File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Sensitivity analysis of a Bayesian network for reasoning about digital forensic evidence

TitleSensitivity analysis of a Bayesian network for reasoning about digital forensic evidence
Authors
KeywordsBayesian network
Digital evidence
Digital forensic investigation
Sensitivity analysis
Issue Date2010
PublisherIEEE.
Citation
2010 3Rd International Conference On Human-Centric Computing, Humancom 2010, 2010 How to Cite?
AbstractBayesian network representing an actual prosecuted case of illegal file sharing over a peer-to-peer network has been subjected to a systematic and rigorous sensitivity analysis. Our results demonstrate that such networks are usefully insensitive both to the occurrence of missing evidential traces and to the choice of conditional evidential probabilities. The importance of this finding for the investigation of digital forensic hypotheses is highlighted. © 2010 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/125718
ISBN
References

 

DC FieldValueLanguage
dc.contributor.authorOverill, REen_HK
dc.contributor.authorSilomon, JAMen_HK
dc.contributor.authorKwan, MYKen_HK
dc.contributor.authorChow, KPen_HK
dc.contributor.authorLaw, FYWen_HK
dc.contributor.authorLai, PKYen_HK
dc.date.accessioned2010-10-31T11:47:52Z-
dc.date.available2010-10-31T11:47:52Z-
dc.date.issued2010en_HK
dc.identifier.citation2010 3Rd International Conference On Human-Centric Computing, Humancom 2010, 2010en_HK
dc.identifier.isbn978-1-4244-7570-4-
dc.identifier.urihttp://hdl.handle.net/10722/125718-
dc.description.abstractBayesian network representing an actual prosecuted case of illegal file sharing over a peer-to-peer network has been subjected to a systematic and rigorous sensitivity analysis. Our results demonstrate that such networks are usefully insensitive both to the occurrence of missing evidential traces and to the choice of conditional evidential probabilities. The importance of this finding for the investigation of digital forensic hypotheses is highlighted. © 2010 IEEE.en_HK
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartof2010 3rd International Conference on Human-Centric Computing, HumanCom 2010en_HK
dc.rights©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.-
dc.subjectBayesian networken_HK
dc.subjectDigital evidenceen_HK
dc.subjectDigital forensic investigationen_HK
dc.subjectSensitivity analysisen_HK
dc.titleSensitivity analysis of a Bayesian network for reasoning about digital forensic evidenceen_HK
dc.typeConference_Paperen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=978-1-4244-7570-4&volume=&spage=&epage=&date=2010&atitle=Sensitivity+analysis+of+a+Bayesian+network+for+reasoning+about+digital+forensic+evidence-
dc.identifier.emailChow, KP:chow@cs.hku.hken_HK
dc.identifier.authorityChow, KP=rp00111en_HK
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1109/HUMANCOM.2010.5563318en_HK
dc.identifier.scopuseid_2-s2.0-77958176533en_HK
dc.identifier.hkuros182203en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-77958176533&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.scopusauthoridOverill, RE=6602223584en_HK
dc.identifier.scopusauthoridSilomon, JAM=36053451700en_HK
dc.identifier.scopusauthoridKwan, MYK=19640239200en_HK
dc.identifier.scopusauthoridChow, KP=7202180751en_HK
dc.identifier.scopusauthoridLaw, FYW=19640490000en_HK
dc.identifier.scopusauthoridLai, PKY=19640260600en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats