File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s12265-012-9350-2
- Scopus: eid_2-s2.0-84865842065
- PMID: 22302631
- WOS: WOS:000304111300015
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Lack of Cardiac Nerve Sprouting after Intramyocardial Transplantation of Bone Marrow-Derived Stem Cells in a Swine Model of Chronic Ischemic Myocardium
Title | Lack of Cardiac Nerve Sprouting after Intramyocardial Transplantation of Bone Marrow-Derived Stem Cells in a Swine Model of Chronic Ischemic Myocardium | ||||
---|---|---|---|---|---|
Authors | |||||
Keywords | Arrhythmia Bone marrow cells Connecxin 43 Ischemia Nerve sprouting | ||||
Issue Date | 2012 | ||||
Publisher | Springer New York | ||||
Citation | Journal Of Cardiovascular Translational Research, 2012, v. 5 n. 3, p. 359-365 How to Cite? | ||||
Abstract | Previous experimental studies suggested that mesenchymal stem cell transplantation causes cardiac nerve sprouting; however, whether bone marrow (BM)-derived mononuclear cells (MNC) and endothelial progenitor cells (EPC) can also lead to cardiac nerve sprouting and alter gap junction expression remains unclear. We investigated the effect of electroanatomical mapping-guided direct intramyocardial transplantation of BM-MNC (n = 8) and CD31 +EPC (n = 8) compared with saline control (n = 8) on cardiac nerve sprouting and gap junction expression in a swine model of chronic ischemic myocardium. At 12 weeks after transplantation, the distribution and density of cardiac nerve sprouting were determined by staining of tyrosine hydroxylase (TH) and growth associated protein 43(GAP-43) and expression of connexin 43 in the targeted ischemic and remote normal myocardium. After 12 weeks, no animal developed sudden death after the transplantation. There were no significant differences in the number of cells with positive staining of TH and GAP-43 in the ischemic and normal myocardium between three groups. Furthermore, expression of connexin 43 was also similar in the ischemic and normal myocardia in each group of animals (P > 0.05). The results of this study demonstrated that intramyocardial BM-derived MNC or EPC transplantation in a large animal model of chronic myocardial ischemia was not associated with increased cardiac nerve sprouting over the ischemic myocardium. © 2012 The Author(s). | ||||
Persistent Identifier | http://hdl.handle.net/10722/147105 | ||||
ISSN | 2023 Impact Factor: 2.4 2023 SCImago Journal Rankings: 0.768 | ||||
PubMed Central ID | |||||
ISI Accession Number ID |
Funding Information: This study was supported by Research Grants Council of Hong Kong, General Research Fund (No. HKU 7594/05 M, HKU 7769/08 M), Outstanding Researcher Award 2007-2008 (H.F.T) and Collaborative Research Fund of Hong Kong Research Grant Council (HKU 8/CRF/09). | ||||
References | Siu, C. W., Liao, S. Y., Liu, Y., Lian, Q., & Tse, H. F. (2010). Stem cells for myocardial repair. Thrombosis and Haemostasis, 104(1), 6–12. doi: 10.1160/TH09-05-0336 Fuchs, S., Kornowski, R., Weisz, G., et al. (2006). Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. The American Journal of Cardiology, 97(6), 823–829. doi: 10.1016/j.amjcard.2005.09.132 Gavira, J. J., Nasarre, E., Abizanda, G., et al. (2010). Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. European Heart Journal, 31(8), 1013–1021. doi: 10.1093/eurheartj/ehp342 Tse, H. F., Siu, C. W., Zhu, S. G., et al. (2007). Paracrine effects of direct intramyocardial implantation of bone marrow derived cells to enhance neovascularization in chronic ischaemic myocardium. European Journal of Heart Failure, 9(8), 747–753. doi: 10.1016/j.ejheart.2007.03.008 Tse, H. F., Thambar, S., Kwong, Y. L., et al. (2007). Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). European Heart Journal, 28(24), 2998–3005. doi: 10.1093/eurheartj/ehm485 Van Ramshorst, J., Bax, J. J., Beeres, S. L., et al. (2009). Intramyocardial bone marrow cell injection for chronic myocardial ischemia: A randomized controlled trial. Journal of the American Medical Association, 301(19), 1997–2004. doi: 10.1001/jama.2009.685 Losordo, D. W., Henry, T. D., Davidson, C., et al. (2011). Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circulation Research, 109(4), 428–436. doi: 10.1161/CIRCRESAHA.111.245993 Liao, S. Y., Liu, Y., Siu, C. W., et al. (2010). Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm, 7(12), 1852–1859. doi: 10.1016/j.hrthm.2010.09.006 Gepstein, L., Ding, C., Rehemedula, D., et al. (2010). In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells, 28(12), 2151–2161. doi: 10.1002/stem.545 Lai, A. C., Wallner, K., Cao, J. M., et al. (2000). Colocalization of tenascin and sympathetic nerves in a canine model of nerve sprouting and sudden cardiac death. Journal of Cardiovascular Electrophysiology, 11(12), 1345–1351. doi: 10.1046/j.1540-8167.2000.01345.x Pak, H. N., Qayyum, M., Kim, D. T., et al. (2003). Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a swine model of myocardial infarction. Journal of Cardiovascular Electrophysiology, 14(8), 841–848. doi: 10.1046/j.1540-8167.2003.03124.x Kim, S. K., Pak, H. N., Park, J. H., et al. (2010). Cardiac cell therapy with mesenchymal stem cell induces cardiac nerve sprouting, angiogenesis, and reduced connexin43-positive gap junctions, but concomitant electrical pacing increases connexin43-positive gap junctions in canine heart. Cardiology in the Young, 20(3), 308–317. doi: 10.1017/S1047951110000132 Meiri, K. F., Pfenninger, K. H., & Willard, M. B. (1986). Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp 46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc Natl Acad Sci USA, 83(10), 3537–3541. doi: 10.1073/pnas.83.10.3537 Li, W., Knowlton, D., Van Winkle, D. M., & Habecker, B. A. (2004). Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. American Journal of Physiology - Heart and Circulatory Physiology, 286(6), H2229–H2236. doi: 10.1152/ajpheart.00768.2003 Kim, S. U., & De Vellis, J. (2009). Stem cell-based cell therapy in neurological diseases: A review. Journal of Neuroscience Research, 87(10), 2183–2200. doi: 10.1002/jnr.22054 Wen, Z., Zheng, S., Zhou, C., Wang, J., & Wang, T. (2011). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15(5), 1032–1043. doi: 10.1111/j.1582-4934.2010.01255.x Decrock, E., Vinken, M., De Vuyst, E., et al. (2009). Connexin-related signaling in cell death: To live or let die? Cell Death and Differentiation, 16(4), 524–536. doi: 10.1038/cdd.2008.196 Miura, T., Miki, T., & Yano, T. (2010). Role of the gap junction in ischemic preconditioning in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 298(4), H1115–H1125. doi: 10.1152/ajpheart.00879.2009 | ||||
Grants |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, Y | en_HK |
dc.contributor.author | Lai, WH | en_HK |
dc.contributor.author | Liao, SY | en_HK |
dc.contributor.author | Siu, CW | en_HK |
dc.contributor.author | Yang, YZ | en_HK |
dc.contributor.author | Tse, HF | en_HK |
dc.date.accessioned | 2012-05-28T08:17:13Z | - |
dc.date.available | 2012-05-28T08:17:13Z | - |
dc.date.issued | 2012 | en_HK |
dc.identifier.citation | Journal Of Cardiovascular Translational Research, 2012, v. 5 n. 3, p. 359-365 | en_HK |
dc.identifier.issn | 1937-5387 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/147105 | - |
dc.description.abstract | Previous experimental studies suggested that mesenchymal stem cell transplantation causes cardiac nerve sprouting; however, whether bone marrow (BM)-derived mononuclear cells (MNC) and endothelial progenitor cells (EPC) can also lead to cardiac nerve sprouting and alter gap junction expression remains unclear. We investigated the effect of electroanatomical mapping-guided direct intramyocardial transplantation of BM-MNC (n = 8) and CD31 +EPC (n = 8) compared with saline control (n = 8) on cardiac nerve sprouting and gap junction expression in a swine model of chronic ischemic myocardium. At 12 weeks after transplantation, the distribution and density of cardiac nerve sprouting were determined by staining of tyrosine hydroxylase (TH) and growth associated protein 43(GAP-43) and expression of connexin 43 in the targeted ischemic and remote normal myocardium. After 12 weeks, no animal developed sudden death after the transplantation. There were no significant differences in the number of cells with positive staining of TH and GAP-43 in the ischemic and normal myocardium between three groups. Furthermore, expression of connexin 43 was also similar in the ischemic and normal myocardia in each group of animals (P > 0.05). The results of this study demonstrated that intramyocardial BM-derived MNC or EPC transplantation in a large animal model of chronic myocardial ischemia was not associated with increased cardiac nerve sprouting over the ischemic myocardium. © 2012 The Author(s). | en_HK |
dc.language | eng | en_US |
dc.publisher | Springer New York | en_US |
dc.relation.ispartof | Journal of Cardiovascular Translational Research | en_HK |
dc.rights | The Author(s) | en_US |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | en_US |
dc.subject | Arrhythmia | en_HK |
dc.subject | Bone marrow cells | en_HK |
dc.subject | Connecxin 43 | en_HK |
dc.subject | Ischemia | en_HK |
dc.subject | Nerve sprouting | en_HK |
dc.title | Lack of Cardiac Nerve Sprouting after Intramyocardial Transplantation of Bone Marrow-Derived Stem Cells in a Swine Model of Chronic Ischemic Myocardium | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://www.springerlink.com/link-out/?id=2104&code=11N88507322519JP&MUD=MP | en_US |
dc.identifier.email | Siu, CW:cwdsiu@hkucc.hku.hk | en_HK |
dc.identifier.email | Tse, HF:hftse@hkucc.hku.hk | en_HK |
dc.identifier.authority | Siu, CW=rp00534 | en_HK |
dc.identifier.authority | Tse, HF=rp00428 | en_HK |
dc.description.nature | published_or_final_version | en_US |
dc.identifier.doi | 10.1007/s12265-012-9350-2 | en_HK |
dc.identifier.pmid | 22302631 | - |
dc.identifier.pmcid | PMC3349852 | - |
dc.identifier.scopus | eid_2-s2.0-84865842065 | en_HK |
dc.identifier.hkuros | 205039 | - |
dc.relation.references | Siu, C. W., Liao, S. Y., Liu, Y., Lian, Q., & Tse, H. F. (2010). Stem cells for myocardial repair. Thrombosis and Haemostasis, 104(1), 6–12. | en_US |
dc.relation.references | doi: 10.1160/TH09-05-0336 | en_US |
dc.relation.references | Fuchs, S., Kornowski, R., Weisz, G., et al. (2006). Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. The American Journal of Cardiology, 97(6), 823–829. | en_US |
dc.relation.references | doi: 10.1016/j.amjcard.2005.09.132 | en_US |
dc.relation.references | Gavira, J. J., Nasarre, E., Abizanda, G., et al. (2010). Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. European Heart Journal, 31(8), 1013–1021. | en_US |
dc.relation.references | doi: 10.1093/eurheartj/ehp342 | en_US |
dc.relation.references | Tse, H. F., Siu, C. W., Zhu, S. G., et al. (2007). Paracrine effects of direct intramyocardial implantation of bone marrow derived cells to enhance neovascularization in chronic ischaemic myocardium. European Journal of Heart Failure, 9(8), 747–753. | en_US |
dc.relation.references | doi: 10.1016/j.ejheart.2007.03.008 | en_US |
dc.relation.references | Tse, H. F., Thambar, S., Kwong, Y. L., et al. (2007). Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). European Heart Journal, 28(24), 2998–3005. | en_US |
dc.relation.references | doi: 10.1093/eurheartj/ehm485 | en_US |
dc.relation.references | Van Ramshorst, J., Bax, J. J., Beeres, S. L., et al. (2009). Intramyocardial bone marrow cell injection for chronic myocardial ischemia: A randomized controlled trial. Journal of the American Medical Association, 301(19), 1997–2004. | en_US |
dc.relation.references | doi: 10.1001/jama.2009.685 | en_US |
dc.relation.references | Losordo, D. W., Henry, T. D., Davidson, C., et al. (2011). Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circulation Research, 109(4), 428–436. | en_US |
dc.relation.references | doi: 10.1161/CIRCRESAHA.111.245993 | en_US |
dc.relation.references | Liao, S. Y., Liu, Y., Siu, C. W., et al. (2010). Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm, 7(12), 1852–1859. | en_US |
dc.relation.references | doi: 10.1016/j.hrthm.2010.09.006 | en_US |
dc.relation.references | Gepstein, L., Ding, C., Rehemedula, D., et al. (2010). In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies. Stem Cells, 28(12), 2151–2161. | en_US |
dc.relation.references | doi: 10.1002/stem.545 | en_US |
dc.relation.references | Cao, J. M., Chen, L. S., Kenknight, B. H., et al. (2000). Nerve sprouting and sudden cardiac death. Circulation Research, 86(7), 816–821. | en_US |
dc.relation.references | Lai, A. C., Wallner, K., Cao, J. M., et al. (2000). Colocalization of tenascin and sympathetic nerves in a canine model of nerve sprouting and sudden cardiac death. Journal of Cardiovascular Electrophysiology, 11(12), 1345–1351. | en_US |
dc.relation.references | doi: 10.1046/j.1540-8167.2000.01345.x | en_US |
dc.relation.references | Cao, J. M., Fishbein, M. C., Han, J. B., et al. (2000). Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation, 101(16), 1960–1969. | en_US |
dc.relation.references | Pak, H. N., Qayyum, M., Kim, D. T., et al. (2003). Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a swine model of myocardial infarction. Journal of Cardiovascular Electrophysiology, 14(8), 841–848. | en_US |
dc.relation.references | doi: 10.1046/j.1540-8167.2003.03124.x | en_US |
dc.relation.references | Kim, S. K., Pak, H. N., Park, J. H., et al. (2010). Cardiac cell therapy with mesenchymal stem cell induces cardiac nerve sprouting, angiogenesis, and reduced connexin43-positive gap junctions, but concomitant electrical pacing increases connexin43-positive gap junctions in canine heart. Cardiology in the Young, 20(3), 308–317. | en_US |
dc.relation.references | doi: 10.1017/S1047951110000132 | en_US |
dc.relation.references | Meiri, K. F., Pfenninger, K. H., & Willard, M. B. (1986). Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp 46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc Natl Acad Sci USA, 83(10), 3537–3541. | en_US |
dc.relation.references | doi: 10.1073/pnas.83.10.3537 | en_US |
dc.relation.references | Li, W., Knowlton, D., Van Winkle, D. M., & Habecker, B. A. (2004). Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. American Journal of Physiology - Heart and Circulatory Physiology, 286(6), H2229–H2236. | en_US |
dc.relation.references | doi: 10.1152/ajpheart.00768.2003 | en_US |
dc.relation.references | Kim, S. U., & De Vellis, J. (2009). Stem cell-based cell therapy in neurological diseases: A review. Journal of Neuroscience Research, 87(10), 2183–2200. | en_US |
dc.relation.references | doi: 10.1002/jnr.22054 | en_US |
dc.relation.references | Wen, Z., Zheng, S., Zhou, C., Wang, J., & Wang, T. (2011). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15(5), 1032–1043. | en_US |
dc.relation.references | doi: 10.1111/j.1582-4934.2010.01255.x | en_US |
dc.relation.references | Decrock, E., Vinken, M., De Vuyst, E., et al. (2009). Connexin-related signaling in cell death: To live or let die? Cell Death and Differentiation, 16(4), 524–536. | en_US |
dc.relation.references | doi: 10.1038/cdd.2008.196 | en_US |
dc.relation.references | Miura, T., Miki, T., & Yano, T. (2010). Role of the gap junction in ischemic preconditioning in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 298(4), H1115–H1125. | en_US |
dc.relation.references | doi: 10.1152/ajpheart.00879.2009 | en_US |
dc.identifier.volume | 5 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.spage | 1 | en_HK |
dc.identifier.epage | 7 | en_HK |
dc.identifier.eissn | 1937-5395 | en_US |
dc.identifier.isi | WOS:000304111300015 | - |
dc.description.other | Springer Open Choice, 28 May 2012 | en_US |
dc.relation.project | Pluripotent Human Stem Cell Platform for Tissue Regeneration and Drug Screening for Cardiovascular Diseases | - |
dc.identifier.scopusauthorid | Liu, Y=54936707200 | en_HK |
dc.identifier.scopusauthorid | Lai, WH=18434390500 | en_HK |
dc.identifier.scopusauthorid | Liao, SY=22433820700 | en_HK |
dc.identifier.scopusauthorid | Siu, CW=7006550690 | en_HK |
dc.identifier.scopusauthorid | Yang, YZ=54934733400 | en_HK |
dc.identifier.scopusauthorid | Tse, HF=7006070805 | en_HK |
dc.identifier.citeulike | 10330369 | - |
dc.identifier.issnl | 1937-5387 | - |