File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Time-dependent density functional theory for quantum transport

TitleTime-dependent density functional theory for quantum transport
Authors
KeywordsApproximation scheme
Computational costs
Electronic device
Electronic systems
External voltages
Issue Date2010
PublisherAmerican Institute of Physics. The Journal's web site is located at http://jcp.aip.org/jcp/staff.jsp
Citation
Journal of Chemical Physics, 2010, v. 133 n. 11, article no. 114101 How to Cite?
AbstractBased on our earlier works [X. Zheng, Phys. Rev. B 75, 195127 (2007); J. S. Jin, J. Chem. Phys. 128, 234703 (2008)], we propose a rigorous and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages. © 2010 American Institute of Physics.
Persistent Identifierhttp://hdl.handle.net/10722/135028
ISSN
2023 Impact Factor: 3.1
2023 SCImago Journal Rankings: 1.101
ISI Accession Number ID
Funding AgencyGrant Number
Hong Kong Research Grant CouncilHKU7009/09P
7008/08P
7011/06P
7013/07P
604709
HKUST 9/CRF/08
University Grant CouncilAoE/P-04/08
National Science Foundation of China (NSFC)20828003
Funding Information:

Support from the Hong Kong Research Grant Council (Contract Nos. HKU7009/09P, 7008/08P, 7011/06P, 7013/07P, 604709, and HKUST 9/CRF/08), the University Grant Council (Contract No. AoE/P-04/08) and National Science Foundation of China (Contract No. NSFC 20828003) is gratefully acknowledged.

References
Grants

 

DC FieldValueLanguage
dc.contributor.authorZheng, Xen_HK
dc.contributor.authorChen, Gen_HK
dc.contributor.authorMo, Yen_HK
dc.contributor.authorKoo, Sen_HK
dc.contributor.authorTian, Hen_HK
dc.contributor.authorYam, Cen_HK
dc.contributor.authorYan, Yen_HK
dc.date.accessioned2011-07-27T01:26:15Z-
dc.date.available2011-07-27T01:26:15Z-
dc.date.issued2010en_HK
dc.identifier.citationJournal of Chemical Physics, 2010, v. 133 n. 11, article no. 114101-
dc.identifier.issn0021-9606en_HK
dc.identifier.urihttp://hdl.handle.net/10722/135028-
dc.description.abstractBased on our earlier works [X. Zheng, Phys. Rev. B 75, 195127 (2007); J. S. Jin, J. Chem. Phys. 128, 234703 (2008)], we propose a rigorous and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages. © 2010 American Institute of Physics.en_HK
dc.languageengen_US
dc.publisherAmerican Institute of Physics. The Journal's web site is located at http://jcp.aip.org/jcp/staff.jspen_HK
dc.relation.ispartofJournal of Chemical Physicsen_HK
dc.subjectApproximation scheme-
dc.subjectComputational costs-
dc.subjectElectronic device-
dc.subjectElectronic systems-
dc.subjectExternal voltages-
dc.titleTime-dependent density functional theory for quantum transporten_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0021-9606&volume=133&issue=11, article no. 114101&spage=&epage=&date=2010&atitle=Time-dependent+Density+Functional+Theory+for+Quantum+Transport-
dc.identifier.emailChen, G:ghc@yangtze.hku.hken_HK
dc.identifier.emailYam, C:yamcy@graduate.hku.hken_HK
dc.identifier.authorityChen, G=rp00671en_HK
dc.identifier.authorityYam, C=rp01399en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1063/1.3475566en_HK
dc.identifier.pmid20866120-
dc.identifier.scopuseid_2-s2.0-77956976663en_HK
dc.identifier.hkuros186322en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-77956976663&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume133en_HK
dc.identifier.issue11en_HK
dc.identifier.spagearticle no. 114101-
dc.identifier.epagearticle no. 114101-
dc.identifier.eissn1089-7690-
dc.identifier.isiWOS:000282047500005-
dc.publisher.placeUnited Statesen_HK
dc.relation.projectTheory, Modeling, and Simulation of Emerging Electronics-
dc.identifier.scopusauthoridZheng, X=7404090981en_HK
dc.identifier.scopusauthoridChen, G=35253368600en_HK
dc.identifier.scopusauthoridMo, Y=35253750800en_HK
dc.identifier.scopusauthoridKoo, S=36544127200en_HK
dc.identifier.scopusauthoridTian, H=36544298700en_HK
dc.identifier.scopusauthoridYam, C=7004032400en_HK
dc.identifier.scopusauthoridYan, Y=7404586425en_HK
dc.identifier.citeulike11617022-
dc.identifier.issnl0021-9606-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats