File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Heterogeneous Os isotope compositions in the Kalatongke sulfide deposit, NW China: the role of crustal contamination

TitleHeterogeneous Os isotope compositions in the Kalatongke sulfide deposit, NW China: the role of crustal contamination
Authors
KeywordsCrustal contamination
Re-Os isotopes
Sulfide segregation
Sulfide-bearing intrusions
Sulfides
Issue Date2012
PublisherSpringer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00126/index.htm
Citation
Mineralium Deposita, 2012, v. 47 n. 7, p. 731-738 How to Cite?
AbstractRe-Os isotope compositions of mantle-derived magmas are highly sensitive to crustal contamination because the crust and mantle have very different Os isotope compositions. Crustal contamination may trigger S saturation and thus the formation of magmatic Ni-Cu-(PGE) sulfide deposits. The ∼287-Ma Kalatongke norite intrusion of NW China are hosted in carboniferous tuffaceous rocks and contain both disseminated and massive sulfide mineralization. The Re-Os isotope compositions in the intrusion are highly variable. Norite and massive sulfide ores have γ Os values ranging from +59 to +160 and a Re-Os isochron age of 239 ± 51 Ma, whereas disseminated sulfide ores have γ Os values from +117 to +198 and a Re-Os isochron age of 349 ± 34 Ma. The variability of Os isotope compositions can be explained as the emplacement of two distinct magma pulses. Massive sulfide ores and barren norite in the intrusion formed from the same magma pulse, whereas the disseminated sulfide ores with more radiogenic Os isotopes formed from another magma pulse which underwent different degrees of crustal contamination. Re-Os isotopes may not be suitable for dating sulfide-bearing intrusions that underwent variable degrees of crustal contamination to form magmatic sulfide deposits. © 2012 The Author(s).
Persistent Identifierhttp://hdl.handle.net/10722/147111
ISSN
2023 Impact Factor: 4.4
2023 SCImago Journal Rankings: 1.913
ISI Accession Number ID
References

Amelin Y, Li CS, Naldrett AJ (1999) Geochronology of the Voisey’s Bay intrusion, Labrador, Canada, by precise U–Pb dating of coexisting baddeleyite, zircon, and apatite. Lithos 47:33–51 doi: 10.1016/S0024-4937(99)00006-7

Brenan JM (2002) Re–Os fractionation in magmatic sulfide melt by monosulfide solid solution. Earth Planet Sci Lett 199:257–268 doi: 10.1016/S0012-821X(02)00581-2

Brenan JM (2008) Re–Os fractionation by sulfide melt–silicate melt partitioning: a new spin. Chem Geol 248:140–165 doi: 10.1016/j.chemgeo.2007.09.003

Brenan JM, Cherniak DJ, Rose LA (2000) Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re–Os isotopic system. Earth Planet Sci Lett 180:399–413 doi: 10.1016/S0012-821X(00)00165-5

Campbell IH, Naldrett AJ (1979) The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides. Econ Geol 74:1503–1506 doi: 10.2113/gsecongeo.74.6.1503

Campbell IH, Czamanske GK, Fedorenko VA, Hill RI, Stepanov V, Kunilov VE (1992) Synchronism of the Siberian traps and the Permian–Triassic boundary. Science 258:1760–1763 doi: 10.1126/science.258.5089.1760

Cohen AS, Burnham OM, Hawkesworth CJ, Lightfoot PC (2000) Pre-emplacement Re–Os ages from ultramafic inclusions in the sublayer of the Sudbury Igneous Complex, Ontario. Chem Geol 165:37–46 doi: 10.1016/S0009-2541(99)00162-X

DePaolo DJ (1981) Trace element and isotopic effects of the combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202 doi: 10.1016/0012-821X(81)90153-9

Du AD, Wu SQ, Sun DZ, Wang SX, Qu WJ, Markey R, Stein H, Morgan J, Malinovskiy D (2004) Preparation and certification of Re–Os dating reference materials: molybdenite HLP and JDC. Geostand Geoanal Res 28:41–52 doi: 10.1111/j.1751-908X.2004.tb01042.x

Ebel DS, Naldrett AJ (1996) Fractional crystallization of sulfide ore liquid at high temperature. Econ Geol 91:607–637 doi: 10.2113/gsecongeo.91.3.607

Foster JG, Lambert DD, Frick LR, Maas R (1996) Re–Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites. Nature 382:703–706 doi: 10.1038/382703a0

Gannoun A, Burton KW, Thomas LE, Parkison IJ, Calsteren P, van Schiano P (2004) Osmium isotope heterogeneity in the constituent phases of mid-ocean ridge basalts. Science 303:70–72 doi: 10.1126/science.1090266

Han CM, Xiao WJ, Zhao GC, Qu WJ, Du AD (2007) Re–Os dating of the Kalatongke Cu–Ni sulfide deposit, Altay Shan, NW China, and resulting geodynamic implications. Ore Geol Rev 32:452–468 doi: 10.1016/j.oregeorev.2006.11.004

Kamo SL, Czamanske GK, Krogh TE (1996) A minimum U–Pb age for Siberian flood-basalt volcanism. Geochim Cosmochim Acta 60:3505–3511 doi: 10.1016/0016-7037(96)00173-1

Keays RR, Lightfoot PC (2010) Crustal sulfur is required to form magmatic Ni–Cu sulfide deposits: evidence from chalcophile element signatures of Siberian and Deccan Traps basalts. Miner Deposita 45:241–257 doi: 10.1007/s00126-009-0271-1

Lesher CM, Burnham OM (2001) Multicomponent elemental and isotopic mixing in Ni–Cu–(PGE) ores at Kambalda, Western Australia. Can Mineral 39:421–446 doi: 10.2113/gscanmin.39.2.421

Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng SL, Yang JM, Zhang CQ (2008) Cu–Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region): principal characteristics and ore-forming processes. J Asian Earth Sci 32:184–203 doi: 10.1016/j.jseaes.2007.10.006

Pirajno F, Mao JW, Zhang ZC, Zhang ZH, Chai FM (2008) The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits. J Asian Earth Sci 32:165–183 doi: 10.1016/j.jseaes.2007.10.012

Ripley EM, Park YR, Li C, Naldrett AJ (1999) Sulfur and oxygen isotopic evidence of country rock contamination in the Voisey’s Bay Ni–Cu–Co deposit, Labrador, Canada. Lithos 47:53–68 doi: 10.1016/S0024-4937(99)00007-9

Ripley EM, Park YR, Lambert DD, Frick LR (2001) Re–Os isotopic variations in carbonaceous pelites hosting the Duluth Complex: implications for metamorphic and metasomatic process associated with mafic magma chambers. Geochim Cosmochim Acta 65:2965–2978 doi: 10.1016/S0016-7037(01)00635-4

Sengör AMC, Natal’in BA, Burtman US (1993) Evolution of the Altaid Tectonic Collage and Paleozoic Crustal growth in Eurasia. Nature 364:209–304 doi: 10.1038/364299a0

Shirey SB, Walker RJ (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Rev Earth Planet Sci 26:423–500 doi: 10.1146/annurev.earth.26.1.423

Song XY, Li XR (2009) Geochemistry of the Kalatongke Ni–Cu–(PGE) sulfide deposit, NW China: implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Miner Deposita 44:303–327 doi: 10.1007/s00126-008-0219-x

Walker RJ, Morgan JW, Naldrett AJ, Li C, Fassett JD (1991) Re–Os isotope systematics of Ni–Cu sulfide ores, Sudbury Igneous Complex, Ontario: evidence for a major crustal component. Earth Planet Sci Lett 105:416–429 doi: 10.1016/0012-821X(91)90182-H

Walker RJ, Morgan JW, Horan MF, Czamanske GK, Krogstad EJ, Fedorenko VA, Kunilov VE (1994) Re–Os isotopic evidence for an enriched-mantle source for the Noril’sk-type, ore-bearing intrusions, Siberia. Geochim Cosmochim Acta 58:4179–4197 doi: 10.1016/0016-7037(94)90272-0

Walker RJ, Storey M, Kerr AC, Tarney J, Arndt NT (1999) Implications of 187Os isotopic heterogeneities in a mantle plume: evidence from Gorgona Island and Curacao. Geochim Cosmochim Acta 63:713–728 doi: 10.1016/S0016-7037(99)00041-1

Watson EB (1982) Basalt contamination by continental crust: some experiments and models. Contrib Mineral Petrol 80:73–87 doi: 10.1007/BF00376736

Windley BF, Kroner A, Guo J, Qu G, Li Y, Zhang C (2002) Neoproterozoic to Paleozoic geology of the Altai Orogen, NW China: new zircon age data and tectonic evolution. J Geol 110:719–737 doi: 10.1086/342866

Yang G, Du AD, Lu JR, Qu WJ, Chen JF (2005) Re–Os (ICP-MS) dating of the massive sulfide ores from the Jinchuan Ni–Cu–PGE deposit. Sci China Ser D Earth Sci 48:1672–1677 doi: 10.1360/02YD0124

Yang SH, Qu WJ, Tian L, Chen JF, Du AD, Yang G (2008) Origin of the inconsistent apparent Re–Os age of the Jinchuan Ni–Cu sulfide ore deposit, China: post-segregation diffusion of Os. Chem Geol 247:401–418 doi: 10.1016/j.chemgeo.2007.11.002

Zhang ZH, Mao JW, Du AD, Pirajno F, Wang ZL, Chai FM, Zhang ZC, Yang JM (2008) Re–Os dating of two Cu-Ni sulfide deposits in northern Xinjiang, NW China and its geological significance. J Asian Earth Sci 32:204–217 doi: 10.1016/j.jseaes.2007.10.005

Zhou MF, Lesher CM, Yang Z, Li J, Sun M (2004) Geochemistry and petrogenesis of 270 Ma Ni–Cu–(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic Belt. Chem Geol 209:233–257 doi: 10.1016/j.chemgeo.2004.05.005

Zhou MF, Zhao JH, Jiang CY, Gao JF, Wang W, Yang SH (2009) OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: implications for a possible Permian large igneous province. Lithos 113:583–594 doi: 10.1016/j.lithos.2009.06.027

 

DC FieldValueLanguage
dc.contributor.authorGao, JFen_HK
dc.contributor.authorZhou, MFen_HK
dc.contributor.authorLightfoot, PCen_HK
dc.contributor.authorQu, Wen_HK
dc.date.accessioned2012-05-28T08:17:48Z-
dc.date.available2012-05-28T08:17:48Z-
dc.date.issued2012en_HK
dc.identifier.citationMineralium Deposita, 2012, v. 47 n. 7, p. 731-738en_HK
dc.identifier.issn0026-4598en_HK
dc.identifier.urihttp://hdl.handle.net/10722/147111-
dc.description.abstractRe-Os isotope compositions of mantle-derived magmas are highly sensitive to crustal contamination because the crust and mantle have very different Os isotope compositions. Crustal contamination may trigger S saturation and thus the formation of magmatic Ni-Cu-(PGE) sulfide deposits. The ∼287-Ma Kalatongke norite intrusion of NW China are hosted in carboniferous tuffaceous rocks and contain both disseminated and massive sulfide mineralization. The Re-Os isotope compositions in the intrusion are highly variable. Norite and massive sulfide ores have γ Os values ranging from +59 to +160 and a Re-Os isochron age of 239 ± 51 Ma, whereas disseminated sulfide ores have γ Os values from +117 to +198 and a Re-Os isochron age of 349 ± 34 Ma. The variability of Os isotope compositions can be explained as the emplacement of two distinct magma pulses. Massive sulfide ores and barren norite in the intrusion formed from the same magma pulse, whereas the disseminated sulfide ores with more radiogenic Os isotopes formed from another magma pulse which underwent different degrees of crustal contamination. Re-Os isotopes may not be suitable for dating sulfide-bearing intrusions that underwent variable degrees of crustal contamination to form magmatic sulfide deposits. © 2012 The Author(s).en_HK
dc.languageengen_US
dc.publisherSpringer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00126/index.htmen_HK
dc.relation.ispartofMineralium Depositaen_HK
dc.rightsThe Author(s)en_US
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.en_US
dc.subjectCrustal contaminationen_HK
dc.subjectRe-Os isotopesen_HK
dc.subjectSulfide segregationen_HK
dc.subjectSulfide-bearing intrusionsen_HK
dc.subjectSulfidesen_HK
dc.titleHeterogeneous Os isotope compositions in the Kalatongke sulfide deposit, NW China: the role of crustal contaminationen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://www.springerlink.com/link-out/?id=2104&code=9X152K74TH663603&MUD=MPen_US
dc.identifier.emailZhou, MF:mfzhou@hkucc.hku.hken_HK
dc.identifier.authorityZhou, MF=rp00844en_HK
dc.description.naturepublished_or_final_versionen_US
dc.identifier.doi10.1007/s00126-012-0414-7en_HK
dc.identifier.scopuseid_2-s2.0-84866906191en_HK
dc.relation.referencesAmelin Y, Li CS, Naldrett AJ (1999) Geochronology of the Voisey’s Bay intrusion, Labrador, Canada, by precise U–Pb dating of coexisting baddeleyite, zircon, and apatite. Lithos 47:33–51en_US
dc.relation.referencesdoi: 10.1016/S0024-4937(99)00006-7en_US
dc.relation.referencesBrenan JM (2002) Re–Os fractionation in magmatic sulfide melt by monosulfide solid solution. Earth Planet Sci Lett 199:257–268en_US
dc.relation.referencesdoi: 10.1016/S0012-821X(02)00581-2en_US
dc.relation.referencesBrenan JM (2008) Re–Os fractionation by sulfide melt–silicate melt partitioning: a new spin. Chem Geol 248:140–165en_US
dc.relation.referencesdoi: 10.1016/j.chemgeo.2007.09.003en_US
dc.relation.referencesBrenan JM, Cherniak DJ, Rose LA (2000) Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re–Os isotopic system. Earth Planet Sci Lett 180:399–413en_US
dc.relation.referencesdoi: 10.1016/S0012-821X(00)00165-5en_US
dc.relation.referencesCampbell IH, Naldrett AJ (1979) The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides. Econ Geol 74:1503–1506en_US
dc.relation.referencesdoi: 10.2113/gsecongeo.74.6.1503en_US
dc.relation.referencesCampbell IH, Czamanske GK, Fedorenko VA, Hill RI, Stepanov V, Kunilov VE (1992) Synchronism of the Siberian traps and the Permian–Triassic boundary. Science 258:1760–1763en_US
dc.relation.referencesdoi: 10.1126/science.258.5089.1760en_US
dc.relation.referencesCohen AS, Burnham OM, Hawkesworth CJ, Lightfoot PC (2000) Pre-emplacement Re–Os ages from ultramafic inclusions in the sublayer of the Sudbury Igneous Complex, Ontario. Chem Geol 165:37–46en_US
dc.relation.referencesdoi: 10.1016/S0009-2541(99)00162-Xen_US
dc.relation.referencesDePaolo DJ (1981) Trace element and isotopic effects of the combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202en_US
dc.relation.referencesdoi: 10.1016/0012-821X(81)90153-9en_US
dc.relation.referencesDu AD, Wu SQ, Sun DZ, Wang SX, Qu WJ, Markey R, Stein H, Morgan J, Malinovskiy D (2004) Preparation and certification of Re–Os dating reference materials: molybdenite HLP and JDC. Geostand Geoanal Res 28:41–52en_US
dc.relation.referencesdoi: 10.1111/j.1751-908X.2004.tb01042.xen_US
dc.relation.referencesEbel DS, Naldrett AJ (1996) Fractional crystallization of sulfide ore liquid at high temperature. Econ Geol 91:607–637en_US
dc.relation.referencesdoi: 10.2113/gsecongeo.91.3.607en_US
dc.relation.referencesFoster JG, Lambert DD, Frick LR, Maas R (1996) Re–Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites. Nature 382:703–706en_US
dc.relation.referencesdoi: 10.1038/382703a0en_US
dc.relation.referencesGannoun A, Burton KW, Thomas LE, Parkison IJ, Calsteren P, van Schiano P (2004) Osmium isotope heterogeneity in the constituent phases of mid-ocean ridge basalts. Science 303:70–72en_US
dc.relation.referencesdoi: 10.1126/science.1090266en_US
dc.relation.referencesHan CM, Xiao WJ, Zhao GC, Qu WJ, Du AD (2007) Re–Os dating of the Kalatongke Cu–Ni sulfide deposit, Altay Shan, NW China, and resulting geodynamic implications. Ore Geol Rev 32:452–468en_US
dc.relation.referencesdoi: 10.1016/j.oregeorev.2006.11.004en_US
dc.relation.referencesKamo SL, Czamanske GK, Krogh TE (1996) A minimum U–Pb age for Siberian flood-basalt volcanism. Geochim Cosmochim Acta 60:3505–3511en_US
dc.relation.referencesdoi: 10.1016/0016-7037(96)00173-1en_US
dc.relation.referencesKeays RR, Lightfoot PC (2010) Crustal sulfur is required to form magmatic Ni–Cu sulfide deposits: evidence from chalcophile element signatures of Siberian and Deccan Traps basalts. Miner Deposita 45:241–257en_US
dc.relation.referencesdoi: 10.1007/s00126-009-0271-1en_US
dc.relation.referencesLesher CM, Burnham OM (2001) Multicomponent elemental and isotopic mixing in Ni–Cu–(PGE) ores at Kambalda, Western Australia. Can Mineral 39:421–446en_US
dc.relation.referencesdoi: 10.2113/gscanmin.39.2.421en_US
dc.relation.referencesMao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng SL, Yang JM, Zhang CQ (2008) Cu–Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region): principal characteristics and ore-forming processes. J Asian Earth Sci 32:184–203en_US
dc.relation.referencesdoi: 10.1016/j.jseaes.2007.10.006en_US
dc.relation.referencesPirajno F, Mao JW, Zhang ZC, Zhang ZH, Chai FM (2008) The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits. J Asian Earth Sci 32:165–183en_US
dc.relation.referencesdoi: 10.1016/j.jseaes.2007.10.012en_US
dc.relation.referencesRipley EM, Park YR, Li C, Naldrett AJ (1999) Sulfur and oxygen isotopic evidence of country rock contamination in the Voisey’s Bay Ni–Cu–Co deposit, Labrador, Canada. Lithos 47:53–68en_US
dc.relation.referencesdoi: 10.1016/S0024-4937(99)00007-9en_US
dc.relation.referencesRipley EM, Park YR, Lambert DD, Frick LR (2001) Re–Os isotopic variations in carbonaceous pelites hosting the Duluth Complex: implications for metamorphic and metasomatic process associated with mafic magma chambers. Geochim Cosmochim Acta 65:2965–2978en_US
dc.relation.referencesdoi: 10.1016/S0016-7037(01)00635-4en_US
dc.relation.referencesSengör AMC, Natal’in BA, Burtman US (1993) Evolution of the Altaid Tectonic Collage and Paleozoic Crustal growth in Eurasia. Nature 364:209–304en_US
dc.relation.referencesdoi: 10.1038/364299a0en_US
dc.relation.referencesShirey SB, Walker RJ (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Rev Earth Planet Sci 26:423–500en_US
dc.relation.referencesdoi: 10.1146/annurev.earth.26.1.423en_US
dc.relation.referencesSong XY, Li XR (2009) Geochemistry of the Kalatongke Ni–Cu–(PGE) sulfide deposit, NW China: implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Miner Deposita 44:303–327en_US
dc.relation.referencesdoi: 10.1007/s00126-008-0219-xen_US
dc.relation.referencesWalker RJ, Morgan JW, Naldrett AJ, Li C, Fassett JD (1991) Re–Os isotope systematics of Ni–Cu sulfide ores, Sudbury Igneous Complex, Ontario: evidence for a major crustal component. Earth Planet Sci Lett 105:416–429en_US
dc.relation.referencesdoi: 10.1016/0012-821X(91)90182-Hen_US
dc.relation.referencesWalker RJ, Morgan JW, Horan MF, Czamanske GK, Krogstad EJ, Fedorenko VA, Kunilov VE (1994) Re–Os isotopic evidence for an enriched-mantle source for the Noril’sk-type, ore-bearing intrusions, Siberia. Geochim Cosmochim Acta 58:4179–4197en_US
dc.relation.referencesdoi: 10.1016/0016-7037(94)90272-0en_US
dc.relation.referencesWalker RJ, Storey M, Kerr AC, Tarney J, Arndt NT (1999) Implications of 187Os isotopic heterogeneities in a mantle plume: evidence from Gorgona Island and Curacao. Geochim Cosmochim Acta 63:713–728en_US
dc.relation.referencesdoi: 10.1016/S0016-7037(99)00041-1en_US
dc.relation.referencesWatson EB (1982) Basalt contamination by continental crust: some experiments and models. Contrib Mineral Petrol 80:73–87en_US
dc.relation.referencesdoi: 10.1007/BF00376736en_US
dc.relation.referencesWindley BF, Kroner A, Guo J, Qu G, Li Y, Zhang C (2002) Neoproterozoic to Paleozoic geology of the Altai Orogen, NW China: new zircon age data and tectonic evolution. J Geol 110:719–737en_US
dc.relation.referencesdoi: 10.1086/342866en_US
dc.relation.referencesYang G, Du AD, Lu JR, Qu WJ, Chen JF (2005) Re–Os (ICP-MS) dating of the massive sulfide ores from the Jinchuan Ni–Cu–PGE deposit. Sci China Ser D Earth Sci 48:1672–1677en_US
dc.relation.referencesdoi: 10.1360/02YD0124en_US
dc.relation.referencesYang SH, Qu WJ, Tian L, Chen JF, Du AD, Yang G (2008) Origin of the inconsistent apparent Re–Os age of the Jinchuan Ni–Cu sulfide ore deposit, China: post-segregation diffusion of Os. Chem Geol 247:401–418en_US
dc.relation.referencesdoi: 10.1016/j.chemgeo.2007.11.002en_US
dc.relation.referencesZhang ZH, Mao JW, Du AD, Pirajno F, Wang ZL, Chai FM, Zhang ZC, Yang JM (2008) Re–Os dating of two Cu-Ni sulfide deposits in northern Xinjiang, NW China and its geological significance. J Asian Earth Sci 32:204–217en_US
dc.relation.referencesdoi: 10.1016/j.jseaes.2007.10.005en_US
dc.relation.referencesZhou MF, Lesher CM, Yang Z, Li J, Sun M (2004) Geochemistry and petrogenesis of 270 Ma Ni–Cu–(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic Belt. Chem Geol 209:233–257en_US
dc.relation.referencesdoi: 10.1016/j.chemgeo.2004.05.005en_US
dc.relation.referencesZhou MF, Zhao JH, Jiang CY, Gao JF, Wang W, Yang SH (2009) OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: implications for a possible Permian large igneous province. Lithos 113:583–594en_US
dc.relation.referencesdoi: 10.1016/j.lithos.2009.06.027en_US
dc.relation.referencesBaker DR, Barnes SJ, Bernier F, Simon G (1998) Vapour transport of S into mafic melts. GAC/MAC Annual Meeting Program with Abstracts volume 23, A7en_US
dc.relation.referencesBarnes SJ and Lightfoot PC (2005) Formation of magmatic nickel-sulfide ore deposits and processses affecting their copper and platinum-group element contents. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds) Econ Geol 100th Anniversary Volume, pp. 179–213en_US
dc.relation.referencesCrocket JH (2002) Platinum-group element geochemistry of mafic and ultramafic rocks. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Canadian Institute of Mining Metallurgy and Petroleum 54:177–210, Special volumeen_US
dc.relation.referencesDu AD, Zhao DM, Wang SX, Sun DZ, Liu DY (2001) Precise Re–Os dating for molybdenite by ID-NTIMS with Carius Tube sample preparation. Rock Miner Anal 20:247–252 (in Chinese with English abstract)en_US
dc.relation.referencesHan BF, Ji JQ, Song B, Chen LH, Li ZH (2004) SHRIMP zircon U–Pb ages of Kalatongke No. 1 and Huangshandong Cu–Ni-bearing mafic–ultramafic complexes, North Xinjiang, and geological implications. Chin Sci Bull 49(22):2424–2429en_US
dc.relation.referencesLambert DD, Frick LR, Foster JG, Li CS, Naldrett AJ (2000) Re–Os isotope systematics of the Voisey’s Bay Ni–Cu–Co magmatic sulfide system, Labrador, Canada: II Implications for parental magma chemistry, ore genesis, and metal redistribution. Econ Geol 95:867–888en_US
dc.relation.referencesLi XH, Su L, Song B, Liu DY (2004) SHRIMP U–Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance. Chin Sci Bull 49:420–422 (in Chinese with English abstract)en_US
dc.relation.referencesLiu DQ, Tang YL, Zhou RH (2005) Copper deposits and nickel deposits in Xinjiang, China. Geological Publishing House, Beijing, p 360, in Chineseen_US
dc.relation.referencesNaldrett AJ (2004) Magmatic sulfide deposits: geology, geochemistry and exploration. Springer, Berlin Heidelberg New York, p 728en_US
dc.relation.referencesWang RM, Zhao CL (1991) Karatungk Cu-Ni sulfide No.1 ore deposit in Xinjiang. Geological Publishing House, Beijing, p 391, in Chineseen_US
dc.identifier.spage1en_HK
dc.identifier.epage8en_HK
dc.identifier.eissn1432-1866en_US
dc.identifier.isiWOS:000309232200002-
dc.publisher.placeGermanyen_HK
dc.description.otherSpringer Open Choice, 28 May 2012en_US
dc.identifier.scopusauthoridGao, JF=25638167000en_HK
dc.identifier.scopusauthoridZhou, MF=7403506005en_HK
dc.identifier.scopusauthoridLightfoot, PC=7102963749en_HK
dc.identifier.scopusauthoridQu, W=8982620500en_HK
dc.identifier.citeulike10629755-
dc.identifier.issnl0026-4598-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats