ LAYERS
LLC LOCAL 10 LLC

BRIDGING 4
MAC MAC
ELAY
R MAC
PHY PHY | PHY PHY
el 12 1 S
- mmee A0 RN T aRmeE >~
ELAY
LN BACKBONE s YAC
PHY | PHY NETWORK PHY | PHY
FIG. 1
ENHANCED
TREE
CROSSLINK
TOPOLOGY rFIcGg. 2
CHANGES COES DOWN
RST
FOUND
TREE TREE
o LEARNING TREE LEARNED
ENHANCEMENT TREE E%Z%LG%Y DV
PROCESS A TOPOLOGY ESTIMATION
FINISHED CHANGES PHASE
CHANGES CROSSLINK
\ GOES DOWN
DIRECT v DISTANT |
NEIGHBORS [«——E2TIVATION | NgiGHBORS
FOUND FINTSHED FOUND

U.S. Patent Apr.11,2006 Sheet 2 of 19 US 7,027,453 B2

EXTENSION

e N 7

PATH FINDING
PROCESS SELECTS AS
FORWARDING PORT

(DV LISTENING

PORT BEHAVIOR

SPANNING TREE PROTOCOL
SELECTS AS NON-TREE PORT

BLOCKING TREE FORWARDING)

|
proTOCOL . PATH

TIMER
EXPIRES

PROCESS
DOES NOT

FINDING /

\

SPANNING

SELECT AS
FORWARDING
PORT

/

(DV LEARNING)

PROTOCOL
TIMER
EXPIRES

TREE
PROTOCOL
SELECTS AS
NON-TREE

PORT

SPANNING
TREE
PROTOCOL
SELECTS
AS TREE

PORT

PROTOCOL
TIMER
EXPIRES

PATH
FINDING
PROCESS
DOES NOT
SELECT AS
FORWARDING
PORT

/
(CROSSLINK FORWARDING) (LJISTENING

SPANNING
TREE
PROTOCOL
SELECTS AS
NON-TREE
PORT

PROTOCOL

TIMER —>{ LEARNING ’
EXPIRES

FI1G. 3

<«—NORMAL DATA FRAME——>

MAC
HEADER

LLC
HEADER

MAC
HEADER

LLC
HEADER

LAYER 3
PACKET

MAC
TRAILER

MAC
TRAILER

- ENCAPSULATED DATA FRAME >

F1G. 4

U.S. Patent Apr.11,2006 Sheet 3 of 19 US 7,027,453 B2

e
>FRAME RECEIVED (WAITING FOR FRAME)«——
\JES (BP0 PR00)—
{BPDU FRAME?) >(BPDU_PROC
i YES
CHELLO SBPDU FRAME? y— | RESET TIMER OF CROSSLINK
NO
P=RECEIVING PORT bfr=ORIGINAL SBPDU FRAME |—
!
ENCAPSULATED DISTANCE w
VECTOR CHANGE NOTIFICATION (DVCN_SBPDU_PROC(bir,p))—>
SBPDU FRAME? YEs —=

ENCAPSULATED DISTANCE
VECTOR COMPUTATION | bfr=ORIGINAL SBPDU FRAME
SBPDU FRAME?

DISTANCE VECTOR _yrs \
COMPUTATION DVCN_SBPDU_PROC(bfr,p))—>
SBPDU FRAME? = =

\No

ENCAPSULATED STATION
LOCATION YES
ANNOUNCEMENT FRAME
(k> ?

NO
YES
{ DATA FRAME fr ? ~(DATAFRAME_PROC(fr;p))—>

NO
DISCARD FRAME

SLA_SBPDU_PROC(sk,p))—>

FI1G. 5

U.S. Patent Apr.11,2006 Sheet 4 of 19 US 7,027,453 B2

('BPDU_PROC)

!

A TOPOLOGY CHANGENNO
NOTIFICATION BPDU?

SET PORTS THAT ARE IN DV LISTENING,
DV LEARNING, OR CROSSLINK FORWARDING
STATE TO BLOCKING STATE

!

TIME OUT ALL ENTRIES IN ESL TABLEI

STD BPDU_PROC

FI1G. 6

(DVCN_SBPDU_PROC(bfrp))
| e: <CHANGED CROSSLINK

YES
{18 e IN THE RECORD? y————

I

| TRANSITS TO TREE LEARNED STATE l

ENCAPSULATE bfr AND SEND
ON ALL TREE PORTS EXCEPT p

FIG. 7 é)t

U.S. Patent Apr.11,2006 Sheet 5 of 19 US 7,027,453 B2

(DATAFRAME_PROC(fz,p))

\ YES YES
<IN ENHANCED STATE? ——<I8 fr ENCAPSULATED? y————

NO NO
DF_STAR LEARNING PROC(fr,p))

\
(DF_STAR_FORWARDING_PROC(fr,p))«—

YES
<IN TREE LEARNING STATE? y—

NO
STD_DATAFRAME_PROC(fr,p))

v
DISCARD FRAME

%ﬁ{% FIG. 8

(8LA_SBPDU_PROC(, k p))

NO
<IN ENHANCED STATE? »

VYES

ESL(self, s):=k;
SET TIMER FOR ESL(self, s)

DISCARD FRAME

\

SEND ON ALL TREE PORTS EXCEPTp
STATION LOC FRAME <s, k>

FIG. 9

U.S. Patent Apr.11,2006 Sheet 6 of 19 US 7,027,453 B2

~ =~ INELIGIBLE
N NON-TREE
\ LINK

INELIGIBLE
CROSSLINK

FI1IG. 10

ELIGIBLE \
CROSSLINK .

- —— a— -

ELIGIBLE Y
CROSSLINK

U.S. Patent Apr.11,2006 Sheet 7 of 19 US 7,027,453 B2

(DVC_SBPDU_PROC (bfr, p))

!

JES
<1Sbr DVMYINFO FRAME <k, d, m,)2 y
NO

(DVMYINFO PROC (k, d, n',¢, p))}—>

YES
{18bfr DVOURINFO FRAME <n, k, d, m, ¢)? —————
NO

/
(DVOURINFO PROC(n', k, d, m, ¢)}—>

‘ YES
<18bfr DVINFORM FRAME <k, j, d >?)—>(DVINFORM_PROC (k, j, d))—>
NO

YES
<18hfrDVRECORD FRAME <j, k, d, F 4, F T, F_R>?>—1

NO
(DVRECORD PROC(j, k, d, FG A, FG_T, FG_R))

DISCARD FRAME

&

FIG. 12

. FIG. 13

U.S. Patent Apr.11,2006 Sheet 8 of 19 US 7,027,453 B2

(DVMYINFO_PROC(k, d, 1; ¢, p))

0
IN TREE LEARNED STATE?

YES
DISCARD FRAME NO
—>{18 p THE ROOT PORT?)————
N0 YES ¥
~a'=p arent(self)?> d(self, k):=d-d (self);
FG_A(self, k):=1;
VES FG Tiself, k):=I;
d(self, k):=d, (self)+d; d(self, k):=¢(self, n')+c; FG- R(self, k):=-1;
FG A(self, k):=6 FG A(self, k):=1 FZse If, k):=p;
| nexi(self, k}:=k

FG _T(self, k):=1;

FG_R(self, k):=0;
F(self, k):=p;
next(self, k):=k

SEND TO k DVOURINFO (self, k)frame
{self, k, d(self, k), eb(self, k), c(self, cb(self, k))),

)

s

Q—

FOR EACH j WHERE F(self, j)=F(self, k),

SEND TO j DVINFORM (self, k)frame { self, k, d(self, k)>
AND

SEND TO kDVINFORM (self, j)frame{self, j, d(self, j),

FIG. 14

U.S. Patent Apr.11,2006 Sheet 9 of 19 US 7,027,453 B2

(DVOURINFO PROC(n', k, d, m, c))
NO

IN TREE LEARNED STATE?

NO

Ly

IS self=k?

y
d(self, n'):=d; DISCARD FRAME

FG_Af(self, n'):=1;
FG T(self, n'):=1;
FG R(self, '):=1;
F(self, n'):=py (self);
next(self, o’):=n’
)
dianc(self):=m;
dec(self):=c

FIG. 15 é)e

U.S. Patent Apr.11,2006 Sheet 10 of 19 US 7,027,453 B2

NO
(DVINFORM _PROC(%, j, d))—=<IN TREE LEARNED STATE?)—
YES

DISCARD FRAME

=d; YES

| NO
<IS d=self, k)=0 ?ﬁ
N0
(IS dwselt, jra? oo
\No
{ FG_Afself, =12 >&_
NO,~ NO

dianc(self)-parent(seIf)>

YES

| d(self, j):=d(self, k)-dee(self)*d-dce(self)

d(self, j):=c(self, parent(self))+d-dce(self);
FG_A(self, j):=1

SEND TO j DVINFORM (self, j) FRAME< self, j, d(se]f)>>J

&

FIl1G. 16

U.S. Patent Apr.11,2006 Sheet 11 of 19 US 7,027,453 B2

NO
(DVRECORD_PROC(J, k, d, FG_4, FG_TD—><IN Dl{%%%%ﬁf%%o“s}

YES
: YES e
DVI(self, k):=(w, p, (self), j 0, 0, 0)le——————<1S k UNENOWN?»
N0
NO
{18 FG_Tiself, j)=17 - 1
YES
YES o 18 FG_A(self, k)=I7))
IS FG T-1? NO
NO
YES <18 FG_T(self, k)=07 —|

NO
18 FG Rself, j)=1?

YES
NO ! NO
R FG? YES o <08 FG Riself, j)=17) <18 diself, j)#d{d(self, k)? y—

"0 VYES YES
YES 18 FG R=1? » | DVI(self, k):=(d(self, j)*d,
FG R(self, k):=1 YES F(self, j) j, 1, 0, FG_R(self, k))

FG_R(self, k):=1

\

SEND TO ALL STAR NEIGHBORS
EXCEPT j DVRECORD FRAME
Cself, k, d(self, k), 1, 0, FG_R(self, k)>

‘ YES
I8 FG_Afself, j)=07)y

NO
Y YES
IS FG A=0? »
A

yNO FG: =0
FG: =1 DVT(self, k):=(d(self, j)+d,
F(self, j) j, 0, 1, FG_R(self, k))

T
SEND TO ALL STAR NEIGHBORS

EXCEPT j DVRECORD FRAME DISCARD FRAME ke

Cself, k, d(self, j)+d, FG, 1, FG_R(self, k) '

. YES | DVT(self, k):=(d(self, j)+d,
I8 diself, jyrd<diself, K2 y—> piself,), j, 1, 1, FG_R(silf, k)

NO

F1IG. 17

U.S. Patent Apr.11,2006 Sheet 12 of 19 US 7,027,453 B2

(DF_STAR_LEARNING PROC(fr, p))

s:=sre(fr) Y 4 G. 8

és self THE DESIGNATED \N0

BRIDGE OFs? /
 YES
< NO
<18 self THE AGENT BRIDGE OF ¢ ? -
YES YES
<8 THE AGENT OF sKNOWN? y—>
YES M
%
! <18 p A CHILD PORT?)
f(self, s):=p; NO NO
ESL (self, s);=self <IS p A TREE PORT?)
SEND ON ALL TREE PORTS v 155
STATIONLOC FRAME flself, s):=p;
<s, self>
Q- , ,
(¥D_SEARCH_PROC(s, ¢, pld, p))
N0
<18 THE FORWARDING PORT KNOWN? »
YES
yo | SEND DATA FRAME s, t, pld)
<18 THE FORWARDING PORTp 9—1 ON ALL TREE PORTS EXCEPTp
YES
SEND DATA FRAME<s, ¢, pld>
ONFD(self,)
DISCARD FRAME
éif ‘

FI1G. 19

U.S. Patent Apr. 11,2006 Sheet 13 of 19 US 7,027,453 B2

(ESL_SEARCH PROC(, t, pld))

IS S—

YES
YES ,—4!——\
IS ab(t)=self ?
NO w0
(I8 Fiself, ab(t)) KNOWN? y———»
YES "
(18 next(self, ab(t)) KNOWN? y——
' YES
SEND<s, ¢, pld> ON f(self, t> DISCARD FRAME

encap(<s, t, pld>, addr(self), addr(next(self, ah
on F(self, ab(t))

1

FIG. 20

SEND ENCAPSULATED DATA FRAME >
(t)

U.S. Patent Apr.11,2006 Sheet 14 of 19 US 7,027,453 B2

(STD_DATAFRAME_PROC(fr, p))

NO
{dst(fr) FOUND IN FORWARDING DATABASE}]
YES

FORWARD FRAME ON
ALL TREE PORTS EXCEPT PORT p

YES
———f(self, dst(fr))=p ?)

NO
FORWARD FRAME ON PORT p

Sgre(fr) FOUND IN FORWARDING DATABASE‘&NO

YES
) J y
UPDATE FORWARDING DATABASE ADD sre(fr) TO FORWARDING
AND TIMER DATABASE AND SET NEW TIMER

®

FIG. 217

U.S. Patent Apr.11,2006 Sheet 15 of 19 US 7,027,453 B2

(DF_STAR_FORWARDING PROC(fr, p))

* s:=sre(fr);

NO
¢ 18 fr ENCAPSULATED? ———>{ t:=dst(fr);

pload:=pld(fr)

YES 7
NO
<18 THE AGENT BRIDGE OF ¢ KNOWN?)—>
s:=sre(uncap(fr)); YES \O
te=dst(uncap(fr)); | (IS self THE AGENT BRIDGE OF s 7 y—»
pload:=pld(uncap(fr})
YES s
<18 self THE AGENT BRIDGE OF ¢ ? —>
s YES
18 FG Riself, ESL(self, 1))=1) y——»
s YES
<18 FG_R(self, ESL(self, t))= 1?7 y—
! YES Y0
(38 self THE PROXY DESTINATION OF fr?y—
NO
DISCARD FRAME

y
ESL_SEARCH PROC(s, ¢, pload))

(FD_SEARCH_PROC(s, ¢, pload, p) J+—

FI1G. 22

U.S. Patent Apr.11,2006 Sheet 16 of 19 US 7,027,453 B2

ROOT BRIDGE T

ab(s) -———————————- ab(t)
ENHANCED \
/ FORWARDING \
PATH \
db(s) db(t) O
T ROOT BRIDGE
|
ENHANCED FORWARDING PATH
db(s)—>ab(s)->++->ab(t)>dh(t)
FIG. 23a / \
CROSSLINK
ab(s ————————————— ah(t)
db(t)
ROOT BRIDGE T
ENHANCED FORWARDING PATH:
db(s)— ab(s)— ab(t) > db(t)
/' \ FIG. 236

ENHANCED FORWARDING PATH
db(s)—ab(s)>w->db(t) > ab(t) = db(t)

FI1G. 23c

U.S. Patent Apr. 11,2006
ROOT BRIDGE /O
/

4

/(dbs)
// ,

ROOT BRIDGE
7

/

/

vt #—{7)
ab(s) //I'

db(s)

F1G. 24c

Sheet 17 of 19

ROOT BRIDGE Q
)
|
i

A
’ //4 \\ab(t)

db(s) ? T dh(t)

) t

FI1G. 2456

ROOT BRIDGE P

/

’

£

7 \

ab(s) /Q// Q\
db(s) [; l%db(t)

FI1G. 24d

US 7,027,453 B2

U.S. Patent

ROOT BRIDGE ©
t
l
!

//
[

t

ab(s)=ab(t)=db(s)

FI1G. 25a

Apr. 11, 2006

Sheet 18 of 19 US 7,027,453 B2

ROOT BRIDGE T

ab(s)=ab(t) }

FIG. 256

ROOT BRIDGE T

]

ab(t)=ab(s))

[4

/

nca(db(s), db(t)

7\

db(s)

[

]

FI16G.

db(t)

)

t

256¢c

U.S. Patent Apr.11,2006 Sheet 19 of 19

ROOT BRIDGE ?
1

* ab(s)

A
/ \ ab(t)
dh(s) ,/ \\

t

Fl1G. 26

ROOT BRIDGE ?
|

) ab(t)

’

£

ab(s) ./4 \\(
db(s) T dht)

W db(t)

US 7,027,453 B2

US 7,027,453 B2

1

SPANNING TREE ALTERNATE ROUTING
BRIDGE PROTOCOL

This application claims the benefit of Provisional 60/239,
842 filed Oct. 13, 2000.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to employing a
bridge protocol for interconnecting two or more local area
networks (LANs). More particularly the invention relates to
apparatus and method, which is backward compatible with
existing 802.1D Spanning Tree Bridge Protocol, for improv-
ing routing capability of spanning tree forwarding without a
significant increase in complexity by providing a shorter
alternate forwarding path if possible while using a path on
the spanning tree by default.

2. Background Information

A Local Area Network (LAN) is used to connect end
stations together within close distance in order to provide
high-bandwidth communications. A single LAN has a lim-
ited number of end stations, a limited size, and a limited
amount of offered load. In this respect, LANs cannot grow
beyond a certain limit. LANs may be interconnected via
internetworking devices such as bridges and routers. These
devices have different advantages and disadvantages
depending on the internetworking environment. In the early
days of internetworking, bridges were popular because they
were much cheaper and faster than routers. In addition,
bridges were used to support heterogeneous network layer
protocols. The primitive computing technology of those
days favored off-loading of work to larger servers using
protocols that were optimized for LAN.

IEEE 802 Standards Committee has specified two bridge
protocols. IEEE 802.1 group has issued the IEEE 802.11D
Spanning Tree Bridge Protocol and IEEE 802.5 group has
issued the Source Routing Bridge Protocol. Among these
two schemes, IEEE 802.1D offers a better solution and has
been studied more intensively. This approach is transparent
to end stations and requires no modifications to the MAC
layer of end stations. All the routing related operations are
done in the bridges. Today, the IEEE 802.1D Spanning Tree
Bridge Protocol is widely used for interconnecting the
family of IEEE 802 standard [LANs. For example, the
Data-Over-Cable Service Interface Specifications (DOC-
SIS) describes the use of the IEEE 802.1D Spanning Tree
Bridge Protocol to interconnect Cable Modem Termination
Systems (CMTSs) over a switched or bridged headend
network. According to DOCSIS, data forwarding through
the CMTS may be transparent bridging, or network layer
forwarding, but data forwarding through the Cable Modem
(CM) is link-layer transparent bridging. The IEEE 802.1D
standard is optional for CMs intended for residential use, but
CMs intended for commercial use and bridging CMTSs
must support the IEEE 802.1D standard.

A bridge has several ports connecting to different LANs.
A frame sent from one LAN to the other will typically go
through one or more ports and bridges. As bridges are
capable of filtering frames, they are useful for dealing with
unnecessary broadcast traffic. Such a broadcast containment

10

15

20

25

30

35

45

50

55

60

65

2

capability renders bridging a simple solution to implement-
ing a virtual LAN. This bridged LAN environment should be
transpatent and looks like a single LAN to end users. The
basic function of bridges is to forward MAC (Medium
Access Control) frames from one LAN to another, therein
providing an extension to the LAN without requiring any
modification to the communications software in the end
stations attached to the LANs. Bridges do not modify the
content or format of the MAC frames they receive. The
operation of bridges should not misorder or duplicate
frames. Upper-layer protocol transparency is a primary
advantage of bridging since bridges can rapidly forward
traffic representing any network-layer protocol without hav-
ing to examine upper-layer information.

The landscape for internetworking has evolved consider-
ably with advances in high-speed layer 3 routing and layer
2 switching technologies. Functionalities at the two layers
are increasingly similar. While routers are generally more
intelligent than bridges in terms of their dynamic routing
capability, they are also more complicated and costly to
implement. Bridges have been designed to span a range of
routing capabilities from dynamic source routing to static
spanning tree forwarding, thereby allowing a trade-off
between routing performance and protocol complexity.
Although routers are becoming cheaper and faster than they
used to be, they remain more complicated than bridges to
operate because intermediate hops must still rise above layer
2. In spite of the common wisdom that IP has won the
network layer, there are still going to be non-IP layer 3
protocols in the foreseeable future. On the other hand, while
bridges are evolving to accommodate more and more layer
3 functionality, they will always support multiple layer 3
protocols.

An 1P (Internet Protocol) address encodes both a network
and a host on that network. Since it does not specify an
individual machine, but a connection to a network, the IP
address of a host must change whenever it moves from one
network to another. On the other hand, an IEEE 802 MAC
address identifies a physical interface from a station to a
LAN, and is always applicable no matter where the station
is plugged into a network. Such portability of end station
addresses is important particularly for mobility and the
benefit of plug-and-play. Although new features, are emerg-
ing to minimize the need to configure and reconfigure 1P
addresses, these features can increase the cost and process-
ing overhead of the system. DHCP (Dynamic Host Con-
figuration Protocol), for example, provides a widely
deployed framework for host registration and configuration.
DHCP, however, was designed only for fixed hosts on
physically secure LANs. DHCP is being extended to allow
dynamic reconfiguration of a single host triggered by the
DHCP server (e.g. a new IP address). Depending on the
bandwidth of the network between server and client, the
delay in the reconfiguration process can grow exponentially
as failed retransmissions trigger exponential backoff.

In the IEEE 802.1D standard, a shortest path spanning
tree with respect to a predetermined bridge, known as a root
bridge. is used to interconnect LANs to form an extended
LAN. A frame sent from one LAN to another could follow
a longer path on the spanning tree than necessary when there
exists an alternative shorter path connecting them. Note that

US 7,027,453 B2

3

non-tree links, which are links that have not been selected by
the 802.1D spanning tree algorithm, are not used to share the
load of the traffic. The load around the root bridge may be
heavy, and throughput is severely limited.

The IEEE 802.1D specification defines a protocol archi-
tecture for MAC bridges and recommends formats for a
globally administered set of MAC station addresses across
multiple LANS.

FIG. 1 shows a bridge protocol architecture for a connec-
tion of two LANs via local 10 or remote 12, 14 bridging.
Referring to the OSI (open systems interconnect) reference
model, a bridge encompasses the first two layers, namely the
Physical Layer (layer 1) and the Data Link Layer (layer 2).
There are two sublayers in layer 2: Medium Access Control
(MAC) sublayer and Logical Link Control (LLC) sublayer.
Bridges operate relay functions on the MAC sublayer and
interface with the LLC sublayer above through LLC service
access points. By using bridges, a growing LAN can be
partitioned into self-contained units for administrative or
maintenance reasons, as well as to improve performance via
load balancing and fault isolation. Bridges are typically used
to interconnect LANs of the same type, such as the family
of IEEE 802 LANs. Translation among different link-layer
protocols is needed, however, when the interconnected
[L.ANs are not homogeneous (e.g., IEEE 802.3 and IEEE
802.5 type LANS), and interoperability is achieved by
appropriate frame encapsulation.

A bridge relays individual MAC user data frames between
separate MAC protocols of the bridged LAN connected to
the ports of the bridge. A MAC entity for each port handles
all the media access method dependent functions, i.e., MAC
protocol and procedures, as specified in the relevant IEEE
802 standard for that MAC technology. Each bridge port
receives and transmits frames to and from the LAN to which
it is attached using the services provided by the individual
MAC entity associated with that port. Each bridge port also
functions as an end station providing MAC service to the
LLC layer. All MAC entities communicating across a
bridged LAN are uniquely identified by their respective
48-bit MAC addresses. A bridge may use a 48-bit MAC
address, or a 16-bit locally administered MAC address. This
bridge address must be unique within the extended LAN,
and a single unique bridge identifier (ID) is derived from it
for the operation of a bridge protocol. Each frame transmit-
ted from a source end station, for example 16, to a destina-
tion end station, for example 18, carries the MAC addresses
of the end stations respectively in the source and destination
address fields of the frame’s MAC header. A frame that is to
be relayed by every bridge to all its neighboring bridges in
an extended LAN contains a bridge group MAC address in
the destination address field of the frame’s MAC header.

The three basic functions set forth in the present standards
of an IEEE 802.1D bridge are:

1) frame forwarding—forward a frame received from one

port to another port

2) learning—““learn” and “remember” which port to for-

ward a frame

3) spanning tree algorithm—make sure activated links
formno loop, i.e., the bridges and links form a spanning
tree

10

15

20

25

30

35

40

45

50

55

60

65

4

Functions (1) and (2) above are performed with the help
of a Forwarding Database, or Filtering Database, (see FIG.
7-4 of IEEE 802.ID 1998 Edition), within each bridge. Each
bridge keeps a Forwarding Database, hereafter denoted FD,
that specifies which port to forward a data frame with a
particular destination. If there is no such entry in the FD, the
bridge forwards the frame through all ports except the port
from which the frame originates. Whenever a frame from
source s arrives from port p, the bridge marks in its FD that
the forwarding port of s is p. As the learning process is
simple, if there are loops in the bridged LAN, a frame may
be forwarded indefinitely. To avoid this undesirable feature,
function (3) mentioned above is used to make sure the active
topology among the bridges is always a tree so that there is
a unique path between each pair of bridges. We refer to such
a path herein as a tree path.

The spanning tree algorithm builds a unique shortest path
tree rooted at the root bridge in a distributed manner. This
root bridge is selected using bridge identifiers. A path
connecting the root bridge and another bridge over the
spanning tree is referred to as a root path associated with the
bridge. By exchanging configuration messages, bridges
identify the root bridge and select which ports to activate.
For each LAN, a single bridge is elected among all bridges
connected to the LAN to be the designated bridge, such that
it is the bridge that is closest to the root bridge. In order to
maintain an up-to-date tree that reflects the underlying
topology. the root bridge broadcasts configuration messages
pericdically over the spanning tree to all other bridges, for
example, approximately every four (4) seconds.

The IEEE 802.1D standard defines two types of Bridge
Protocol Data Unit (BPDU), namely Configuration BPDU
and Topology Change Notification BPDU. Bridges send
MAC frames containing Configuration BPDU to each other
in order to communicate topology information and compute
the spanning tree. Bridges send MAC frames containing
Topology Change Notification BPDU up the spanning tree
to inform the root bridge of a topology change. Each
Configuration BPDU MAC frame includes a MAC header
that contains a source MAC address and a destination MAC
address. The source MAC address is the MAC address on
the port of the bridge originating the Configuration BPDU
MAC frame. The destination MAC address field carries the
bridge group MAC address so that the Configuration BPDU
MAC frame is received by all the bridges in the extended
LAN. The information in the Configuration BPDU may be
used by a bridge in preparing its own Configuration BPDU
MAC frame. Each Configuration BPDU contains a BPDU
Header and a set of BPDU Parameters. The BPDU Header
consists of a Protocol Identifier field, a Protocol Version
Identifier field and a BPDU Type field. The Protocol Iden-
tifier takes a specific value that identifies the Spanning Tree
Bridge Protocol. The Topology Change Notification BPDU
consists merely of a Protocol Identifier field, a Protocol
Version Identifier field, and a BPDU Type field with a code
reserved for this type. When a bridge detects a change in the
active topology of the spanning tree, it sends a Topology
Change Notification BPDU to the root bridge. The root
bridge will then broadcast it to all bridges in the extended

US 7,027,453 B2

5
LAN. The encoding for the fields in the Configuration
BPDU and the Topology Change Notification BPDU can be
found in the IEEE standards.

In order to balance traffic load, extensions to the IEEE
802.1D Spanning Tree Bridge Protocol have been proposed
to allow non-tree links to be used for frame forwarding
under appropriate conditions. These extensions consider
alternate paths that traverse at least one non-tree link.

For example, U.S. Pat. No. 4,811,337 (Hart) discloses a
method, known as distributed load sharing (DLS), to allow
non-tree links to be selected for frame forwarding. In
accordance with the method of Hart, a forwarding path is
either a tree path, a DLS link, or a DLS path that is a
concatenation of DLS links. This method requires each
selected DLS link to satisfy the following conditions:

a) The two DLS bridges at the ends of the selected DLS link
must both implement DLS.

b) The two bridges at the ends of the selected DLS link must
be such that one of them is not the ancestor of the other
in the spanning tree.

¢) The length associated with the selected DLS link must be
no greater than the sum of the root path distances asso-
ciated with the two DLS bridges.

Condition (b) above is necessary in order to prevent any
intermediate bridge on the tree path between the two DLS
bridges to misinterpret a forwarding direction of a particular
end station. In view of condition (c), Hart’s approach can
overestimate the actual length of a tree path between two
DLS bridges. In this respect, a non-tree link between a pair
of DLS bridges may actually be selected even though it has
a greater length than the length of the corresponding tree
path. There is no such problem only when the root bridge is
on the tree path between the two DLS bridges. Thus, this
method cannot guarantee that a forwarding path is no worse
than its corresponding tree path for any additive metric
considered.

U.S. Pat. No. 5,150,360 (Perlman, et al.), extended Hart’s
DLS method to address certain shortcoming of the DLS
method. Specifically, Perlman, et al., proposed to identify
non-tree links so that they can be used for forwarding frames
without traveling a long way on the spanning tree. The
approach is simpler than DLS and can utilize any non-tree
link connecting a pair of bridges that have implemented the
extended protocol, referred to as Generalized DLS (GDLS).
GDLS does not select a non-tree link between a pair of
GDLS bridges to be a GDLS link by comparing the length
of the non-tree link to that of the corresponding tree path.
Instead, GDLS compares the “speed” of the non-tree link to
that of the cotresponding tree path. The “speed” of the
non-tree link and that of the tree path are determined by
having one of the GDLS bridges send to the other GDLS
bridge a special protocol data unit over the non-tree link and
another over the tree path. Separate information has to be
kept for every non-tree link even though some links will not
be used at all. The method of Perlman, et al., cannot
guarantee that a forwarding path is no worse than its
corresponding tree path for any additive metric considered
except when the additive metric is delay. Incidentally, this
method is backward compatible with the IEEE 802.1D
Spanning Tree Bridge Protocol.

10

20

40

45

6

Another prior art method dynamically creates a shortest
path tree rooted at a given source starting with a default
spanning tree. Some non-tree links are activated and some
tree links are disabled on demand according to a delay
measure. Information kept in bridges grows quadratically
with the number of ports in the bridges. This method is not
backward compatible with respect to the IEEE 802.1D
Spanning Tree Bridge Protocol.

A bridge learning protocol has also been devised so that
optimal or suboptimal routes can be identified. Cost to each
known end station is kept for each port. The protocol works
similarly to the distance vector method and is backward
compatible with respect to the IEEE 802.1D Spanning Tree
Bridge Protocol. Topology information is kept by every
bridge for every port. Moreover, when there are bridges that
do not execute the protocol, a path found by the protocol
may be longer than its corresponding tree path.

Prior art methods also propose to maintain distance vec-
tors in bridges showing the shortest path direction for getting
to a particular LAN, and not to a station. Mapping tables are
used to map stations to LANs. When a frame is received, the
bridge maps the target station to the target LAN and finds the
forwarding port from the distance vector. Mapping tables are
exchanged by means of flooding (standard for distributing
local information throughout the network). This protocol is
not backward compatible with respect to the IEEE 802.1D
Spanning Tree Bridge Protocol. There are bridge architec-
tures that have IP routing features. Bridges exchange topol-
ogy information to obtain the complete topology of the
extended LAN. Once the complete topology is synchro-
nized, the shortest path to every LAN can be found. Their
architecture also has a mechanism to locate end station to
LAN, which is similar to the mapping tables. These proto-
cols are not backward compatible with respect to the IEEE
802.1D Spanning Tree Bridge Protocol.

SUMMARY OF THE INVENTION

The present invention is a novel bridge protocol, which
will be referred to hereafter as a Spanning Tree Alternate
Routing (STAR) Bridge Protocol, that has important advan-
tages over the present day techniques discussed above. The
proposed bridge protocol of the present invention is trans-
parent to end stations, backward compatible with the current
IEEE 802.ID standard, free of loops in frame forwarding,
and easy to implement with scalable message overhead and
storage requirement. In the protocol disclosed herein, for-
warding paths are selected based on a path metric that is a
sum of link metric values of all the links along the path,
wherein the link metric is any desirable cumulative metric,
such as delay, administrative cost, number of hops, etc. We
will show that our protocol always finds a path that is either
shorter or the same as the path on the spanning tree. This
protocol is also backward compatible with the IEEE 802.1D
standard, such that existing bridges need not be modified and
new bridges, henceforth referred to as STAR bridges, oper-
ate seamlessly with the existing standard. The STAR Bridge
Protocol attempts to find and forward frames over alternate
paths that are shorter than their corresponding tree paths on
the standard spanning tree, and makes use of the standard
spanning tree for default forwarding. We refer to the shorter

US 7,027,453 B2

7

alternate paths herein as enhanced forwarding paths. The
protocol may use any of a variety of distance metrics for
evaluating forwarding paths, including number of hops,
physical length, transmission delay, and cost, provided the
metric used is supported by the standard bridge protocol. In
one embodiment of the present invention, all frames sent
from a source bridge to a destination bridge are forwarded
over either a standard tree path or an enhanced forwarding
path, but not both. In another embodiment of the present
invention, all frames sent from a source bridge to a desti-
nation bridge are forwarded over standard tree paths by
default, while frames of a predetermined class are forwarded
over enhanced forwarding paths if these alternate paths are
available.

In the STAR Bridge Protocol, all three bridge processes
specified for the IEEE 802.1D Bridge Protocol and set forth
above are still relevant. However, three new processes are
further specified, namely path finding process, STAR learn-
ing process, and STAR forwarding process. The path finding
process allows a STAR bridge to find and estimate the
distance of a path from itself to another STAR bridge. The
STAR forwarding process and the STAR learning process
are modified versions of the forwarding process and the
learning process specified in the IEEE 802.1D standard
respectively. All STAR bridges can execute both the stan-
dard and the new processes, employing hardware already
resident in non-STAR bridges.

In the IEEE 802.1D standard, a rooted spanning tree
(RST) is built before the forwarding and learning processes
start. The STAR Bridge Protocol builds, in a similar manner,
an RST before the execution of the path finding process, the
STAR forwarding process and the STAR learning process.
The RST is found by old and STAR bridges alike. A STAR
bridge can identify whether a neighbor bridge is an old
bridge or a STAR bridge while the RST is being computed.
This can be done by using reserved bits in the bridge
messages, or having the neighbor send an extra bridge
frame. We refer to a non-tree link that directly connects a
pair of bridges that are on different branches of the IEEE
802.1D spanning tree as a crosslink. The STAR Bridge
Protocol identifies appropriate crosslinks to be used for
constructing enhanced forwarding paths.

The path finding process follows after the spanning tree
algorithm is executed. During this interim period until the
path finding process ends, STAR bridges and old bridges
execute the standard forwarding process and the standard
learning process while data frames are forwarded on tree
paths. When the path finding process ends, each STAR
bridge begins to execute the STAR learning process and the
STAR forwarding process instead of the standard ones
executed by old bridges when it receives a data frame.

One of the significant features and advantages of the
present invention resides in the interoperability, i.c., the
backwards compatibility of the STAR bridges with old
bridges meeting the present IEEE standards described
above. This enables advantageous use of STAR bridges in a
system wherein standard bridges may be replaced in a
gradual, orderly fashion thereby providing a system with the
advantages derived from STAR bridges and thereby avoid-

10

15

20

25

30

35

40

45

50

55

60

65

8
ing the need for a large capital expense which will result
from full replacement of all standard bridges by STAR
bridges at one time.

Even a system incorporating all STAR bridges provides
the capability of providing enhanced paths not heretofore
capable of being obtained in a system employing standard
bridges.

BRIEF DESCRIPTION OF THE FIGURES

The present invention will hereinafter be described in
conjunction with the appended drawing figures, wherein like
numerals denote like elements, and:

FIG. 1 is a diagram showing bridge protocol architecture
for connecting two LANs via remote or local bridging;

FIG. 2 is a bridge state transition diagram for the STAR
Bridge Protocol;

FIG. 3 is a port state transition diagram showing both the
standard states and the additional states according to the
STAR Bridge Protocol;

FIG. 4 shows an encapsulated data frame;

FIG. 5 is a STAR bridge operation flow chart;

FIG. 6 is a flow chart for the process BPDU_PROC;

FIG. 7 is a flow chart showing the procedure for process-
ing DVCN_SBPDU frames;

FIG. 8 is a flow chart for the process Data_Frame_Proc;

FIG. 9 is a flow chart for process SLA_SBPDU_Proc.;

FIG. 10 is a bridged LAN graph useful in explaining the
non-tree links between STAR bridges of the present inven-
tion;

FIG. 11 is an example of a STAR bridge graph;

FIG. 12 is a flow chart of the process DVC_SBPDU-
_Proc.;

FIG. 13 is a graph useful in explaining the computation of
a tree path;

FIG. 14 is a flow chart of the process DVMy Info_Proc.;

FIG. 15 is a flow chart of the process DVOur Info_Proc.;

FIG. 16 is a flow chart of the process DV Inform_Proc.;

FIG. 17 is a flow chart of the process DV Record_Proc.;

FIG. 18 is a flow chart of the process DF_STAR_Learn-
ing_Proc.;

FIG. 19 is a flow chart of the process FD_Search_Proc.;

FIG. 20 is a flow chart of the process ESI,_Search_Proc.;

FIG. 21 is a flow chart of the process Std_Data_Frame-
_Proc.;

FIG. 22 is a flow chart of the process DF_STAR_For-
warding_Proc.;

FIGS. 23a-23c are diagrams useful in explaining the
possible paths between end stations, showing tree paths and
enhanced forwarding paths;

FIGS. 24a-24d are diagrams useful in explaining
examples of forwarding paths when at least one of the agent
bridges of the end stations is not defined;

FIGS. 254-25¢ are diagrams useful in explaining
examples of selection of tree paths when the agent bridges
of both end stations are defined;

FIG. 26 is a diagram useful in explaining the selection of
a tree path when the agent bridges of the end stations are
defined and are different; and

US 7,027,453 B2

9

FIG. 27 is a diagram useful in explaining the selection of
a tree path when the agent bridges of the end stations are
defined, are not the same and one is the ancestor of the other.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

I. Spanning Tree Alternate Routing (Star) Bridge Protocol

[.A. Bridge States

The ensuing detailed description provides preferred
exemplary embodiments only, and is not intended to limit
the scope, applicability, or configuration of the invention.
Rather, the ensuing detailed description of the preferred
exemplary embodiments will provide those skilled in the art
an enabling description for implementing a preferred exem-
plary embodiment of the invention. It being understood that
various changes may be made in the function and arrange-
ment of elements without departing from the spirit and scope
of the invention as set forth in the appended claims.

FIG. 2 shows a bridge state transition diagram for the
STAR Bridge Protocol. There are five states: Tree Learning,
Tree Learned, Distant Neighbors Found, Direct Neighbors
Found, and Enhanced states. The first two states capture the
behavior of an old bridge in accordance with the TEEE
802.1D standard, while the other three states reflect the
additional functionality of a STAR bridge. When the span-
ning tree is being built, each bridge (both old and STAR
bridges) is in the Tree Learning state. In this state, all data
frames are dropped as in the IEEE 802.1D standard. After
the spanning tree is built, the bridge goes to the Tree Learned
state. A path finding process starts and data frames are
forwarded using the standard forwarding and learning pro-
cesses. There are several phases in the path finding process.
The bridge first goes to the Distant Neighbors Found state,
then the Direct Neighbors Found state, and finally the
Enhanced state in different phases. The transitions will be
explained further hereinafter in the Path Finding Process
section. When the bridge is in the Enhanced state, the path
finding process is completed. STAR forwarding and learning
processes are executed when a data frame is received in this
state.

LB. Port States

In the IEEE 802.1D standard, there are four port states:
Blocking, Listening, Learning, and Forwarding. In the
STAR Bridge Protocol, there are three additional port states
for the path finding process, which are similar to the
Listening, Learning, and Forwarding states. These port
states, and the transactions among the port states are shown
in FIG. 3. These new port states are distance vector listening
(DV Listening), distance vector learning (DV Learning), and
STAR Forwarding. The IEEE 802.1D Spanning Tree Bridge
Protocol activates tree ports while the path finding process
activates other useful non-tree ports. The transition among
the four states in the standard remains the same for the STAR
bridges. A port changes from the Blocking state to the
Listening state when it is selected as a tree port. After an
appropriate protocol timer expires, the port moves to the
Learning state. In this state, learning is enabled but data
frames will not be forwarded. The port is in the Forwarding
state if the timer expires again. A port changes from the

10

40

45

10

Blocking state to the DV Listening state if the path finding
process selects it. A protocol timer is started when the port
enters the DV Listening state. When this timer expires, the
port moves to the DV Learning state. Unlike the Learning
state in the present IEEE standard, in which a port learns the
locations of end stations, a port in DV Learning state does
not do this. It is because all data frames are still forwarded
on tree paths and a port in DV Learning state must be a
non-tree port. Hence, there should be no data frame arriving
on that port. A similar protocol timer is used to time out the
DV Learning state, and the next transition is into the
Forwarding state.

1.C. Storage

Each bridge keeps an FD for the forwarding process. In
STAR bridges, three tables are additionally used provided:
bridge forwarding table (BF Table), end-station location
table (ESL Table), and bridge address table (BA Table).
These tables are preferably stored in memory devices
already resident in non-STAR bridges, such as memory for
storing FD. A BF Table indicates for each other STAR bridge
in the bridged LAN the port that leads to the next hop along
the “best” path found. BF Tables are obtained in the path
finding process by a modified distance vector method as will
be described in further detail hereinafter. An ESL Table is
used to map an end station to a STAR bridge near it. The
STAR learning process is responsible for filling this table.
Therefore, if the ESL Table of a STAR bridge has a record
for an end station, it is unnecessary for the FD of the STAR
bridge to have a record for the same end station in most
situations. This implies that the FD in a STAR bridge is no
larger than that in a standard bridge. The BA Table is a
mapping between STAR bridge identifiers and STAR bridge
MAC addresses. Every bridge has its own unique MAC
address and this MAC address is used in the STAR forward-
ing process. It is not necessary for a STAR bridge to know
the MAC address of all other STAR bridges. It should be
noted that addr(n) will be the MAC address of a bridge with
a bridge ID n.

LD. Protocol Data Units

The STAR Bridge Protocol recognizes two types of
protocol data units, namely BPDU (Bridge Protocol Data
Units), which is specified in the IEEE 802.1D standard, and
SBPDU (STAR Bridge Protocol Data Units), which are
specified below for the STAR Bridge Protocol.

The SBPDU contains an SBPDU Header, which has the
same format as the BPDU Header, and a set of SBPDU
Parameters. The Protocol Identifier in the SBPDU has its
own unique value to identify the STAR Bridge Protocol.
SBPDU MAC frames assume a format similar to that of
BPDU MAC frames. There are four kinds of SBPDU
frames: Hello SBPDU, Distance Vector Change Notification
SBPDU (DVCN_SBPDU), Distance Vector Computation
SBPDU (DVC_SBPDU), and Station Location Announce-
ment SBPDU (SLA_SBPDU). Hello SBPDU is used for
monitoring crosslink failures, DVCN_SBPDUs are used to
notify STAR bridges about topology changes. DVC_SBP-
DUs are used in the path finding process to compute the
distance vectors and BF Tables. SLA_SBPDUs are gener-
ated in the STAR learning process to fill the ESL Tables.

US 7,027,453 B2

11

Since any BPDU frame with an unknown Protocol Iden-
tifier will not be forwarded by old bridges, an SBPDU frame
sent by a STAR bridge must be encapsulated as a data frame
if it is expected to traverse at least one old bridge. The source
address of an encapsulated SBPDU frame is the MAC
address of the STAR bridge that is responsible for the
encapsulation. The destination MAC address 1s either the
STAR bridge group MAC address or the unique MAC
address of the intended STAR bridge recipient. Which
destination MAC address is applicable depends on the
specific type of SBPDU MAC frame being sent. In the
proposed protocol, most SBPDU MAC frames are sent over
the spanning tree. It will be explained herein that some
SBPDU MAC frames may be sent to direct STAR neighbors
over selected non-tree links. Except in the only case
described in with reference to crosslink maintenance and
Path Finding Process, an SBPDU MAC frame received by
a STAR bridge will not be forwarded by the STAR bridge.

L.E. Data Frames

Fach data frame at the LLC Sublayer contains LLC
information and is encapsulated within a MAC frame at the
MAC layer of the end station. We refer a MAC data frame
generated by an end station as a normal MAC data frame, or
simply a normal data frame when the context is clear. As will
be explained in greater detail hereinafter with reference to
the frame dropping problem, a normal data frame may have
to be encapsulated by a bridge for forwarding purpose.
When a normal MAC data frame is encapsulated, we refer
to it as an encapsulated MAC data frame, or simply an
encapsulated data frame when the context is clear. We refer
to the intended recipient of an encapsulated data frame as a
proxy destination, and its address as a proxy destination
address. In the rest of this document, the phrase “data frame”
refers to either a normal data frame or an encapsulated data
frame. We assume that a MAC data frame fr has the form
<sre(fr), dst(fr), pid(fr)> where src(fr), dst(fr), and pld(fr)
represent the source MAC address, the destination MAC
address, and the payload data respectively.

A normal MAC data frame consists of a MAC Header, an
LLC Header, a layer 3 packet, and a MAC Trailer. When a
normal MAC data frame is encapsulated, an additional
MAC Header and LLC header are put in the front of the
normal data frame and an additional MAC Trailer is put at
the end as shown in FIG. 4. Each STAR bridge has to
distinguish among the following frames: normal data
frames, encapsulated data frames, and encapsulated SBPDU
frames. All these frames appear as normal data frames to old
bridges. The present invention specifies frame type infor-
mation in the Protocol Type field of the encapsulating LLC
header so that a STAR bridge can correctly identify the
frame type and process the frame.

In most bridged LANS, frames are subject to a maximum
transfer unit (MTU) constraint. An encapsulated MAC
frame of a given size may have to be fragmented before
encapsulation, or the resulting frame will violate the MTU
constraint. In this respect, STAR bridges must implement a
fragmentation and reassembly mechanism to accommodate
the encapsulation that may be needed for forwarding certain
data frames. It follows that each encapsulated frame must
include an additional field to carry an appropriate sequence

10

15

20

25

30

35

40

45

50

55

60

65

12

number. It is sufficient to fragment an oversized frame into
two fragments since the encapsulation overhead is much less
than an MTU. Hence, only one bit is needed to identify a pair
of fragments. Fragmentation and reassembly mechanisms
are beyond the scope of the present invention since, frame
encapsulation is already an existing function in present day
bridges.

LF. Crosslink Maintenance

Since a crosslink is not part of the active topology of a
spanning tree, topology changes that involve crosslinks
normally will not trigger a bridge to send out a Topology
Change Notification BPDU. Therefore, a mechanism is
needed for monitoring and updating the status of each
crosslink selected by the proposed protocol for supporting
an enhanced forwarding path. Hello SBPDUs and
DVCN_SBPDUs are used for this purpose. A Hello SBPDU
consists merely of a Protocol Identifier field, a Protocol
Version Identifier field, and an SBPDU Type field with a
code reserved for this type. A DVCN_SBPDU contains an
SBPDU Header and IDs of both bridges on the ends of the
crosslink that is being identified to have failed.

In order to detect crosslink failures, STAR bridges on both
ends of each crosslink exchange Hello SBPDUs periodi-
cally. These Hello SBPDUs are not forwarded by the STAR
bridges to their neighbors. Each STAR bridge uses a pre-
determined timer for each of its crosslink neighbors to time
out pending Hello SBPDUs. If a STAR bridge receives a
Hello SBPDU from a STAR neighbor over a crosslink
before an appropriate timer expires, the STAR bridge resets
the timer. Otherwise, the STAR bridge assumes that the
crosslink has failed and then transits to the Tree Learned
state. In addition, the STAR bridge also multicasts a Dis-
tance vector change Notification SBPDU over the IEEE
802.1D spanning tree to all STAR bridges.

When a crosslink is recovered from a recent failure or a
new crosslink link is enabled, the STAR bridges on both
ends of the crosslink will first check to determine if the
crosslink is eligible for supporting an enhanced forwarding
path based on information in their respective BF Tables. If
the crosslink is eligible, the STAR bridges will each inde-
pendently multicast a DVCN_SBPDU over the IEEE
802.1D spanning tree to all STAR bridges.

Upon receiving a DVCN_SBPDU, a STAR bridge for-
wards it to all of its tree neighbors, and transits to the Tree
Learned state. The STAR bridge makes use of a timer to
remember the identity of the affected crosslink for a prede-
termined time-out period. When a DVCN_SBPDU identi-
fying a given crosslink is received by a STAR bridge, and if
no other DVCN_SBPDU identifying the same crosslink has
been received within a current time-out period, the STAR
bridge resets the timer and forwards the SBPDU to all its
tree neighbors. Otherwise, the SBPDU is dropped.

1.G. Bridge Operation

As mentioned earlier, there are three kinds of MAC
frames a STAR bridge would receive in this protocol: BPDU
frames, SBPDU frames, and data frames. FIG. 5 is the STAR
bridge operation flow-chart. When a MAC frame is
received, it invokes different procedures for different kinds
of frame.

US 7,027,453 B2

13

BPDU frames received are processed by a procedure
BPDU_Proc. FIG. 6 depicts the flow-chart for BPDU_Proc.
When a Topology Change Notification BPDU is received,
the bridge has to deactivate the non-tree ports selected by the
path finding process and invalidate the entries of its ESL
table. After that, standard BPDU processing is executed. In
FIG. 6, Std_BPDU_Proc refers to the standard BPDU pro-
cessing procedure, shown in FIG. 21. As the standard BPDU
processing procedure can be found in the IEEE 802.1D
standard which is incorporated herein by reference, the
details of that procedure have been omitted for purposes of
brevity.

There are four kinds of SBPDU frames as described in the
Protocol Data Units Section. There is a procedure for
processing each kind of SBPDU frames. DVCN_SBPDU-
_Proc procedure is for processing DVCN_SBPDU frames,
and the flow-chart for this procedure is shown in FIG. 7. The
details of DVC_SBPDU_Proc procedure for processing
DVC_SBPDU frames and SLA_SBPDU_Proc procedure
for processing SLA_SBPDU frames will be discussed here-
inafter with reference to Section V and Section IV respec-
tively. The flow-charts for these procedures are shown in
FIG. 12 and FIG. 9 respectively. A STAR bridge invokes a
Data_Frame_Proc procedure when a data frame is received.
The flow-chart for Data_Frame Proc is shown in FIG. 8.
Different procedures are executed depending on the current
state of the bridge. The processing of data frames will be
discussed further in Section IV and Section V.

I1. Model

In this section, we describe the mathematical model we
use in this invention. We will also define the notations for the
proposed protocol. A summary can be found in Table A in
the Appendix.

In the present invention the bridged LAN is represented as
an undirected graph G=(V, E) where V is the set of all
bridges and E is the set of links connecting the bridges. Each
link (%, y)EE is assumed to have a non-negative cost ¢(X, y).
For convenience, we let c(x, y)== if (x, y)EE. If there are
several links between bridge x and bridge y, c¢(x, y) should
be the minimum among the costs of the links. A path in G
is a loop-free tandem concatenation of links in E. The length
of a path is the sum of the costs of all the links along the
path. The distance between a pair of nodes, x and y, is the
length of a shortest path connecting the nodes.

Bridge x is a direct neighbor of bridge y, and vice versa,
if (x, y)EE. T=(V, E,) is a tree subgraph of G representing
an RST, wherein (x, y)EE 7 if and only if (x, y) is an activated
link in the RST. The links in E, are referred to as tree links
and the links in B\E, as non-tree links. If (x, y)EE,, x and
y are tree neighbors. A path in T is a tree path. A tree path
originating at bridge s and terminating at bridge t is denoted
treepath(s, t). The distance of this tree path is denoted d (s,
t). Note that d(x, y)=c(x, y) if x and y are tree neighbors.
We refer to Treepath(s, t) are referred to as an old bridge tree
path if it has at least one intermediate bridge (i.e., one other
than the source and destination bridges) and every interme-
diate bridge on the path is an old bridge. B represents the set
of STAR bridges. If s and t are STAR bridges, that s, s, t€B,
and there is an old bridge tree path between them, s is a
distant STAR neighbor of t, and vice versa. If, in addition,

45

50

14
s is an ancestor of t, then s is a unique distant STAR ancestor
neighbor of t. Henceforth, the distant STAR ancestor neigh-
bor of a bridge t will be referred to by dsan(t). The set of
distant STAR neighbors of n is represented by N'g(n).

The nearest common ancestor of x and y is the highest-
level bridge on a tree path between x and y. If X is an
ancestor of y, then x is necessarily the nearest common
ancestor of x and y. Let the nearest common ancestor of x
and y be denoted nca(x, y). We say x and y are on different
branches if nca(x, y)=x and nca(x, y)=y. We call (x, y)SE\E
a crosslink if x and y are on different branches. x and y are
crosslink neighbors then. FIG. 10 is an example of an
undirected graph of a bridged LAN. Node r is the root. The
solid lines are links in E, and the dotted lines are non-tree
links. Link (u, q) is a non-tree link but not a crosslink while
(W, ¥), (u', v) and (v, z) are all crosslinks. Therefore, u and
q are direct neighbors but neither tree neighbors nor
crosslink neighbors. They are distant STAR neighbors
though since the path u—=y—>q is an old bridge tree path.
Table 1 summarizes the definitions of different kinds of
neighbors.

TABLE 1

Neighbor Types

Neighbor Type Definition

Direct neighbors X VYEV,(x,y)EE

Tree neighbors % yEV, (x,y) EEr

Crosslink neighbors X,y EV, (x,y) € BEr and nea(x, y) = x and

neax, y) = y
Direct STAR neighbors x,yE€EB, (x,y) EE
Distant STAR neighbors x, y € B, treepath(x, y) is an old bridge

tree path

Since an old bridge sets the port associated with each of
its non-tree links to blocking state, there is no way to use any
such a link to forward data frames, even though the other
side of the link is a STAR bridge. Therefore, a non-tree link
may be used only if it connects two STAR bridges. Even so,
such a link may not support any shortest path. There is yet
another reason that a non-tree link is useless. Consider FIG.
10 where both bridges u and q are STAR bridges. This
non-tree link between them is useless because the distance
of this link must be larger than the tree path from u to g
otherwise, the spanning tree algorithm would have set q to
be a child of w. In FIG. 10, (u, q) and (w, y) are ineligible
links. A non-tree link that is obviously useless, as just
described, for supporting any shortest path is termed an
ineligible link. A non-tree link is termed eligible otherwise.
In FIG. 10, (', v) and (v', z) are eligible crosslinks.

A STAR bridge graph is defined as Gz=(B, Ez) where B
is the set of STAR bridges and (x, y)EE if and only if x and
y are STAR neighbors, either direct or distant. ¢'(x, y), the
cost of link (x, y), is defined by the following formula.

US 7,027,453 B2

clx, y)

16

if x and y are direct but not distant STAR neighbors

c'(x, y) = { min(dr(x, y), c{x, y)) if x and y are both direct and distant STAR neighbors

drix, y)

The STAR bridge graph of FIG. 10 is shown in FIG. 11.

[I. Path Finding Process

The goal of this process is to compute the BF Table. In the
best case, the BF Table has next hop and forwarding port
information associated with a shortest path to a STAR
bridge. The STAR bridge graph contains all tree paths
among STAR bridges and all eligible non-tree links in the
original bridged LAN. Therefore, the shortest path in Gz
between a pair of STAR bridges x and y would be the best
path which can be achieved in the bridged LAN after
pruning ineligible links. Ideally, if every ¢'(x, y) can be
computed correctly, each STAR bridge can compute its own
BF Table based on distance vectors. Nonetheless, we will
still use a distance vector approach may be used for updating
the BF Table, except that some modification as described
below is needed.

In a conventional distance vector update protocol, each
node initializes its distance vector with distances to all its
neighbors. It then sends the distance vector to all its neigh-
bors. When a neighbor receives the distance vector, the
neighbor updates its own distance vector if any shorter path
is found. This neighbor then sends its update to all its own
neighbors. The procedure keeps on going until the algorithm
converges.

As there are old and STAR bridges in the bridged LAN,
the conventional distance vector update protocol cannot be
applied directly. Each bridge knows only the cost to its direct
neighbors. If x and y are distant STAR neighbors, both x and
y do not know d,(x, y) since there are one or more old
bridges between them. Therefore, a bridge xEB has to
determine d(x, y) if y is a distant STAR neighbor. Unfor-
tunately, due to the limitation of old bridges, STAR bridges
may not be able to determine every distance correctly.
Nonetheless, the distances may be estimated such that each
estimated distance is at least its corresponding real distance.

The process for path finding in the proposed protocol
consists of two procedures:

Distance Vector Estimation

Distance Vector Enhancement

In these procedures, STAR bridges communicate using
Distance Vector Computation SBPDUs. In the Distance
Vector Estimation procedure, each STAR bridge initializes
the distance to its neighbors in the STAR bridge graph of the
bridged LAN. It involves discovery of distant STAR neigh-
bors and computation of the tree path distances as described
above. In the Distance Vector Enhancement procedure,
which follows the Distance Vector Estimation procedure,
STAR bridges exchange their distance vectors, discover
other non-neighbor STAR bridges, and find the shortest path
to them.

In the process, a STAR bridge n maintains a distance
vector only for other STAR bridges known to n. As unknown
STAR bridges are discovered by n in the process of the

10

15

20

25

30

35

40

50

55

60

65

if x and y are distant but not direct ST ARneighbors

algorithm, a new entry is created in the distance vector
maintained by n for each newly discovered STAR bridge.
When the process ends, n should have discovered all other
STAR bridges and its distance vector will consist of one
entry for each STAR bridge n'€B\{n}. Each entry in the
distance vector of n consists of a tuple of seven fields. The
entry associated with n' in the distance vector of n is denoted
as DVT(n, n'). As summarized in Table 2, the information
contained in DVT(n, n') provides an estimated distance
between n and n', indicates whether the estimated distance is
actually accurate, and enables STAR bridge n to know its
forwarding port for n', its next hop STAR bridge neighbor on
the forwarding path to n', indicates whether the forwarding
path is a tree path, as well as whether n' is an ancestor or a
descendant. Incidentally, d(n, n"), the current estimated dis-
tance from n to n', will be appropriately initialized as
described in Sections II1.A and III.B.

TABLE 2

Fields in DVT(n, n'") for a Path from n to n'

Tield Definition

N ID of destination STAR bridge

d(n, n') Estimated distance between n and n'

F(n, n) Forwarding port for n'

next (n, n') ID of the next hop STAR bridge neighbor on the path
from n to n'

FG_A(n, n) Distance accuracy flag with a value 1 if d(n, n') is accurate,
and 0 ctherwise

FG_T(, n) Tree path flag with a value 1 if the path from n to n' is a
tree path, and 0 otherwise

TG_R(n,n) Relation flag with a value 1 if n' is an ancestor of n, -1 if

1' is a descendant of n, and 0 otherwise

II1.A Distance Vector Estimation

In the DV Estimation procedure, a STAR bridge n dis-
covers all its STAR neighbors, both direct and distant, that
is, the fields in the distance vector of STAR bridge n are
filled out for each STAR bridge n'EB\{n} where (n, n")EE,,.
There are two phases in the Distance Vector Estimation
procedure. In the first phase, STAR bridge n estimates d{(n,
n') if n' is a distant STAR neighbor and n fills out the entry
for n' in DVT(n, n'). Note that d(n, n') is equal to the
estimated d,(n, n') in this phase. In the second phase, n
determines and fills out the entry for k if kEN(n). If k is a
distant STAR neighbor of n, then n replaces d(n, k) by c(n,
k) and other fields accordingly only if it is appropriate. This
phase will be discussed in more detail later.

Before the spanning tree algorithm starts, each bridge,
either old or STAR, should know its own ID and the cost of
the link to each of its direct neighbors in the bridged LAN.
After the tree has been built, every bridge k will also know
its tree links, as well as the root bridge and the root path
distance, d,(k), where bridge r is the root bridge. Inciden-
tally, d,(r)=0. Table 3 is the topology information of bridge
v in FIG. 10 after the spanning tree computation. The

US 7,027,453 B2

17
column OId/STAR is the information obtained by STAR
bridges only while all bridges, either old or STAR, obtain all
other columns.

TABLE 3

Tapology Database of Bridge v

Bridge Type Distance P(v) Old/STAR
R Root d.(v) V) N/A
X Parent c(v, X) p(v, X) Oold
U Non-tree neighbor ¢(v, u') p(v, 1) STAR

There are three kinds of DVC_SBPDU frames in the first
phase—DVMyInfo, DVOurlnfo, and DVInform frames.
Table 4 shows the formats of these frames. DVMylnfo
frames are used for a STAR bridge to inform other STAR
bridges of its own topology information. DVOurlnfo frames
carry information related to both the source and the desti-
nation STAR bridges. DVInform frames allow STAR
bridges to pass on topology information of other STAR
bridges. DVRecord frames are used in Distance Vector
Enhancement and will be described in Section II1.B
DVC_SBPDU_Proc procedure first identifies the frame and
then invokes corresponding procedures. The flow-chart for
DVC_SBPDU_Proc is shown in FIG. 12.

Each STAR bridge k sends a DVMyInfo(k) frame on its
root link only if its parent is an old bridge. If there is any
STAR bridge along the root path of k, the one that is nearest
to k, say n, will receive the DVMyInfo(k) frame from a child
link. Note that n and k are distant STAR neighbors. n is the
distant STAR ancestor neighbor of k and n=dsan(k). Bridge
n can determine the tree path distance between k and n,
wherein d{(n, k)=d,(k, n) is the difference of their root path
distances. Then, n informs k of the distance between them by
a DVOurlnfo(n, k) frame and stops forwarding the DVMy-
Info(k) frame. In this case, n and k are on the same branch
and n is an ancestor of k. If the STAR bridges are on different
branches, like v and v' in FIG. 10, and there is no STAR
bridge on the tree path between them, then, since DVMyInfo
frames are multicast frames addressed to all STAR bridges,
v' will receive the DVMylnfo(v) frame of v and vice versa.
However, there is no way for them to calculate the real tree
path distance between them using root path distance alone.
In the case of v and v/, if they know that they have the same
parent, they can determine the accurate tree path distance.
Therefore, the DVMyInfo(v) frame also contains the infor-
mation of the parent of v. When v and v' receive each other’s
DVMylnfo frame through a root link and find out they are
siblings, they may calculate the distance between them
correctly by adding c(v, parent(v)) and c(v' parent(v")).

TABLE 4
Format of DVC SBPDU Framies
SBPDU Frame Format Source Destination
DVMyInfo(n) <n, d,(n), parent (n), n1E€B multicast
c(n, parent(n))> address of B
where parent(n) € V'B
DVOurlnfo(n, n') <n, 1, d(n, n'), cb(n, n'), ncB n € B

¢(n, cb(n, n"))>

10

15

20

25

30

35

40

45

50

55

60

65

18

TABLE 4-continued

Format of DVC SBPDU Frames

SBPDU Frame Format Source Destination
where n' € B, and
cb(n, n') EV'B

DVInform(n, n') <n, ', d(n, n')> n€B k € B\{n}
where n' € B\{n} and k € Ng'(n)

DVRecord(n, n') <n, 0, dx, 1), n€EB kEB{nn}
FG_A(n, n"), FG_T(n, 1), and k € Np'(n)

FG_R(n, n')>
where n' € B\{n}

FIG. 13 shows an example in which it is not sufficient to
calculate the correct distance. Nevertheless, n and j may
obtain an overestimate of the true distance between them by
simply adding d (k, n) and d/k, j). It can be done by
requiring k, the distant STAR ancestor neighbor, to send the
information d,{k, j) to n using a DVInform(k, j) frame. If n
also knows c(k, m), where m is the child of k on the path to
n, it can get an even better estimate. Therefore, m and c(k,
m) are sent by k in a DVOurlnfo(k, n) frame. Note that
mEV\B. We denote by cb(k, n) the child bridge of k on a tree
path leading from k to n. Let dsanc(n) be used by bridge n
to keep track of cb(k, n), the child of the dsan(n), and dcc(n)
to denote the doubly counted cost of the link between cb(k,
n) and k. In this case, dsanc(n) and dcc(n) are respectively
set to cb(k, n) and c(k, dsanc(n)).

Upon receiving a DVMylnfo(k) frame<k, d, n', ¢> from
tree port p, a STAR bridge self, with its root path distance
d,(n), processes the frame as in Psendocode 1. FIG. 14
shows the flow-chart corresponding to Pseudocode 1
(DVMylnfo_Proc). When p is a child port, k is a descendant
of self and self can calculate the tree path distance between
them and inform k. There are two cases of interest in the
processing of a DVMyInfo frame when p is a root port. In
Case 1.1, bridges self and k are siblings with a common old
bridge parent. In Case 1.2, self and k are on different
branches but they are not siblings and the distance d(self; k)
evaluated in this case may be incorrect. It is correct only if
the nearest common ancestor of self and k is the root bridge.

If n and k do have a STAR common ancestor n', n can
estimate d(n, k) better when it receives the DVOurlnfo(n', n)
and DVInform(n', k) frames from n'. STAR bridge self
processes DVOurlnfo frame <n, k, d, m, ¢> as in
Pseudocode 2. FIG. 15 shows the flow-chart corresponding
to Pseudocode 2 (DVOurlnfo_Proc).

Each STAR bridge n receives at most one DVOurInfo(n'
n) frame, and this frame must be sent from dsan(n), which
isn'. In Pseudocode 2, the frame DVOurlnfo(n' k) is dropped
when selfzk because the recipient of the frame is self and
there is no other STAR bridge along the path from self to n'.
In Pseudocode 1, a DVOurlnfo(n', n) frame is sent before
sending any DVInform frame. As a DVInform frame will
not propagate beyond its distant STAR neighbors and
bridges do not reorder frames, we can conclude that n
receives the DVOurlnfo(n', n) frame before receiving any
DVInform frame sent by n'. Therefore, when bridge n
receives a DVInform(n', j) frame <n', j, d>, it should have
dsanc(n) and dee(n) correctly assigned. The pseudocode for
bridge self to execute when the DVInform(k, j) frame <k, j,

US 7,027,453 B2

19

d> is received is shown in Pseudocode 3. FIG. 16 shows the
flow-chart corresponding to Pseudocode 3.

A STAR bridge self processes a DVInform(k, j) frame <k,
j» d> according to the following different situations:
Case 3.1: self5j, that is, k 1s informing self the distance
between them
Case 3.2: selfz], and, either d(self, k) or d(self, j) is
unknown
Case 3.3: selfzj, d(self, j) is estimated
Case 3.3a: parent(self)=dsanc(self)
Case 3.3b: parent(self)=dsanc(self)
Case 3.4: selfzj, d(self, k) is known, and d(self, j) is
accurate
If d(self, j) is accurate, the bridge self does not have to do
anything. In Case 3.3 when FG_A(n, j)=0, it means d(self, j)
is an estimate and so a better estimate can be obtained. Case
3.3a s the situation where dsanc(self) is the nearest common
ancestor of self and j. As a result, self can calculate the
distance correctly. Since j may not be able to do so (see FIG.
13), self has to inform j by a DVInform(self, j) frame. When
j receives that, which is Case 3.1, it can enhance the
distance. Case 3.3b is the situation that accurate distance
cannot be found but the estimated distance can be improved
by taking out the doubly counted cost dec(n). Since DVIn-
form frames are sent after DVOurlnfo and DVMylnfo
frames, Case 3.2 occurs only if there is an error.

Ultimately, the first phase must terminate. When it termi-
nates, n should have a correct or an overestimate d {n, n') for
every distant STAR neighbor n'. We then proceed to the
second phase, that is, each STAR bridge n will fill out
DVT(n, k) if k is a direct STAR neighbor of n. If k is a tree
neighbor, n should know c(n, k) from the topology database,
it can initialize the entry DVT(n, k) to be (c(n, k), p(n, k),
k, 1, 1, 1) if k is a parent and (c(n, k), p(n, k), k, 1, 1, -1)
ifk is a child. If k is a crosslink neighbor, there are two cases.
Ifk is not a distant STAR neighbor, n doesn’t have DVT(n,
k) yet and so initializes it to be (c(n, k), p(n, k), k, 1, 0, 0).
On the other hand, if k is also a distant STAR neighbor, d(n,
k) should, if possible be assigned to be min(d{(n, k), c(n, k)),
and other fields accordingly. If the estimated d,{n, k) is
surely correct, that is, if FG_A(n, k)=1, it is trivial. Unfor-
tunately, d;{n, k) may be incorrect. Since we are not sure
whether the direct link (n, k) is shorter than the tree path
from n to k, d{(n, k) won’t be replaced in order to avoid
selecting a link with a larger distance than its corresponding
tree path. The same applies whenever the distance vector is
enhanced. When the tree path distance between a pair of
STAR bridges is only an estimate, the tree path won’t be
replaced between them by a non-tree path. Therefore, when
the distance vector becomes stable, d(n, n)=d{n, n') for all
n, n'EB such that n=n'.

Pseudocode 1: DVMyInfo_ Proc

PROCEDURE: DVMyInfo_ Proc(k, d, 1, ¢, p), also see FIG. 14.

Begin
If p = p, (self) /% p is the root port, self and k

are on different branches */

w

10

15

40

45

60

65

20

-continued

If parent(self) = /* Case 1.1: self and k are siblings */

n

d(self k) := cself, n’) + ¢ ;

FG_Afself, k) :=1

/* Case 1.2: self and k are not siblings */

Else

d(self, k) :== /* overestimated d(self, k) */

d.(selh+ d ;

FG_Afself, k) :== 0
Endif
Fiself, k) :=p;

next(self, k) ==k ;
FG_T(self, k) =1
FG_R(self, k) :=0
/% p is a child link port, i.e.,
self is an ancestor of k */
DVT(self, k) == (d - d(sel), p, k, 1, 1, -1) ;
Send DVOurlnfo(self, k) frame to k
<self, k, d(self, k), cb(self, k), c(self, cb(self, k))>
For each bridge | where F(self, j) = F(self, k)
/* j and k are from the same child port */
Send to j DVInform(self, k) frame
<self, k, d(self, k)>
Send to k DVInform(self,) frame
<self, j, d(self,)>

Else

endif
end
Pseudocode 2: DVOurinfo_ Proc

PROCEDURE: DVOurlnfo_ Proc(n’, k, d, m, c), also see FIG. 15

Begin

Ifself = k
Drop the frame

Else
d(self, n’) :=d ;
Fiself, n’) := p,(self) ;
next(self, n’) :==1";
FG_A(self,n”) =1 ;
FG_T(self, n’) :=1;
FG_R(self, n’) :=1;
dsanc(self) = m;
dee(self) = ¢

endif

/* error */

end
Pseudocode 3: DVInform_ Proc

PROCEDURE: DVInform_ Proc(k, j, d), also see FIG. 16.
Begin
Ifj = self /* Case 3.1 %/

d(self, k) :==d ;
FG_A(self, k) =1
Else If d(self, k) is unknown or
dzelf, j) is unknown
Drop the frame
Else if FG_A(self, j) =0 /* Case 3.3 %/
If parent(self) = dsanc(self) /* Case 3.3a %/
d(self, J) == ¢(self, parent(self)) + (d - dee(self));
FG_A(self, j) =1
Send DVInform frame < self, j, d(self, j)> to j

/* Case 3.2 %/

Else /% Case 3.3b */
d(self, J) == (d(self, k) - dec(sel)) + (d - dee(self))
endif
endif

end

1II.B Distance Vector Enhancement

The DV Enhancement procedure is similar to the distance
vector exchange procedure in the traditional approach
except that we can replace a tree path only if its exact

distance is known. That is, d(n, n') in the distance vector can
be replaced only if FG_A(n, n')=1 or FG_T(n, n")=0. On the

US 7,027,453 B2

21

other hand, if a tree path from n to n' is found and d(n, n)
is only an estimate, it replaces d(n, n') in the distance vector.
After the DV Estimation procedure, bridge n only knows the
tree distance, either correct or estimate, to its tree neighbors
and distant STAR neighbors. In order to let a bridge identify
whether a path to a formerly unknown bridge is a tree path
and whether the tree path distance is correct, the accuracy
flag and the tree path flag must be put in the DVRecord
frames. The format of a DVRecord(n, n') frame sent by
bridge n is <n, n', d(n, n'), FG_A(n, n'), FG_T(n, n",
FG_R(n, n")>. Pseudocode 4 is the DV Enhancement pro-
cedure of STAR bridge self upon receiving DVRecord(j, k)
frame <j, k, d, FG_A FG_T, FG_R>. FIG. 17 shows the
flow-chart corresponding to Pseudocode 4 (DVRecord-
_Proc).

In Pseudocode 4, when the path from self to j and the path
from j to k are both tree paths, the path from self'to k through

w

10

15

22

j must be a tree path too. This is Case 4.1. FG_R(self, k) flag
1s updated accordingly and the tree path information is sent
to other STAR neighbors so that the other STAR tree
neighbors discover the tree path leading to k. If the tree path
distance is an estimate, it always replaces the existing
DVT(self, k); otherwise, it replaces only if it is better in
terms of distance. Case 4.2 is the case where a non-tree path
is found. If the existing DV T(self, k) is not an estimated tree
path, it can be replaced if the newly found path is shorter.
After the algorithm converges, the distance vector can be
reduced to the BF Table. Bridge n has to keep F(n, n') and
next(n, n') for every bridge n'€B\{n} for forwarding pur-
pose. A path in the BF Table between a pair of STAR bridges
1s referred to as a STAR forwarding path. Note that a STAR
forwarding path may be a standard tree path or an enhanced
forwarding path when it can be identified.

Pseudocode 4: DVRecord__Proc

PROCEDURE: DVRecord_ Proc(j, k, d, FG_A, FG_T, FG_R), also see FIG. 17.

Begin
If k is unknown

DVT(selfk) := (w0,p,(self), j, 0, 0, 0)

Endif

If FG_T(self, j) =1 and FG_T = 1
If FG_R(self,) = 1 and FG = 1

/* k is newly discovered */

/* initialize DVT (self, k) */

/% Case 4.1: a tree path to k is found */

/* k is an ancestor of self */

FG_R (self, k) =1
Else if FG_R (self, J)
FG_R (self, k) = -1

endif

If FGA (self,) =0 or FG_A =10

FG =0

-land FG_R =-1 /* k is a descendant of self */

/¥ tree path distance is a estimate */

DVT (self, k) = (d(self, j) + d, F(sel, j), j, 0, 1, FG_R (self, k)

Else
FG =1
Endif

Send DVRecord <self, k, d(self,j) + d, FG, 1, FG_R (selfk)>

to all STAR neighbors except |

If d(self, j) + d < diself, k)

/* tree path distance is correct and better */

DVT(self, k) 1= (d(sels, j) + d, F(self, j), i, 1, 1, FG_R(self, k))

endif
Else

If FG_A(self, k) = 1 or FG_T(self, k) = 0

/% Case 4.2: a non-tree path is found */

/* original path can be replaced */

If diself, j) + d < d(self, k)
DVT(self, k) := (d(self, j) + d, F(self, j), j, 1, 0, FG_R(self k))
Send DVRecord < self, k, d(self, k), 1, 0, FG_R(self, k)> to

all STAR neighbors except |

endif
endif
endif

end

US 7,027,453 B2

23
IV. STAR learning process

When the path finding process is done, a STAR bridge
should have filled its BF Table. It then starts the STAR
learning process and the STAR forwarding process to for-
ward data frames. The BF Table alone is not enough to
forward a data frame since the data frame contains the
address of an end station instead of a bridge. Therefore, the
STAR learning process has to learn the location of end
stations and store the information. An ESL Table is used to
map end stations to STAR bridges.

IV.A Designated Bridge and Agent Bridge

Each LAN has a designated bridge and this bridge is also
the designated bridge of all end stations attached to that
LAN. The designated bridge of an end station s to is
designated to be db(s). A designated bridge may be an old
bridge or a STAR bridge.

If an end station can be mapped to its “closest” STAR
bridge, as the distance vector is correct, the bridges will
forward the frame according to a STAR forwarding path.
This 1s called this “closest” bridge the agent bridge of the
end station. This agent bridge must be a STAR bridge for the
BF Table contains STAR bridges only. Once a STAR bridge
identifies itself to be an agent bridge of a formerly unknown
end station, it is responsible to tell other bridges so that they
know where to forward a frame destined for that station.
This can be done by using Station Location Announcement
SBPDU frames. For convenience, we refer a Station
Announcement SBPDU frame as a StationLoc frame. The
destination address of all StationLoc frames is the multicast
address of bridge group B. Let the format of a Stationl.oc
frame be <end station address, agent bridge ID>. The
expression ESL(n, s) represents ab(s) in the ESL Table of n.

The designated bridge is a suitable candidate to be an
agent bridge if it is a STAR bridge. If the designated bridge
is a STAR bridge, it can announce itself to be the agent
bridge. However, an old bridge does not do that. As a result,
we need to find a STAR bridge that is reasonably close to the
old, designated bridge of the end station to be the agent.
When an old bridge forwards a data frame, it may send it to
more than one child link but at most one root link. Therefore,
it would be undesirable to have a STAR bridge on the
downstream to be an agent for we may end up having more
than one agent. Among all the STAR bridges along the
upstream, the one closest to the old bridge is preferred.
However, there are situations that no agent bridge is iden-
tified. For example, if the designated bridge is the root that
is an old bridge, all the STAR bridges will be on downstream
and so no bridge will declare as the agent bridge. In that
case, the tree path is used for forwarding and we record the
forwarding port in the FD as what the old bridges do. We say
the agent bridge is undefined for an end station if there is no
bridge declared as the agent. In other words, the agent bridge
is unknown to all STAR bridges.

IV.B End Station Location Table

Each entry in the ESL Table of STAR bridge n is a tuple
(s, ab(s)) where s is an end station and ab(s) is the agent
bridge of s. Each such entry in the ESL Table of n is created
when an unknown end station is newly discovered by n.

10

15

20

25

30

35

40

45

50

55

60

65

24
Each entry in the FD of STAR bridge n indicates a forward-
ing port of n for an end station s, that is f(n, s). Each such
entry in the FD of n 1s created when an unknown end station
is newly discovered by n.

The STAR learning process of STAR bridges is respon-
sible for filling out these entries. STAR bridge n fills out the
ESL Table using the information in the StationLoc frames
received. The FD can be filled as in the IEEE 802.1D
standard, in which case n records the port from where a
normal data frame arrives. The set of end stations in the ESL
Table of n is H(n) and the set of end stations in the FD of n
is S(n).

An end station s is referred to as a known end station with
respect to n if s€H(n)US(n); s is unknown otherwise. Note
that, after timing out old entries in the FD, H(n)NS(n) is a
set of end stations where the agent bridge of each of the end
stations is n. In addition to filling out the ESL Table and FD,
n should be able to identify whether it is the agent bridge of
an end station s when a normal data frame from s is received.

IV.C Procedures for STAR Learning Process

Whenever a STAR bridge is in the Enhanced state, it
executes the STAR Learning process. The bridge invokes a
SLA_SBPDU_Proc procedure upon receiving a StationL.oc
frame, and a DF_STAR_ILearning_Proc procedure upon
receiving a normal data frame. The pseudocodes for these
procedures are shown in Pseudocode 5 and Pseudocode 6
respectively. In both pseudocodes, whenever an entry in the
ESL Table or the FD is updated or created, its corresponding
timer is reset. FIG. 18 and FIG. 19 show the flow-charts
corresponding to Pseudocode 5 and Pseudocode 6 respec-
tively.

The SLA_SBPDU Proc procedure is used by a STAR
bridge to update its ESL Table and to propagate agent bridge
information to its STAR neighbors. Specifically, upon
receiving a StationLoc(s) frame <s, k> from tree port p, a
STAR bridge self assigns k, the agent bridge of s, to
ESL(self, s), and then forwards the StationLoc(s) out of all
its tree ports except p.

The DF_STAR Learning_Proc procedure is used by a
STAR bridge to update its FD and ESL Table upon receiving
a normal data frame fr. The procedure is also used by the
STAR bridge to discover if it is an agent bridge for src(fr),
and if so, the STAR bridge forwards a StationLoc(src(fr))
out of appropriate tree ports.

As specified in Pseudocode 6, when self is the designated
bridge but not the agent bridge of the source end station s
(Case 6.1), it sends a StationLoc(s) frame on all tree ports
and updates the FD entry and ESL Table entry for s. If ab(s)
1s unknown (Case 6.2), self has to check whether it is ab(s).
If ab(s)=db(s), then ab(s) is the closest upstream STAR
bridge and so ab(s) must receive the normal data frame of s
from a child link port (Case 6.2a). The agent bridge sends the
StationLoc(s) frame on all tree ports. Therefore, those STAR
bridges in higher levels of the spanning tree will receive the
StationLoc(s) frame before the normal data frame. They
should have an entry for s in their ESL Tables by the time
they receive the normal data frame and won’t send out
another StationLoc(s) frame.

US 7,027,453 B2

25

Pseudocode 5: SLA__SBPDU_ Proc

PROCEDURE: SLA_SBPDU_ Proc(s, k, p), see also FIG. 9

Begin
ESL(self, 5) :=k; /* fill the ESL Table */
Send StationLoc(s) frame on all tree ports except p
end
Pseudocode 6: DF__STAR_ Learning Proc

PROCEDURE: DF_ STAR_ Learning Proc(ft, p), see also FIG. 18

/* fr is a normal data frame */
Begin

s = sre(fr)

If db(s) = self and ab(s) = self /* Case 6.1: self is the designated
bridge and current agent bridge
is not self */

Send Station Loc(s) <s, self> frame on all tree ports

flself, s) =p;

ESL(self, s) := self
Else if ab(s) is not found /* Case 6.2: agent bridge
not known */

/* Case 6.2a: p is a child
link port */

Send StationLoc(s) <s, self> frame on all tree ports

f(self, s) := p;

ESL(self, s) = self
Else if p is a root port

fself, s) =p

If p is a child port

end

V. STAR forwarding process

STAR bridges execute the STAR forwarding process after
the STAR learning process when a data frame is received.
Having received a data frame destined for an end station t,
a STAR bridge n first checks its ESL Table to determine if
it knows ab(t), the agent bridge of t. If ab(t) is found, n will
then find out from its BF Table the forwarding port of ab(t).
If no entry for ab(t) is found in the BF Table, the data frame
is dropped because it indicates an error in the BF Table.
Since the agent bridge is a STAR bridge, the BF Table
should have a record showing how to get there. If ab(t) is
unknown, n will proceed to check its FD. If end station t is
unknown, STAR bridge n will forward the data frame on all
tree ports except the incoming one, just as the IEEE 802.1D
standard.

V.A Frame Duplication Problem

In the IEEE 802.1D standard, although a bridge may
forward the same frame on more than one pott, only one port
leads to the destination and the designated bridge of the
destination since there is a unique path from any source to
any destination on a spanning tree. Therefore, an old bridge
can never receive the same data frame more than once. As
the STAR bridge graph may not be a tree, two STAR bridges
may receive the same data frame and try to forward it to the
destination using different paths. For example, suppose that
the destination end station is attached to u' and the source
end station is attached to x in FIG. 10. If x forwards one copy
of the data frame to w and one to v, u' may receive two
copies of the same data frame, one from w and one from v.
The STAR Bridge Protocol avoids this by allowing only w,
the agent bridge of s, to forward the frame using, in this case,
an enhanced forwarding path. Since the agent bridge is
unique, at most one copy of the frame may be sent to the
destination.

10

15

20

25

30

40

45

26

V.B Frame Dropping Problem

Another problem is due to the existence of old bridges.
Although the STAR bridges know how to forward a frame
on an enhanced forwarding path after knowing the location
of the destination, old bridges don’t. In some cases, old
bridges will drop a frame trying to pass through. In FIG. 10,
bridges w, x, and v' are on the same branch and there is a
crosslink between v' and z. Let z be the designated bridge of
end station s1. As x and z are on different branches, in the
FD of x, it marks the root port as the forwarding port of s1.
However, if w wants to send a frame to s1 and finds out the
shortest path to z is going through v', it sends the frame with
destination address s1 to x. The frame will be dropped by x
since it is coming from the forwarding direction. To fix this
problem, we will encapsulate the normal data frame with an
appropriate proxy destination address so that x will forward
the frame towards V', but not other directions as in Section
1.E. An old bridge may drop a data frame only if the data
frame is being forwarded on a tree path. It also implies that
the frame is trying to go from one STAR bridge to another
through an old bridge tree path between them. If the desti-
nation address of a frame is the MAC address of the next hop
bridge, all the old bridges along the tree path will forward
the frame to the next hop as desired. In the present example,
w encapsulates the frame with the MAC address of v' as a
proxy destination address, such that X, upon receiving the
encapsulated frame, will forward the frame to v' without
dropping it. In general, when the next hop STAR bridge is
not a tree neighbor, the sender STAR bridge will encapsulate
the data frame. Since the encapsulated data frames are
encapsulated using the sender STAR bridge MAC address as
the source address, old bridges will learn the forwarding
directions to the sender STAR bridge. In this respect, no
additional control message is needed to enable old bridges to
learn the forwarding direction to any STAR bridge.

A BA Table is used to keep the MAC addresses of all
distant STAR neighbors. Since STAR bridge n puts its MAC
address as the source address of the DVMylnfo and DVOur-
Info frames it sends, we don’t need an extra SBPDU frame
to fill this table.

V.D Redundant Traversal Problem

The encapsulation approach described in Section V.B may
prevent a designated old bridge from identifying a normal
data frame that is destined to it. Referring to the configu-
ration in FIG. 10, let end station s be attached to the old
bridge x. According to the protocol, STAR bridge w will
declare itself to be the agent bridge of s, so that all frames
destined for s will be forwarded as though they were
destined for w. Suppose that s1 wants to send a frame to s.
STAR bridge z, which is db(s1), will forward the frame via
a crosslink to v' then. Since the next hop to a STAR bridge
is w and it is on a tree path, v' will encapsulate the frame with
w as a proxy destination. When old bridge x receives the
frame, it will think that it is not a frame addressed to itself
and forward it to the proxy destination w. When w receives
it, it will strip off the encapsulation header and send the
normal data frame back to x. Then, x can identify the frame
and send it to the destination end station. Therefore, the data
frame traverses a redundant path from the designated bridge
to the agent bridge and back to the designated bridge. In the

US 7,027,453 B2

27

case where the agent bridge of source end station, ab(s), and
the agent bridge of the destination end station, ab(t), are on
different branches, we will show later in Section VII.C. that
the total distance traversed is still no worse than the corre-
sponding tree path. However, when ab(s) and ab(t) are on the
same branch, the total distance traversed may be longer than
the tree path. We avoid this by not encapsulating the normal
data frame in this situation. To let the next hop STAR bridge
know whether a frame is intended to be forwarded on an
enhanced forwarding path or a tree path, the agent bridge
always encapsulates a frame that is going to be forwarded on
an enhanced forwarding path.

V.E Procedure for STAR Forwarding Process

To avoid unnecessary frame dropping, STAR bridge n
encapsulates a normal data frame as discussed in Section
LE. In the encapsulated data frame, the MAC address of n
is used as the source address and the MAC address of the
next hop STAR bridge is used as the destination address.
Given a data frame fr, if it is a normal data frame, src(fr) and
dst(fr) 1s the source end station address and the destination
end station address respectively. If fr is an encapsulated data
frame, it must have been encapsulated by a STAR bridge
whose MAC address is src(fr), and dst(fr) is the address of
the intended STAR bridge recipient. We let encap(ft,
srcbridge, dstbridge) as the encapsulated data frame of a
normal data frame fr where srcbridge and dstbridge are
respectively the source and destination addresses associated
with the encapsulated frame. We use uncap(fr) to represent
the normal data frame that an encapsulated data frame fr is
carrying in its payload. Pseudocode 7 presents the
FD_Search procedure for finding information from the FD.
Pseudocode 8 presents the ESI,_Search procedure for find-
ing information from the ESL Table. In all the pseudocodes
of this section, self is the STAR bridge executing the
process, p is the receiving port of the data frame, s is the
source end station, t is the destination end station, and pld is

15

28

the payload portion of a normal data frame. FIG. 19 and FIG.
20 show the flow-charts corresponding to Pseudocode 7 and
Pseudocode 8 respectively.

In Pseudocode 8 (ESL_Search_Proc(s, t, pld, p)), when
the agent bridge of end station t is not known (Case 8.1). It
is an error case and the frame should be dropped. This is an
error because DF_STAR_Forwarding_Proc calls
ESL_Search_Proc only when self knows that ab(t) is defined
(Cas 9.2) or ab(t) is known by some STAR bridge that
encapsulates the frame (Case 9.1). When self itself is the
agent bridge of t (Case 8.2), it sends the frame to the
forwarding port leading to t. In Case 8.3, the agent bridge is
another STAR bridge. In this case, the BF Table should give
the forwarding port and the next hop information. If not,
there is error and the frame is dropped.

Pseudocode 9 is a complete new forwarding procedure of
bridge self. FIG. 22 shows the flow-chart corresponding to
Pseudocode 9. When the data frame is encapsulated, it must
be sent from another STAR bridge n', which has the infor-
mation of ab(t) in its ESL Table and BF Table. Therefore,
self should search from its ESL Table to forward the frame.
On the other hand, when the data frame is not encapsulated,
there are several situations. If ab(t) is unknown (Case 9.2a),
of course, self should try to look at the FD. Both Case 9.2b
and Case 9.2¢ are the cases where ab(t) is known. In Case
9.2b, self1s the agent bridge of the source end station. In this
case, when ab(t) and ab(s) are on the same branch, the
normal data frame should not be encapsulated as explained
in Section V.C. We don’t search the ESL Table in Case 9.2¢
because of the frame duplication issue discussed in Section
V.A. Only a tree path can be used to forward the data frame
in this case. FIG. 8 and FIG. 21 show the procedures for
processing a data frame in accordance with the STAR Bridge
Protocol and the IEEE 802.1D Spanning Tree Bridge Pro-
tocol respectively.

Pseudocode 7: FD_ Search_ Proc

PROCEDURE: FD_ Search_ Proc(s, t, pld, p), also see FIG. 19

Begin

if f{self, t) is not found

/* Case 7.1: End station t is unknown */

send data frame <s, t, pld> on all tee ports except p

else if f{self, t) = p

/* Case 7.2: Forwarding port is the coming port */

drop the frame

else

send data frame <s, t, pld> on f(self, t)

endif
end

Pseudocode 8: ESL__Search_ Proc

PROCEDURE: ESL_ Search_ Proc(s, t, pld, p), also see FIG. 20

Begin

if ESL(self, t) is not found

/% Cage 8.1: etrot */

drop the frame

Else if ESL(self, t) = self

/¥ Case 8.2: ab(t) = self */

Send data frame <s,t,pld> on f(self}t)

Else

a = ab(t)

if F(self, a) is not found or

/* Case 8.3: ab(t) is known and ab(t) = self */

/* Case 8.3a: error */

next (self, a) is not found
drop the frame

US 7,027,453 B2

30

29
-continued
else /* Case 8.3b: encapsulation necessary */
send data frame encap(<s, t, pld>, addr{self), addr(next(self, a)))
on Fiself a)
endif
endif

end
Pseudocode 9: DF__STAR_Forwarding_ Proc

PROCEDURE: DF__STAR_ Forwarding_ Proc(fr, p), also see FIG. 22

Begin
If fr is encapsulated
s = sre(uncap(fr))
t := dst(uncap(ft))
pload = pld(uncap(fr))
if dst(fr) = addr({self)

drop the frame
else
ESL__Search_Proc(s, t, pload)
endif
else /* Case 9.2: fr is not encapsulated */
s = src(fr)
t = dst(fr)

pload = pld(fr)
if ESL{self, t) is not found
FD_ Search_ Proc(s, t, pload, p)
Else if ESL(self, s} = self /* Case 9.2b: ab(s) = self */
If ESL(self, t) = self /* ab(s) = ab(t) */
FD__Search_ Proc(s, t, pload, p)

/¥ Case 9.1: fr is an encapsulated frame */

/* self is not the proxy destination */

/* Case 9.2a: ab(t) is unknown */

If FG_ R(self, ESL(self t)) = -1 /* ab(t) is an ancestor of ab(s) */

FD__Search_ Proc(s, t, pload, p)
Else if FG_R
(self,ESLself, t)} = -1

FD_ Search_ Proc(s, t, pload, p
else

ESL_Search_ Proc(s, t, pload)

/* ab(t) is an descendant of ab(s) */

/* ab(t) and ab(s) are on different branches */

Else /* Case 9.2¢: ab(s) is unknown or ab(s) = self */
FD_ Search_ Proc(s, t, pload, p)
endif
endif
end
VI. Update

In the IEEE 802.1D standard, the root bridge sends a
BPDU message petiodically to update the spanning tree.
When a bridge detects a topological change, it sends a
Topology Change Notification BPDU frame to inform other
bridges to recompute the spanning tree. End station infor-
mation is updated by a timeout mechanism. Each entry in the
FD is assigned a timer and the information is forgotten when
the timer expires.

The STAR Bridge Protocol keeps topological information
in the BF Table, which is built upon the spanning tree and
eligible crosslinks. Therefore, if either the tree changes or
any crosslink changes, the BF Table must be recomputed.
The procedure for detecting any change of the spanning tree
is available in the above-mentioned standard. The BF Table
is recomputed after the spanning tree becomes stable again.
The mechanism of detecting crosslink failures is described
in Section LF. A STAR bridge transits back to the Tree
Learned state when a crosslink fails. In the mean time, the
STAR bridge executes the standard forwarding process and
the standard learning process instead of the new ones to
forward data frames.

In the STAR Bridge Protocol, the information needed for
reaching end stations is kept in the ESL Table and the FD.
They both time out in the same way as the FD in the old
bridges do. This is necessary because no bridge can detect

40

45

55

65

the relocation of an end station. Since bridge addresses do
not change frequently, the BA Table does not need to be
timed out.

VII. Performance
In this section, we analyze the storage, message complex-
ity, and path length of the STAR Bridge Protocol.

VIILA Storage

Each old bridge keeps only one table for forwarding,
which is the FD. One entry is necessary for each known end
station. Therefore, the space required is O(MI), where M is
the set of all end stations in the extended LAN. In addition
to an FD, there are three new tables in each STAR bridge:
BF Table, ESL Table, and BA Table. Table 5 is a summary
of these tables in STAR bridge n.

TABLE 5

Storage Requirements in STAR Bridges

Space
Name Content Required
BF Table <n', F(n, '), next (n, n'), FG_R(n, n')>, O(B)
n' € B\{n}, F(n, n') € P(x), next (n, n) € B\{n}
ESL Table <s, ab(s)>, s €M, ab(s) EB oM
BA Table <1, addr(n’)>, n' € B\{n}\Np(n) O(B)
D <s, f{n, s)>, s EM, f(n, s) € Pr(x) O(M))

US 7,027,453 B2

31

After the STAR learning process has been executed for
some time and old entries in the FD have been timed out, an
end station s appears in both the ESL Table and the FD of
STAR bridge n only if ab(s)=n. Therefore, the total memory
needed for the ESL Table and the FD in STAR bridges
together would be about the same as in the old bridges. We
do need extra space for the BF Table and the BA Table.
However, as the number of entries of both tables is at most
IBI'which is far less than IMI, we can conclude that the storage
requirement in a STAR bridge is comparable to that in an old
bridge.

VILB Message Complexity

In the IEEE 802.1D standard, BPDU frames are sent
periodically to build and maintain a spanning tree. In the
STAR Bridge Protocol, SBPDU frames are introduced and
they are described in Section I.D. Hello SBPDUs are sent on
eligible crosslinks only and a Hello SBPDU frame will not
propagate beyond the crosslink that it is sent on. Therefore,
Hello SBPDUs do not put extra message overhead on tree
links. Distance Vector Change Notification SBPDUs are sent
only when distance vectors have to be recomputed and they
are sent over the spanning tree. As a result, under stable
configuration, there will normally be no Distance Vector
Change Notification SBPDUs generated. Table 6 summa-
rizes the format of Distance Vector Computation SBPDUs
and Station Location Announcement SBPDUs. The path
finding process generates Distance Vector Computation
SBPDUs and the STAR learning process generates Station
Location Announcement SBPDUs.

For each Distance Vector Computation SBPDU frame
generated by the path finding process, there is at most one
recipient on each port. Obviously, there should be more
DVRecord frames than other Distance Vector Computation
SBPDU frames in this process. The number of DVRecord
frames needed for each pair of STAR bridges depends on the
length of the enhanced forwarding path between them. The
path length is bounded by the diameter of the tree. The
number of messages generated by the spanning tree is
related to the diameter of the tree too. Therefore, we can
conclude that the number of messages generated by the path
finding process is about Bl times the number of the messages
needed in building the spanning tree. The path finding
process will not generate any DVRecord frame after build-
ing the BF Table. Nevertheless, the root bridge will keep on
generating BPDU messages periodically after the spanning
tree has been built. Therefore, for a stable bridged LAN, the
extra number of messages generated by the path finding

process is negligible.
TABLE 6

Summary of SBPDU Frames used in the STAR processes
SBPDU Recipients responsible for Number of copies
Frame processing the frame for each recipient
DVMynfo ' € N'g(n) 1
DVOurlnfo n' € N'g(n) s.t. nca(n, n') =n 1
DVInform n' € N'g(n) s.t. nca(n, n') =n Kkk € {N'g(n’) s.t. k and

1’ are on different
branches}!

15

40

45

55

60

32

TABLE 6-continued

Summary of SBPDU Frames used in the STAR processes

SBPDU Recipients responsible for Number of copies
Frame processing the frame for each recipient
n' € N'p(n) s.t. nca(n, n') = n 1 when the accurate
distance is calculated
by n but not n’; 0 otherwise
DVRecord ' € N'g(n)UNg(n) At most Bl for each

k €B\n,n'}

StationLoc n' € B\{n} {mm € M s.t. ab(m) = n}l

Location information is necessary in all algorithms in
Section 3 that are applicable for any additive metric. In those
algorithms, every bridge has to know the location of all end
stations. In the STAR Bridge Protocol, a STAR bridge keeps
only the location of end station s provided ab(s) is defined.
Therefore, the location messages generated by the STAR
Bridge Protocol are less than those generated by the algo-
rithms in the prior art.

VII.C Path Length

In this section, we would like to show that the length of
a STAR forwarding path is always less than or equal to the
corresponding tree path. In the following discussion, we
denote the length of the STAR forwarding path between two
bridges x and y as len(x, y). In all figures referring to this
section, a black node represents a STAR bridge. a white
node represents an old bridge, and a dot-dash line represents
a tree path. We first establish the following lemmas.

Lemma 1:

When a STAR bridge n receives a normal data frame
originated by an end station s, the STAR bridge may
encapsulate the frame only if n=ab(s).

Proof of Lemma 1:

We observe that encapsulation is executed only in the
ESL_Search_Proc procedure (Pseudocode 8) and the
DF_STAR_Forwarding_Proc procedure (Pseudocode 9) in
which the ESL_Search_Proc procedure is invoked. In
DF_STAR_Forwarding_Proc procedure, when n receives a
normal data frame, the ESL_Search_Proc procedure is
invoked by n only when n=ab(s) (Case 9.2b). Note that if
ab(s) is not defined, n can never be ab(s).

Lemma 2:

A normal data frame originated by an end station s will
always be forwarded over a tree path if the frame is not
encapsulated by ab(s).

Proof of Lemma 2:

According to Case 8.3b in the ESL_Search_Proc proce-
dure, the normal data frame is never forwarded over a
crosslink, unless it is encapsulated. By Lemma 1, if the
normal data frame is not encapsulated by ab(s), it will
remain as a normal data frame for the rest of its forwarding
journey. According to Case 9.2a and Case 9.2c¢ of the
DF_STAR_Forwarding Proc procedure, having received
the normal data frame, a STAR bridge n that is not ab(s) may
forward the frame only to tree neighbors. Having received
the normal data frame, an old bridge may forward the frame
only to tree neighbors. Therefore, the normal data frame will
be forwarded over a tree path if the frame is not encapsulated
by ab(s).

US 7,027,453 B2

33

Lemma 3:

If a frame is forwarded from an end station s to another
end station t over an enhanced forwarding path, the path
must traverse at least one crosslink, and the frame must be
encapsulated by ab(s), which is necessarily defined.

Proof of Lemma 3:

If's and t are on the same branch, then the tree path from
s to t is necessarily a shortest path. Given that s and t are on
different branches, the forwarding may traverse two or more
different branches. In the first case, the forwarding path must
traverse a crosslink, or it would not be an enhanced for-
warding path. In the second case, it must traverse at least one
crosslink because the forwarding path cannot be a normal
tree path. According to Case 8.3b in the ESI,_Search_Proc
procedure, the frame will be encapsulated when it is for-
warded over any crosslink. By Lemma 2, the frame must be
encapsulated by ab(s).

Lemma 4:

If a STAR forwarding path, along which a frame is sent
from an end station s to another end station t, is an enhanced
forwarding path, then ab(s) must be defined and is the first
STAR bridge on the enhanced forwarding path.

Proof of Lemma 4:

By Lemma 3, the frame must be encapsulated by ab(s),
which is necessarily defined. Since ab(s) is by definition the
first STAR bridge on the root path of db(s). If ab(s)=db(s),
then the proof is complete. Otherwise, db(s) is an old bridge,
and will send a copy of the frame along the root path of db(s)
regardless of its knowledge of the end station t. This copy of
the frame will be received ab(s), which will encapsulate the
frame so that it will be forwarded over the enhanced
forwarding path. Duplicate copies of the frame will be
dropped in accordance with the protocol.

Lemma 5:

If a STAR forwarding path, along which a frame is sent
from an end station s to another end station t, is an enhanced
forwarding path, then ab(t) must be defined and is the last
STAR bridge on the enhanced forwarding path.

Proof of Lemma 5:

By Lemma 3, the forwarding path must traverse at least
one crosslink. According to Case 8.3b in the ESL_Search-
_Proc procedure, the frame will be encapsulated when it is
forwarded over each crosslink. ab(t) must be defined
because, according to Case 9.2a of DF_STAR_Forwarding-
_Proc procedure, a frame will not be encapsulated other-
wise. If ab(t)=db(t), the proof is complete. Otherwise, ab(t)
must be an ancestor of db(t) by definition, and db(t) must
receive the frame without encapsulation. It suffices to show
that ab(t) is on the enhanced forwarding path and all
intermediate STAR bridges on the enhanced forwarding
path, except ab(t), will forward the frame with encapsula-
tion. ab(t) is on the enhanced forwarding path because,
according to Case 8.3b of the ESL,_Search_Proc procedure,
each intermediate STAR bridge forwards the encapsulated
frame through its forwarding port leading to ab(t). Accord-
ing to Case 8.2 and Case 8.3 in the ESL_Search_ Proc
procedure, a STAR bridge will forward the frame without
encapsulation only if it is ab(t).

10

20

25

35

40

45

34
Lemma 6:
When ab(s) and ab(t) are both defined, and they are on
different branches of the spanning tree, len(db(s), db(t))<d,
(db(s), db(t)).

Proof of Lemma 6:

FIGS. 23a-23c¢ respectively show various exemplary sce-
narios for this lemma. Since ab(s) and ab(t) are on different
branches, s and t must be on different branches. If the
forwarding path from db(s) to db(t) is a tree path (FIG. 23a),
then the proof is complete. Otherwise, the forwarding path
is an enhanced forwarding path. By Lemma 4, ab(s) is the
first STAR bridge on the enhanced forwarding path. By
Lemma 5, ab(t) is the last STAR bridge on the enhanced
forwarding path. Therefore, the enhanced forwarding path
consists of three disjoint segments. The first segment, which
is a tree path from db(s) to ab(s), has a path length d (db(s),
ab(s)). The second segment, which is an enhanced forward-
ing path from ab(s) to ab(t), has a path length d(ab(s), ab(t)).
The third segment, which is a tree path from ab(t) to db(t),
has a path length d{ab(t), db(t)). Therefore, len(db(s),
db(t)), the length of the enhanced forwarding path from
db(s) to db(t), satisfies the following inequality.

len(db(s), db(t)) = dr(db(s), ab(s)) + d{ab(s), ab()) + dr(ab(z), db(1))

<dr(db(s), abl(s)) + dr(abls), ab(0) + dr(ab(t), db(r))

= dp(dbls), db(D))

Lemma 7:

A STAR forwarding path for a frame sent by an end
station s to another end station t is a tree path if at least one
of ab(s) and ab(t) is not defined.

Proof of Lemma 7:

FIGS. 24a-24d respectively show various exemplary
scenarios for this lemma. By Lemma 2, if ab(s) is not
defined, the STAR forwarding path must be a tree path
because the frame will never be encapsulated. According to
Case 9.2a of DF_STAR_Forwarding_Proc procedure, a
frame will not be encapsulated unless ab(t) is defined.

Lemma &:
When ab(s) and ab(t) are both defined. and ab(s)=ab(t),
then len(db(s), db(t))=d{(db(s), db(t)).

Proof of Lemma 8&:

FIGS. 25a-25¢ show various exemplary scenarios for this
lemma. When ab(s)=ab(t), there are two cases: ab(s)=db(s)
and ab(s) 0 db(s). In the first case, according to Case 8.2 of
the ESL,_Search_Proc procedure, ab(s) will send the frame
according to the tree path, and the proof is complete. In the
second case, if db(1) is an ancestor of db(s), when the normal
data frame travels upstream from db(s), it will reach db(t)
before ab(s) and so ab(s) won’t receive that. In the second
case, if db(t) is a descendant of db(s), by Lemma 8, the
STAR forwarding path must be a tree path, and the proof is
complete.

Lemma 9:

When ab(s) and ab(t) are both defined, ab(s)=ab(t), and
ab(s) is an ancestor of ab(t), then len(db(s), db(t)) £d {db(s),
db(1)).

US 7,027,453 B2

35
Proof of Lemma 9:

FIG. 26 shows an exemplary scenario for this lemma.
When ab(s) is an ancestor of ab(t), there are two cases:
ab(s)=db(s) and ab(s)=db(s). In the first case, ab(s) may
encapsulate the normal data frame and send it downstream
along the tree path. When ab(t) receives an encapsulated
data frame, it will strip off the header and trailer, and send
the normal data frame according to the information in the
FD. Therefore, the STAR forwarding path between db(s) and
db(t) is a tree path. The proof is complete. When
ab(s)=db(s), ab(s) must be an ancestor of db(s) and db(s)
must be an ancestor of db(t).

Lemma 10:
When ab(s) and ab(t) are both defined, ab(s)=ab(t), and
ab(s) is a descendant of ab(t), then len(db(s),

db(1))=d,(db(s), db(1)).

Proof of Lemma 10:

FIG. 27 shows an exemplary scenario for this lemma. We
have discussed the issue of the scenario in which ab(t) is an
ancestor of ab(s) in Section V.D. When ab(s) finds out that
ab(t) is an ancestor, it sends out the normal data frame on its
root port. Since only ab(s) is allowed to encapsulate the
normal data frame, all STAR bridges on the tree path
between ab(s) and ab(t) will send the normal data frame on
tree ports only. Then, the normal data frame will reach db(t)
along the tree path without any redundant traversal and the
proof is complete. All duplicate frames sent over the span-
ning tree will eventually be dropped.

We now present a theorem on the path length of the STAR
bridge protocol.

Theorem 1:

A STAR forwarding path for a frame sent by an end
station s to another end station t leads from db(s) to db(t),
and has a path length len(db(s), db(t)) that satisfies the
following inequality.

len{db(s), db(t)) =d{db(s), db(t))

Proof of Theorem 1:
We first observe that any STAR forwarding path is either
a tree path or an enhanced forwarding path. If it is a tree
path, the proof is complete. Otherwise, we will show that the
inequality still holds.
We divide all situations into the following scenarios:
1. ab(s) is not defined
2. ab(s) is defined
2.1. ab(t) is not defined
2.2. ab(t) is defined
2.2.1. ab(s) and ab(t) are on different branches
2.2.2. ab(s) and ab(t) are on the same branch
By Lemma 7, the STAR forwarding path is always a tree
path except for the cases in scenario 2.2. By Lemma 6, the
inequality holds for scenario 2.2.1. By Lemma 9 through
Lemma 11, the inequality holds for scenario 2.2.2.

VIII. Conclusion

We have disclosed a new STAR Bridge Protocol that is
backward compatible with the standard IEEE 802.1D Span-
ning Tree Bridge Protocol. The protocol described herein
offers provably shorter alternate paths for frame forwarding
whenever such paths are found, and uses tree paths other-
wise. Incidentally. the standard protocol places a restriction

10

15

20

25

30

35

40

45

50

55

60

65

36

on the maximum bridge diameter, which is the maximum
number of bridges between any two points of attachments of
end stations. The IEEE 802.1D specification recommends a
maximum bridge diameter of 7. Given a set of LANs and
bridges, there may not exist any single RST that could be
built by the standard protocol to satisfy such a restriction.
The STAR Bridge Protocol, on the other hand, may still
satisfy the restriction because enhanced forwarding paths
may reduce the bridge diameter. With the use of enhanced
forwarding paths, frames that would have passed through
the root bridge in the standard spanning tree may be diverted
over alternate paths such that the load at the root bridge is
likely to be alleviated.

Being backward compatible with the IEEE 802.1D stan-
dard, the proposed bridge protocol offers a smooth migration
path to QoS-based bridging. Eventually, all old bridges will
be phased out or replaced by STAR bridges. When there is
no old bridge in the bridged network, distance vector routing
can be used to find all-pair shortest paths. Since distance
vectors are always forwarded one hop away, there will be no
distant STAR neighbor when all bridges are STAR. Note that
the TEEE 802.1D spanning tree is still needed as explained
below.

In the path finding process, Distance Vector Estimation
does not have to estimate tree path distance anymore. As a
result, the first phase is not necessary. There will be no
DVMylnfo, DVOurlnfo, or DVInform frames. It follows
that the DVMylnfo_Proc, DVOurlnfo_Proc, and DVIn-
form_Proc procedures may be disabled or removed by the
STAR bridges. Since the next hop bridge is always a direct
neighbor and all distances are accurate, need for the fields
next(n, n'), FG_A(n, n"), FG_T(n, n'), and FG_R(n, n') in
DVT(n, n') is eliminated. The Distance Vector Enhancement
procedure will be exactly the same as the conventional
distance vector update procedure since all the distances are
accurate.

Mapping between end stations and agent bridges is still
needed. It follows that there is still need for the ESL Table.
Since all bridges attached to a LAN are STAR bridges, the
bridge that has the smallest Bridge 1D can be selected to be
the agent bridge for the stations. Note that the agent bridge
of each end station is defined and known by all bridges for
all end stations. Therefore, when the destination end station
for a data frame is known, the data frame can always travel
on a STAR forwarding path. If the destination end station for
a data frame is unknown, there is need to ensure that the
destination end station receives no duplicate of the data
frame. In this respect, the IEEE 802.1D spanning tree is
useful for loop-free flooding of the data frame throughout
the bridged LAN. Data frames still have to be encapsulated
in order to distinguish data frames just sent out by end
stations with data frames that are forwarded by another
bridge.

The STAR bridges have to keep topology information by
means of distance vectors even after complete migration.
The size of a distance vector is proportional to the number
of bridges. If the bridged LAN is large and consists of a lot
of bridges, keeping distance vectors takes too much space.
As a result, it is desirable to have another protocol that
requires less topology information but is able to enhance tree
paths.

US 7,027,453 B2

37

APPENDIX

List of Acronyms

38

What is claimed is:

1. Apparatus for determining paths for forwarding frames

among end stations in a system of interconnected local area
networks, comprised of:

BA Bridge Address
BE Bridge Forwarding first and second groups of frame forwarding devices
BPDU Bridge Protocol Data Unit known as bridges, which are used to interconnect local
CM Cable Modem area networks:
CMTS Cable Modem Termination System ’
DF Data Frame a spanning tree cooperating with said groups of bridges
DHCP Dynamic Host Configuration Protocol 10 for providing loop-free frame forwardine:
DLS Distributed Load Sharing P =4 P &
DOCSIS Data-Over-Cable Service Interface Specifications said first and second groups of bridges having means for
Y Distance Vector .. .
Dve Distance Vector Computation determining tree paths for loop-free frame forwarding
DVCN Distance Vector Change Notification to an end station;
ESL End Station Location 1 . . .
FD Forwarding Database said second group of bridges having further means coop-
I%DLS g&ifgl‘:m Distributed Load Sharing erating with said first group of bridges to determine an
P Tnternet Protocol alternate path for loop-free forwarding of a frame to the
LAN Local Area Network end station, which alternate path is shorter than any tree
1IC Logical Link Control
MAC Medium Access Control 20 path to said end station wherein bridges of said second
QoS Quelity of Service group are respectively arranged upstream and down-
RST Rooted Spanning Tree
SBPDU STAR Bridge Protocol Data Unit stream of an intervening bridge of said first group in a
SLA Station Location Announcement common tree path and said bridges of said second
STAR Spanning Tree Alternate Routing
25 group including means for encapsulating a received
enabling transfer through the intervening bridge,
TABLE A
Notation
Notation ~ Definition Remarks
v Set of bridges representing all bridges
B Set of bridges representing STAR bridges BcvV
N(x) Set of all direct neighbors of bridge x Nix) = V\{x}
Ni(x) Set of direct STAR neighbors of x Np(x) © N(x), Ng(x) = B
N'gx) Set of distant STAR neighbors of x Bx) <= B
P(x) Set of all ports of bridge x
Pr(x) Set of tree ports of bridge x P(x) = P(x)
p.(x) Root port of bridge x
px, ¥) Port of bridge x leading to neighbor bridge v p(x, ¥) = P(x).
c(x,y) Weight of link between bridge x and bridge y cx,y)=0ifx=y
cx,y)>0ifx=y
d(x) Root path distance of bridge x for x for x € V\{r} Root bridge r is given
Treepath(x, y) Tree path from x to y XEV,YEV
dr(x,) Tree path distance between bridge x and bridge y dr(x,y)=0ifx=y
di(x, y) > 0ifx=y
dx, y) Current estimated distance from x to y, for x € B and y € B\{x} dix,y)=0ifx =y
dx, v)>0ifx=y
F(x,y) Forwarding port from bridge x to bridge y for x € B and y € B\{x} F(x, y) € P(x)
fix, s) Forwarding port from bridge x to end station s forx € Vand s €M f(x, s) € P(x)
M Set of all end stations
Ab(s) Agent bridge of end station s s EM, ab(s) EB
Db(s) Designated bridge of end station s db(s) EV
S(x) Set of end stations in the FD of x, x EV Sx) =M
H(x) Set of end stations in ESL Table of x, x € B Hix) = M
Nea(x,y) Nearest common ancestor of bridge x and bridge y ncax, y) €V
Path(x,y) The forwarding path, from x to y, used by the proposed protocol xEV,yEV
len(x,y) Length of path(x, y) len(x,y)=0ifx=y
len(x,y) > 0ifx = y
Dsan(n) Distant STAR ancestor neighbor of bridge n € B dsan(n) € B
Dsanc(n) Child of distant STAR ancestor neighbor of bridge n € B dsanc(n) EV
Dce(n) Doubly counted cost between dsan(n) € B and dsanc(n) € V dee(n) > 0
cb(k, n) Child of bridge k € B on a tree path leading from kto n € B cbk,n) EV

While the principles of the invention have been described

above in connection with specific apparatus, it is to be

clearly understood that this description is made only by way

65

of example and not as a limitation on the scope of the

invention.

frame with a source address and a destination address
wherein

(a) wherein a cross-link incident on a said downstream
bridge is a segment on said alternate path, said transfer
through the intervening bridge is in the downstream
direction, and

US 7,027,453 B2

39

(b) wherein a cross-link incident on said upstream bridge
is a segment on said alternate path, said transfer
through the intervening bridge is in the upstream direc-
tion.

2. The apparatus of claim 1 wherein said second group of

bridges are backward
compatible with said first group of bridges, wherein the
operation of said first group of bridges is unaltered
by the presence of said second group of bridges, and
said second group of bridges inter-operate with said first
group of bridges when at least one bridge of the latter
group is present in the system, and

said second group of bridges can perform their functions
in the absence of said first group of bridges in order to
operate.

3. The apparatus of claim 1 wherein said first group of
bridges include means for performing a spanning tree bridge
protocol (STBP) to determine a loop-free tree path for
forwarding a frame to an end station; and

said second group of bridges including means for per-
forming a spanning tree alternate routing bridge pro-
tocol (STAR BP) for determining said alternate path.

4. The apparatus of claim 3 wherein said means for
performing said spanning tree alternate routing bridge pro-
tocol includes means for performing said spanning tree
bridge protocol.

5. The apparatus of claim 1 wherein said end stations are
distributed among said local area networks that are inter-
connected; and

said first and second groups of bridges selectively forward
frames from end stations in one of said local area
networks to end stations in another one of said local
area networks.

6. The apparatus of claim 1 wherein each bridge of the
second group of bridges further comprises means for select-
ing a tree path when said means for determining an alternate
path fails to identify an alternate path.

7. The apparatus of claim 1 wherein selected ones of
bridges of said second group are arranged along different
tree paths and are joined by cross-links;

said means for determining said alternate paths including
means for determining if a path including one of said
cross-links provides a path shorter than a tree path.

8. The apparatus of claim 7 wherein said means for
determining alternate paths include means for ignoring
cross-links whose end terminals are not connected to bridges
of said second group.

9. The apparatus of claim 7 wherein said means for
determining alternate paths includes means for ignoring
cross-links whose end terminals are joined to bridges lying
along the same tree path.

10. The apparatus of claim 1 wherein bridges of said
second group are respectively arranged upstream and down-
stream of an intervening bridge of said first group in a
common tree path and said upstream bridge of said second
group including means for encapsulating a received frame
with a source address and a destination address enabling
transfer through the intervening bridge of said first group to
the downstream bridge of said second group, wherein said
transfer through the intervening bridge of the first group is
in a downstream direction;

said intervening bridge including means for directing the
encapsulated frame to said downstream bridge of said
first group responsive to said destination address in
accordance with normal frame forwarding over a tree
path; and

40

said downstream bridge including means for stripping the

encapsulated portions of an encapsulated frame and for

forwarding said stripped encapsulated frame over a

remaining portion of the forwarding path to an end

5 station identified by a destination address incorporated
as part of the unencapsulated frame.

11. The apparatus of claim 1 wherein bridges of said
second group are respectively arranged upstream and down-
stream of an intervening bridge of said first group in a

10 common tree path and said downstream bridge of said
second group including means for encapsulating a received
frame with a source address and a destination address
enabling transfer through the intervening bridge of said first
group to the upstream bridge of said second group, wherein

15 said transfer through the intervening bridge of the first group
is in an upstream direction;

said intervening bridge including means for directing the

encapsulated frame to said upstream bridge of said first
group responsive to said destination address in accor-

20 dance with normal frame forwarding over a tree path;

and

said upstream bridge including means for stripping the

encapsulated portions of an encapsulated frame and for
forwarding said stripped encapsulated frame over a

25 remaining portion of the forwarding path to an end

station identified by a destination address incorporated
as part of the unencapsulated frame.

12. The apparatus of claim 1 wherein bridges of said
second group include means for encapsulating a frame with
30 atleast a destination address of a bridge of said second group
coupled to a bridge of said first group through a tree path;
said bridges of said first group including means respon-
sive to said destination address for forwarding the
encapsulated frame to the bridge identified by said

35 destination address;

said bridges of said second group having means respon-

sive to receipt of said encapsulated frame for stripping
the frame of said encapsulation and forwarding the
stripped frame to an end station identified by a desti-

40 nation address incorporated as part of said stripped

frame.

13. The apparatus of claim 1 wherein each bridge of said
first and second groups include means for assigning a
weighted metric to each port of the bridge;

45 means for exchanging said weighted metrics with other

bridges in the system;

means for electing a root bridge responsive to the

exchanged information;

means for determining a distance between each bridge

50 and said root bridge;

means for building a unique spanning tree rooted at the

root bridge in a distributed manner;

means for learning and remembering which port to for-

ward a frame over said spanning tree to a given end

55 station; and

means for storing said data.

14. The apparatus of claim 13 wherein each bridge of said
second group of bridges is further provided with means for
conveying to other bridges of said second group information

60 representing topology known to the conveying bridge;

means for conveying to other bridges of the second group
information identifying bridges of the second group
which are a source for frames and a destination for
frames;

65 means for conveying to other bridges of the second group

topology information known to bridges of the second
group other than the conveying bridge; and

US 7,027,453 B2

41

means for storing information received from other bridges
of said second group for determining, if possible, an
alternate path shorter than a corresponding tree path.
15. The apparatus of claim 1 wherein each bridge of said
second group is further provided with means for determining
if another bridge of said second group is directly connected
thereto by a cross-link which is a link that is not used to form
any tree path; and
said means for determining an alternate path further
including means for examining valid cross-links for use
as segments of an alternate path, wherein a valid
cross-link 1is
one whose end terminals are connected to bridges of said
second group, and
one whose end terminals are joined to bridges of said
second group wherein a tree path of one of the bridges
of said second group connected to one end terminal of
a cross-link is not a segment of a tree path of the other
bridge of the second group connected to another end
terminal said cross-link, and wherein the tree path of
the other bridge of the second group is not a segment
of the tree path of said one bridge of said second group.
16. The apparatus of claim 1 wherein each bridge of said
second group of bridges further includes:
means for storing an end station location (ESL) table
associating each end station with bridges in the second
group near each end station;
means for storing a bridge address (BA) table associating
each bridge of said second group with a medium access
control (MAC) address;
means for storing a bridge forwarding (BF) table for
indicating a path of the associated bridge that leads to
a next hop along a best path found for forwarding a
frame; and
means responsive to a received frame and information
stored in said BA, ESL and BF tables for selecting a
path to an end station identified in destination infor-
mation incorporated as part of said received frame.
17. The apparatus of claim 1 wherein, when a transfer
through the intervening bridge is in the downstream direc-
tion,
said intervening bridge directing the encapsulated frame
to said downstream bridge responsive to said destina-
tion address in accordance with normal frame forward-
ing over a tree path; and
said down stream bridge including means for stripping the
encapsulated portions of an encapsulated frame and for
forwarding said stripped encapsulated frame over a
remaining portion of the forwarding path to an end
station identified by a destination address incorporated
as part of the unencapsulated frame; and
when said transfer through the intervening bridge is in the
upstream direction,
said intervening bridge directing the encapsulated frame
to said upstream bridge responsive to said destination
address in accordance with normal frame forwarding
over a tree path; and
said upstream bridge including means for stripping the
encapsulated portions of an encapsulated frame and for
forwarding said stripped encapsulated frame over a
remaining portion of the forwarding path to an end
station identified by a destination address incorporated
as part of the unencapsulated frame.
18. Apparatus for determining a best path for forwarding
a frame received at a bridge in a system comprised of a
plurality of interconnected local area networks (LANS) each
having a plurality of end stations, and a spanning tree

10

30

40

45

65

42

incorporating a plurality of bridges of first and second
groups for loop-free forwarding a frame from a source end
station to a destination end station wherein said source and
destination end stations may reside in different LANS, said
bridges of said first and second groups having means for
determining a tree path for loop-free forwarding of said
frame; and

said second group of bridges further having means for
determining if an alternate path exists for loop-free
forwarding of said frame which has at least one non-
tree path segment;

means for utilizing said alternate path if it satisfies one of
a group of topological criteria including: a shorter
physical path; a less costly path; a path having less
delay and a smaller number of hops between source and
destination means for determining at each second group
of bridges, if another bridge of said second group is
directly connected thereto by a cross-link which is not
a tree path; and

means for determining an alternate path further including
means for examining valid cross-links for use as seg-
ments of an alternate path.

19. The apparatus of claim 18 further comprising:

means for operating said second group of bridges to
utilize said tree paths for default frame forwarding, and
to utilize said alternate paths, if possible, to forward a
predetermined class of frames.

20. A method for determining a path for forwarding a
frame in a system having a plurality of end stations and
bridges for loop-free forwarding of a frame, said bridges
being of first and second groups, said first group having
means for transferring a frame from an end station using a
spanning tree bridge protocol which provides loop-free
frame forwarding and said second group of bridges have
cross-links coupling bridges in different tree paths, compris-
ing:

a) operating all of said bridges to establish a loop-free tree
path responsive to a frame identifying a source end
station and a destination end station;

b) determining presence of an alternate path shorter than
the tree path determined in step (a) and employing at
least one cross-link

(c) determining at each second group of bridges, if
another bridge of said second group is directly con-
nected thereto by a cross-link which is not a tree path;
and

(d) determining an alternate path further including means
for examining valid cross-links for use as segments of
an alternate path.

21. The method of claim 20 further comprising:

d) employing the path determined in step (b) when it is
shorter than the tree path determined in step (a).

22. The method of claim 20 further comprising:

c¢) employing the path determined in step (a) when it is
shorter than the tree path determined in step (b).

23. The method of claim 20 further comprising:

(c) operating said second group of bridges to process path
data incorporating cross-links to determine possible
paths employing bridges in the system for forwarding
frames; and

d) operating said first and second groups of bridges to
establish a loop-free frame forwarding path while said
second group of bridges are performing step (c).

24. The method of claim 20 wherein step (a) further

comprises:

US 7,027,453 B2

43

(c) conveying to other bridges of said second group
information representing topology known to the con-
veying bridge;

(d) conveying to other bridges of the second group
information identifying bridges of the second group
which are a source for frames and a destination for
frames;

(e) conveying to other bridges of the second group
topology information known to bridges of the second
group other than the conveying bridge; and

() storing information received from other bridges of said
second group for determining an alternate path shorter
than a tree path.

25. The method of claim 20 further comprising:

each bridge of said second group:

(c) storing an end station location (ESL) table associating
each end station with bridges in the second group near
each end station;

10

15

44

(d) storing a bridge address (BA) table associating each
bridge of said second group with a medium access
control (MAC) address;

(e) storing a bridge forwarding (BF) table for indicating a
path of the associated bridge that leads to a next hop
along a best path found for forwarding a frame; and

(f) responsive to a received frame and information stored
in said BA, ESL and BF tables, selecting a path to an
end station identified in destination information incor-
porated as part of said received frame.

26. The method of claim 20 further comprising:

operating said second group of bridges to utilize said tree
paths for default frame forwarding, and utilizing said

alternate paths, if possible, to forward a predetermined
class of frames.

