File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s11069-010-9643-1
- Scopus: eid_2-s2.0-79958820969
- WOS: WOS:000291696300005
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A checking method for probabilistic seismic-hazard assessment: case studies on three cities
Title | A checking method for probabilistic seismic-hazard assessment: case studies on three cities |
---|---|
Authors | |
Keywords | Earth sciences Hydrogeology Geophysics and Geodesy Geotechnical Engineering Civil Engineering Environmental Management |
Issue Date | 2010 |
Publisher | Springer Netherlands |
Citation | Natural Hazards, 2010, v. 58, n. 1, p. 67-84 How to Cite? |
Abstract | The conventional Cornell's source-based approach of probabilistic seismic-hazard assessment (PSHA) has been employed all around the world, whilst many studies often rely on the use of computer packages such as FRISK (McGuire FRISK-a computer program for seismic risk analysis. Open-File Report 78-1007, United States Geological Survey, Department of Interior, Washington 1978) and SEISRISK III (Bender and Perkins SEISRISK III-a computer program for seismic hazard estimation, Bulletin 1772. United States Geological Survey, Department of Interior, Washington 1987). A "black-box" syndrome may be resulted if the user of the software does not have another simple and robust PSHA method that can be used to make comparisons. An alternative method for PSHA, namely direct amplitude-based (DAB) approach, has been developed as a heuristic and efficient method enabling users to undertake their own sanity checks on outputs from computer packages. This paper experiments the application of the DAB approach for three cities in China, Iran, and India, respectively, and compares with documented results computed by the source-based approach. Several insights regarding the procedure of conducting PSHA have also been obtained, which could be useful for future seismic-hazard studies. © 2010 The Author(s). |
Persistent Identifier | http://hdl.handle.net/10722/145072 |
ISSN | 2023 Impact Factor: 3.3 2023 SCImago Journal Rankings: 0.797 |
ISI Accession Number ID | |
References | Ordaz M (2004) Some integrals useful for probabilistic seismic hazard analysis. Bull Seismol Soc Am 94:1510–1516 doi: 10.1785/012003182 Sarma SK, Srbulov M (1996) A simplified method for prediction of kinematic soil-foundation interaction effects on peak horizontal acceleration of a rigid foundation. Earthq Eng Struct Dyn 25(8):815–836 doi: 10.1002/(SICI)1096-9845(199608)25:8%3C815::AID-EQE583%3E3.0.CO;2-Z Tsai CCP (2000) Probabilistic seismic hazard analysis considering nonlinear site effect. Bull Seismol Soc Am 90:66–72 doi: 10.1785/0119980187 Schwartz DP, Coppersmith KJ (1984) Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas faults. J Geophys Res 89:5681–5698 doi: 10.1029/JB089iB07p05681 Ambraseys NN, Bommer JJ (1991) The attenuation of ground accelerations in Europe. Earthquake Eng Struct Dyn 20(12):1179–1202 doi: 10.1002/eqe.4290201207 Anbazhagan P, Vinod JS, Sitharam TG (2009) Probabilistic seismic hazard analysis for Bangalore. Nat Hazards 48:145–166 doi: 10.1007/s11069-008-9253-3 Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for eastern North America. Bull Seismol Soc Am 96(6):2181–2205 doi: 10.1785/0120050245 Barani S, Spallarossa D, Bazzurro P, Eva C (2007) Sensitivity analysis of seismic hazard for western Liguria (north western Italy): a first attempt towards the understanding and quantification of hazard uncertainty. Tectonophysics 435:13–35 doi: 10.1016/j.tecto.2007.02.008 Campbell KW (2003) Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern north America. Bull Seismol Soc Am 93:1012–1033 doi: 10.1785/0120020002 Chandler AM, Lam NTK (2002) Scenario predictions for potential near-field and far-field earthquakes affecting Hong Kong. Soil Dyn Earthq Eng 22:29–46 doi: 10.1016/S0267-7261(01)00052-5 Chandler AM, Lam NTK, Tsang HH (2005a) Shear wave velocity modelling in crustal rock for seismic hazard analysis. Soil Dyn Earthq Eng 25(2):167–185 doi: 10.1016/j.soildyn.2004.08.005 Chandler AM, Lam NTK, Tsang HH (2006a) Regional and local factors in attenuation modelling: Hong Kong case study. J Asian Earth Sci 27(6):892–906 doi: 10.1016/j.jseaes.2005.09.005 Chandler AM, Lam NTK, Tsang HH (2006b) Near-surface attenuation modelling based on rock shear-wave velocity profile. Soil Dyn Earthq Eng 26:1004–1014 doi: 10.1016/j.soildyn.2006.02.010 Cramer CH (2003) Site-specific seismic-hazard analysis that is completely probabilistic. Bull Seismol Soc Am 93:1841–1846 doi: 10.1785/0120020206 Douglas J (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth Sci Rev 61:43–104 doi: 10.1016/S0012-8252(02)00112-5 Ghodrati Amiri G, Motamed R, Rabet Es-Haghi H (2003) Seismic hazard assessment of metropolitan Tehran, Iran. J Earthq Eng 7:347–372 doi: 10.1142/S136324690300119X Kijko A, Graham G (1999) “Parametric-historic” procedure for probabilistic seismic hazard analysis—Part II: assessment of seismic hazard at specified site. Pure Appl Geophys 154:1–22 doi: 10.1007/s000240050218 Menon A, Ornthammarath T, Corigliana M, Lai CG (2010) Probabilistic seismic hazard macrozonation of Tamil Nadu in Southern India. Bull Seismol Soc Am 100(3):1320–1341 doi: 10.1785/0120090071 Tsang HH, Chandler AM (2006) Site-specific probabilistic seismic-hazard assessment: direct amplitude-based approach. Bull Seismol Soc Am 96:392–403 doi: 10.1785/0120050027 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tsang, HH | en_US |
dc.contributor.author | Yaghmaei-Sabegh, S | en_US |
dc.contributor.author | Anbazhagan, P | en_US |
dc.contributor.author | Sheikh, MN | en_US |
dc.date.accessioned | 2012-02-21T05:44:19Z | - |
dc.date.available | 2012-02-21T05:44:19Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.citation | Natural Hazards, 2010, v. 58, n. 1, p. 67-84 | en_US |
dc.identifier.issn | 0921-030X | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/145072 | - |
dc.description.abstract | The conventional Cornell's source-based approach of probabilistic seismic-hazard assessment (PSHA) has been employed all around the world, whilst many studies often rely on the use of computer packages such as FRISK (McGuire FRISK-a computer program for seismic risk analysis. Open-File Report 78-1007, United States Geological Survey, Department of Interior, Washington 1978) and SEISRISK III (Bender and Perkins SEISRISK III-a computer program for seismic hazard estimation, Bulletin 1772. United States Geological Survey, Department of Interior, Washington 1987). A "black-box" syndrome may be resulted if the user of the software does not have another simple and robust PSHA method that can be used to make comparisons. An alternative method for PSHA, namely direct amplitude-based (DAB) approach, has been developed as a heuristic and efficient method enabling users to undertake their own sanity checks on outputs from computer packages. This paper experiments the application of the DAB approach for three cities in China, Iran, and India, respectively, and compares with documented results computed by the source-based approach. Several insights regarding the procedure of conducting PSHA have also been obtained, which could be useful for future seismic-hazard studies. © 2010 The Author(s). | en_US |
dc.language | eng | en_US |
dc.publisher | Springer Netherlands | en_US |
dc.relation.ispartof | Natural Hazards | en_US |
dc.rights | The Author(s) | en_US |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | en_US |
dc.subject | Earth sciences | en_US |
dc.subject | Hydrogeology | en_US |
dc.subject | Geophysics and Geodesy | en_US |
dc.subject | Geotechnical Engineering | en_US |
dc.subject | Civil Engineering | en_US |
dc.subject | Environmental Management | en_US |
dc.title | A checking method for probabilistic seismic-hazard assessment: case studies on three cities | en_US |
dc.type | Article | en_US |
dc.identifier.openurl | http://library.hku.hk:4551/resserv?sid=springerlink&genre=article&atitle=A checking method for probabilistic seismic-hazard assessment: case studies on three cities&title=Natural Hazards&issn=0921030X&date=2011-07-01&volume=58&issue=1& spage=67&authors=Hing-Ho Tsang, Saman Yaghmaei-Sabegh, P. Anbazhagan, <i>et al.</i> | en_US |
dc.description.nature | published_or_final_version | en_US |
dc.identifier.doi | 10.1007/s11069-010-9643-1 | en_US |
dc.identifier.scopus | eid_2-s2.0-79958820969 | en_US |
dc.relation.references | Ordaz M (2004) Some integrals useful for probabilistic seismic hazard analysis. Bull Seismol Soc Am 94:1510–1516 | en_US |
dc.relation.references | doi: 10.1785/012003182 | en_US |
dc.relation.references | Sarma SK, Srbulov M (1996) A simplified method for prediction of kinematic soil-foundation interaction effects on peak horizontal acceleration of a rigid foundation. Earthq Eng Struct Dyn 25(8):815–836 | en_US |
dc.relation.references | doi: 10.1002/(SICI)1096-9845(199608)25:8%3C815::AID-EQE583%3E3.0.CO;2-Z | en_US |
dc.relation.references | Tsai CCP (2000) Probabilistic seismic hazard analysis considering nonlinear site effect. Bull Seismol Soc Am 90:66–72 | en_US |
dc.relation.references | doi: 10.1785/0119980187 | en_US |
dc.relation.references | Schwartz DP, Coppersmith KJ (1984) Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas faults. J Geophys Res 89:5681–5698 | en_US |
dc.relation.references | doi: 10.1029/JB089iB07p05681 | en_US |
dc.relation.references | Ambraseys NN, Bommer JJ (1991) The attenuation of ground accelerations in Europe. Earthquake Eng Struct Dyn 20(12):1179–1202 | en_US |
dc.relation.references | doi: 10.1002/eqe.4290201207 | en_US |
dc.relation.references | Anbazhagan P, Vinod JS, Sitharam TG (2009) Probabilistic seismic hazard analysis for Bangalore. Nat Hazards 48:145–166 | en_US |
dc.relation.references | doi: 10.1007/s11069-008-9253-3 | en_US |
dc.relation.references | Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for eastern North America. Bull Seismol Soc Am 96(6):2181–2205 | en_US |
dc.relation.references | doi: 10.1785/0120050245 | en_US |
dc.relation.references | Barani S, Spallarossa D, Bazzurro P, Eva C (2007) Sensitivity analysis of seismic hazard for western Liguria (north western Italy): a first attempt towards the understanding and quantification of hazard uncertainty. Tectonophysics 435:13–35 | en_US |
dc.relation.references | doi: 10.1016/j.tecto.2007.02.008 | en_US |
dc.relation.references | Campbell KW (2003) Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern north America. Bull Seismol Soc Am 93:1012–1033 | en_US |
dc.relation.references | doi: 10.1785/0120020002 | en_US |
dc.relation.references | Chandler AM, Lam NTK (2002) Scenario predictions for potential near-field and far-field earthquakes affecting Hong Kong. Soil Dyn Earthq Eng 22:29–46 | en_US |
dc.relation.references | doi: 10.1016/S0267-7261(01)00052-5 | en_US |
dc.relation.references | Chandler AM, Lam NTK, Tsang HH (2005a) Shear wave velocity modelling in crustal rock for seismic hazard analysis. Soil Dyn Earthq Eng 25(2):167–185 | en_US |
dc.relation.references | doi: 10.1016/j.soildyn.2004.08.005 | en_US |
dc.relation.references | Chandler AM, Lam NTK, Tsang HH (2006a) Regional and local factors in attenuation modelling: Hong Kong case study. J Asian Earth Sci 27(6):892–906 | en_US |
dc.relation.references | doi: 10.1016/j.jseaes.2005.09.005 | en_US |
dc.relation.references | Chandler AM, Lam NTK, Tsang HH (2006b) Near-surface attenuation modelling based on rock shear-wave velocity profile. Soil Dyn Earthq Eng 26:1004–1014 | en_US |
dc.relation.references | doi: 10.1016/j.soildyn.2006.02.010 | en_US |
dc.relation.references | Cramer CH (2003) Site-specific seismic-hazard analysis that is completely probabilistic. Bull Seismol Soc Am 93:1841–1846 | en_US |
dc.relation.references | doi: 10.1785/0120020206 | en_US |
dc.relation.references | Douglas J (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth Sci Rev 61:43–104 | en_US |
dc.relation.references | doi: 10.1016/S0012-8252(02)00112-5 | en_US |
dc.relation.references | Ghodrati Amiri G, Motamed R, Rabet Es-Haghi H (2003) Seismic hazard assessment of metropolitan Tehran, Iran. J Earthq Eng 7:347–372 | en_US |
dc.relation.references | doi: 10.1142/S136324690300119X | en_US |
dc.relation.references | Kijko A, Graham G (1999) “Parametric-historic” procedure for probabilistic seismic hazard analysis—Part II: assessment of seismic hazard at specified site. Pure Appl Geophys 154:1–22 | en_US |
dc.relation.references | doi: 10.1007/s000240050218 | en_US |
dc.relation.references | Menon A, Ornthammarath T, Corigliana M, Lai CG (2010) Probabilistic seismic hazard macrozonation of Tamil Nadu in Southern India. Bull Seismol Soc Am 100(3):1320–1341 | en_US |
dc.relation.references | doi: 10.1785/0120090071 | en_US |
dc.relation.references | Tsang HH, Chandler AM (2006) Site-specific probabilistic seismic-hazard assessment: direct amplitude-based approach. Bull Seismol Soc Am 96:392–403 | en_US |
dc.relation.references | doi: 10.1785/0120050027 | en_US |
dc.relation.references | Bender B, Perkins DM (1987) SEISRISK III—a computer program for seismic hazard estimation, Bulletin 1772. United States Geological Survey, Department of Interior, USA | en_US |
dc.relation.references | Chandler AM, Lam NTK, Tsang HH, Sheikh MN (2005b) Estimation of near-surface attenuation in bedrock for analysis of intraplate seismic hazard. J Seismlog Earthq Eng 7(3):159–173 | en_US |
dc.relation.references | Chau KT, Lai KW, Wong YL, Wong RHC, Wang LX, Chan YW, Wong WT, Guo YSH, Zhu W (2004) Three-dimensional surface cracking and faulting in Dangan islands area, South of Hong Kong. In: Proceedings of third international conference on continental earthquakes, Beijing, China, 12–14 July 2004 | en_US |
dc.relation.references | Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606 | en_US |
dc.relation.references | Frankel A (1995) Mapping seismic hazard in the central and eastern United States. Seismol Res Lett 66:8–21 | en_US |
dc.relation.references | Ishimoto M, Iida K (1939) Observations sur les séismes enregistrés par le microsismographe construit dernièrement. Bull Earthquake Res Inst XVII, Tokyo Imperial University, pp 443–478 | en_US |
dc.relation.references | Kijko A (2000) Statistical estimation of maximum regional earthquake magnitude m max. Workshop of seismicity modeling in seismic hazard mapping, Poljce, Slovenia, 22–24 May 2000 | en_US |
dc.relation.references | Kijko A, Sellevoll MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I: utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79:645–654 | en_US |
dc.relation.references | McGuire RK (1978) FRISK—a computer program for seismic risk analysis. Open-File Report 78-1007. United States Geological Survey, Department of Interior, USA | en_US |
dc.relation.references | McGuire RK (1993) Computations of seismic hazard. Ann Geofis 36:181–200 | en_US |
dc.relation.references | McGuire RK (2004) Seismic hazard and risk analysis. Earthquake Engineering Research Institute (EERI), Oakland | en_US |
dc.relation.references | Milne WG, Davenport AG (1969) Distribution of earthquake risk in Canada. Bull Seismol Soc Am 59:729–754 | en_US |
dc.relation.references | Nowroozi A (1985) Empirical relations between magnitude and fault parameters for earthquakes in Iran. Bull Seismol Soc Am 75(5):1327–1338 | en_US |
dc.relation.references | OAP/BD (2004) The seismic effects on buildings in Hong Kong. Buildings Department, Government of the HKSAR, Consultancy Agreement No. CAO K49, conducted by Ove Arup and Partners (HK) Ltd | en_US |
dc.relation.references | Pappin JW, Koo RCH, Free MW, Tsang HH (2008) Seismic hazard of Hong Kong. Electron J Struct Eng 8:42–56 | en_US |
dc.relation.references | Raghukanth STG (2005) Engineering models for earthquake sources. Dissertation, Indian Institute of Science, Bangalore, India | en_US |
dc.relation.references | Ramazi HR (1999) Attenuation laws of Iranian earthquakes. In: Proceedings of third international conference on seismology and earthquake engineering, Tehran, Iran, pp 337–344 | en_US |
dc.relation.references | Reiter L (1990) Earthquake hazard analysis: issues and insights. Columbia University Press, New York | en_US |
dc.relation.references | Tavakoli B (1996) Major seismotectonic provinces of Iran. International Institute of Earthquake Engineering and Seismology, Tehran, Iran (in Persian) | en_US |
dc.relation.references | Tsang HH, Lam NTK (2010) Seismic hazard assessment in regions of low-to-moderate seismicity. LAP Lambert Academic Publishing, Koln, Germany | en_US |
dc.identifier.volume | 58 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.spage | 67 | en_US |
dc.identifier.epage | 84 | en_US |
dc.identifier.eissn | 1573-0840 | en_US |
dc.identifier.isi | WOS:000291696300005 | - |
dc.description.other | Springer Open Choice, 21 Feb 2012 | en_US |
dc.identifier.citeulike | 8214482 | - |
dc.identifier.issnl | 0921-030X | - |