File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/ICIP.2010.5651519
- Scopus: eid_2-s2.0-78651064818
- WOS: WOS:000287728000016
- Find via
Supplementary
- Citations:
- Appears in Collections:
Conference Paper: Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation
Title | Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation |
---|---|
Authors | |
Keywords | Bayesian models Diffusion tensor images Image restoration Markov chain Monte Carlo |
Issue Date | 2010 |
Publisher | IEEE. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000349 |
Citation | The 17th IEEE International Conference on Image Processing (ICIP 2010), Hong Kong, China, 26-29 September 2010. In Proceedings of the 17th ICIP, 2010, p. 65-68 How to Cite? |
Abstract | Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An approximate solution to the problem is achieved efficiently using hierarchical Markov Chain Monte Carlo (HMCMC), and a loopy belief propagation algorithm is applied to a coarse grid to obtain a good initial solution for hierarchical MCMC. Experiments on synthetic and real data demonstrate the effectiveness of our methods. © 2010 IEEE. |
Persistent Identifier | http://hdl.handle.net/10722/140001 |
ISSN | 2020 SCImago Journal Rankings: 0.315 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wei, S | en_HK |
dc.contributor.author | Hua, J | en_HK |
dc.contributor.author | Bu, J | en_HK |
dc.contributor.author | Chen, C | en_HK |
dc.contributor.author | Yu, Y | en_HK |
dc.date.accessioned | 2011-09-23T06:04:32Z | - |
dc.date.available | 2011-09-23T06:04:32Z | - |
dc.date.issued | 2010 | en_HK |
dc.identifier.citation | The 17th IEEE International Conference on Image Processing (ICIP 2010), Hong Kong, China, 26-29 September 2010. In Proceedings of the 17th ICIP, 2010, p. 65-68 | en_HK |
dc.identifier.issn | 1522-4880 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/140001 | - |
dc.description.abstract | Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An approximate solution to the problem is achieved efficiently using hierarchical Markov Chain Monte Carlo (HMCMC), and a loopy belief propagation algorithm is applied to a coarse grid to obtain a good initial solution for hierarchical MCMC. Experiments on synthetic and real data demonstrate the effectiveness of our methods. © 2010 IEEE. | en_HK |
dc.language | eng | en_US |
dc.publisher | IEEE. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000349 | en_HK |
dc.relation.ispartof | Proceedings of the International Conference on Image Processing, ICIP 2010 | en_HK |
dc.rights | ©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. | - |
dc.subject | Bayesian models | en_HK |
dc.subject | Diffusion tensor images | en_HK |
dc.subject | Image restoration | en_HK |
dc.subject | Markov chain Monte Carlo | en_HK |
dc.title | Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation | en_HK |
dc.type | Conference_Paper | en_HK |
dc.identifier.email | Yu, Y:yzyu@cs.hku.hk | en_HK |
dc.identifier.authority | Yu, Y=rp01415 | en_HK |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1109/ICIP.2010.5651519 | en_HK |
dc.identifier.scopus | eid_2-s2.0-78651064818 | en_HK |
dc.identifier.hkuros | 194322 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-78651064818&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.spage | 65 | en_HK |
dc.identifier.epage | 68 | en_HK |
dc.identifier.isi | WOS:000287728000016 | - |
dc.publisher.place | United States | en_HK |
dc.description.other | The 17th IEEE International Conference on Image Processing (ICIP 2010), Hong Kong, China, 26-29 September 2010. In Proceedings of the 17th ICIP, 2010, p. 65-68 | - |
dc.identifier.scopusauthorid | Wei, S=36845050600 | en_HK |
dc.identifier.scopusauthorid | Hua, J=7102121257 | en_HK |
dc.identifier.scopusauthorid | Bu, J=7005200782 | en_HK |
dc.identifier.scopusauthorid | Chen, C=35274602700 | en_HK |
dc.identifier.scopusauthorid | Yu, Y=8554163500 | en_HK |
dc.identifier.issnl | 1522-4880 | - |