File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s10898-012-9856-9
- Scopus: eid_2-s2.0-84880819220
- WOS: WOS:000321921500013
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A note on a selfish bin packing problem
Title | A note on a selfish bin packing problem |
---|---|
Authors | |
Keywords | Approximation Ratio Bin Packing Nash Equilibrium |
Issue Date | 2013 |
Publisher | Springer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0925-5001 |
Citation | Journal Of Global Optimization, 2013, v. 56 n. 4, p. 1457-1462 How to Cite? |
Abstract | In this paper, we consider a selfish bin packing problem, where each item is a selfish player and wants to minimize its cost. In our new model, if there are k items packed in the same bin, then each item pays a cost 1/k, where k ≥ 1. First we find a Nash Equilibrium (NE) in time O(n log n) within a social cost at most 1.69103 OPT + 3, where OPT is the social cost of an optimal packing; where n is the number of items or players; then we give tight bounds for the worst NE on the social cost; finally we show that any feasible packing can be converged to a Nash Equilibrium in O(n 2) steps without increasing the social cost. © 2012 Springer Science+Business Media, LLC. |
Persistent Identifier | http://hdl.handle.net/10722/152492 |
ISSN | 2023 Impact Factor: 1.3 2023 SCImago Journal Rankings: 0.743 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ma, R | en_US |
dc.contributor.author | Dósa, G | en_US |
dc.contributor.author | Han, X | en_US |
dc.contributor.author | Ting, HF | en_US |
dc.contributor.author | Ye, D | en_US |
dc.contributor.author | Zhang, Y | en_US |
dc.date.accessioned | 2012-06-26T06:39:38Z | - |
dc.date.available | 2012-06-26T06:39:38Z | - |
dc.date.issued | 2013 | en_US |
dc.identifier.citation | Journal Of Global Optimization, 2013, v. 56 n. 4, p. 1457-1462 | en_US |
dc.identifier.issn | 0925-5001 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/152492 | - |
dc.description.abstract | In this paper, we consider a selfish bin packing problem, where each item is a selfish player and wants to minimize its cost. In our new model, if there are k items packed in the same bin, then each item pays a cost 1/k, where k ≥ 1. First we find a Nash Equilibrium (NE) in time O(n log n) within a social cost at most 1.69103 OPT + 3, where OPT is the social cost of an optimal packing; where n is the number of items or players; then we give tight bounds for the worst NE on the social cost; finally we show that any feasible packing can be converged to a Nash Equilibrium in O(n 2) steps without increasing the social cost. © 2012 Springer Science+Business Media, LLC. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0925-5001 | en_US |
dc.relation.ispartof | Journal of Global Optimization | en_US |
dc.subject | Approximation Ratio | en_US |
dc.subject | Bin Packing | en_US |
dc.subject | Nash Equilibrium | en_US |
dc.title | A note on a selfish bin packing problem | en_US |
dc.type | Article | en_US |
dc.identifier.email | Ting, HF:hfting@cs.hku.hk | en_US |
dc.identifier.authority | Ting, HF=rp00177 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1007/s10898-012-9856-9 | en_US |
dc.identifier.scopus | eid_2-s2.0-84880819220 | en_US |
dc.identifier.hkuros | 223792 | - |
dc.identifier.spage | 1457 | en_US |
dc.identifier.epage | 1462 | en_US |
dc.identifier.isi | WOS:000321921500013 | - |
dc.publisher.place | Netherlands | en_US |
dc.identifier.scopusauthorid | Ma, R=15046740000 | en_US |
dc.identifier.scopusauthorid | Dósa, G=8925424600 | en_US |
dc.identifier.scopusauthorid | Han, X=34872071800 | en_US |
dc.identifier.scopusauthorid | Ting, HF=7005654198 | en_US |
dc.identifier.scopusauthorid | Ye, D=16023572800 | en_US |
dc.identifier.scopusauthorid | Zhang, Y=54934112300 | en_US |
dc.identifier.citeulike | 10319010 | - |
dc.identifier.issnl | 0925-5001 | - |