File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Thermoelectric energy conversion using nanostructured materials

TitleThermoelectric energy conversion using nanostructured materials
Authors
KeywordsBulk materials
Device optimization
Efficiency characteristic
Electrical power generation
Flux concentration
Operating temperature
Power conversion
Power conversion efficiencies
Power out put
Skutterudite materials
Solar applications
Temperature differences
Thermal concentration
Thermal heat
Thermoelectric devices
Thermoelectric generators
Thermoelectric material
Thermoelectrics
Conversion efficiency
Electric generators
Heat flux
Materials
Nanotechnology
Optimization
Sensors
Skutterudites
Solar equipment
Thermoelectric equipment
Thermoelectricity
Thermoelectric energy conversion
Issue Date2011
PublisherS P I E - International Society for Optical Engineering. The Journal's web site is located at http://spie.org/x1848.xml
Citation
Proceedings Of Spie - The International Society For Optical Engineering, 2011, v. 8031 How to Cite?
AbstractHigh performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics of lowand mid-temperature thermoelectric materials. We show that as long as an appreciable temperature difference can be created over a short thermoelectric leg, good power output can be achieved. For a mid-temperature n-type doped skutterudite material an efficiency of over 11% at a temperature difference of 600°C could be achieved. Besides the improvement of thermoelectric materials, device optimization is a crucial factor for efficient heat-to-electric power conversion and one of the key challenges is how to create a large temperature across a thermoelectric generator especially in the case of a dilute incident heat flux. For the solar application of thermoelectrics we investigated the concept of large thermal heat flux concentration to optimize the operating temperature for highest solar thermoelectric generator efficiency. A solar-to-electric power conversion efficiency of ∼5% could be demonstrated. Solar thermoelectric generators with a large thermal concentration which minimizes the amount of thermoelectric nanostrucutured bulk material shows great potential to enable cost-effective electrical power generation from the sun. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Persistent Identifierhttp://hdl.handle.net/10722/142039
ISSN
2020 SCImago Journal Rankings: 0.192
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChen, Gen_HK
dc.contributor.authorKraemer, Den_HK
dc.contributor.authorMuto, Aen_HK
dc.contributor.authorMcEnaney, Ken_HK
dc.contributor.authorFeng, HPen_HK
dc.contributor.authorLiu, WSen_HK
dc.contributor.authorZhang, Qen_HK
dc.contributor.authorYu, Ben_HK
dc.contributor.authorRen, Zen_HK
dc.date.accessioned2011-10-10T07:03:47Z-
dc.date.available2011-10-10T07:03:47Z-
dc.date.issued2011en_HK
dc.identifier.citationProceedings Of Spie - The International Society For Optical Engineering, 2011, v. 8031en_HK
dc.identifier.issn0277-786Xen_HK
dc.identifier.urihttp://hdl.handle.net/10722/142039-
dc.description.abstractHigh performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics of lowand mid-temperature thermoelectric materials. We show that as long as an appreciable temperature difference can be created over a short thermoelectric leg, good power output can be achieved. For a mid-temperature n-type doped skutterudite material an efficiency of over 11% at a temperature difference of 600°C could be achieved. Besides the improvement of thermoelectric materials, device optimization is a crucial factor for efficient heat-to-electric power conversion and one of the key challenges is how to create a large temperature across a thermoelectric generator especially in the case of a dilute incident heat flux. For the solar application of thermoelectrics we investigated the concept of large thermal heat flux concentration to optimize the operating temperature for highest solar thermoelectric generator efficiency. A solar-to-electric power conversion efficiency of ∼5% could be demonstrated. Solar thermoelectric generators with a large thermal concentration which minimizes the amount of thermoelectric nanostrucutured bulk material shows great potential to enable cost-effective electrical power generation from the sun. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).en_HK
dc.publisherS P I E - International Society for Optical Engineering. The Journal's web site is located at http://spie.org/x1848.xmlen_HK
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineeringen_HK
dc.subjectBulk materialsen_US
dc.subjectDevice optimizationen_US
dc.subjectEfficiency characteristicen_US
dc.subjectElectrical power generationen_US
dc.subjectFlux concentrationen_US
dc.subjectOperating temperatureen_US
dc.subjectPower conversionen_US
dc.subjectPower conversion efficienciesen_US
dc.subjectPower out puten_US
dc.subjectSkutterudite materialsen_US
dc.subjectSolar applicationsen_US
dc.subjectTemperature differencesen_US
dc.subjectThermal concentrationen_US
dc.subjectThermal heaten_US
dc.subjectThermoelectric devicesen_US
dc.subjectThermoelectric generatorsen_US
dc.subjectThermoelectric materialen_US
dc.subjectThermoelectricsen_US
dc.subjectConversion efficiencyen_US
dc.subjectElectric generatorsen_US
dc.subjectHeat fluxen_US
dc.subjectMaterialsen_US
dc.subjectNanotechnologyen_US
dc.subjectOptimizationen_US
dc.subjectSensorsen_US
dc.subjectSkutteruditesen_US
dc.subjectSolar equipmenten_US
dc.subjectThermoelectric equipmenten_US
dc.subjectThermoelectricityen_US
dc.subjectThermoelectric energy conversionen_US
dc.titleThermoelectric energy conversion using nanostructured materialsen_HK
dc.typeConference_Paperen_HK
dc.identifier.emailFeng, HP:hpfeng@hku.hken_HK
dc.identifier.authorityFeng, HP=rp01533en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1117/12.885759en_HK
dc.identifier.scopuseid_2-s2.0-79958014441en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-79958014441&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume8031en_HK
dc.identifier.isiWOS:000291441400049-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridChen, G=35228853000en_HK
dc.identifier.scopusauthoridKraemer, D=7005436146en_HK
dc.identifier.scopusauthoridMuto, A=15035882300en_HK
dc.identifier.scopusauthoridMcEnaney, K=35386567400en_HK
dc.identifier.scopusauthoridFeng, HP=11739019400en_HK
dc.identifier.scopusauthoridLiu, WS=40761614000en_HK
dc.identifier.scopusauthoridZhang, Q=20735917800en_HK
dc.identifier.scopusauthoridYu, B=36351350900en_HK
dc.identifier.scopusauthoridRen, Z=7402408354en_HK
dc.identifier.issnl0277-786X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats